[go: up one dir, main page]

smacofx: Flexible Multidimensional Scaling and 'smacof' Extensions

Flexible multidimensional scaling (MDS) methods and extensions to the package 'smacof'. This package contains various functions, wrappers, methods and classes for fitting, plotting and displaying a large number of different flexible MDS models (some as of yet unpublished). These are: Torgerson scaling (Torgerson, 1958, ISBN:978-0471879459) with powers, Sammon mapping (Sammon, 1969, <doi:10.1109/T-C.1969.222678>) with ratio and interval optimal scaling, Multiscale MDS (Ramsay, 1977, <doi:10.1007/BF02294052>) with ratio and interval optimal scaling, S-stress MDS (ALSCAL; Takane, Young & De Leeuw, 1977, <doi:10.1007/BF02293745>) with ratio and interval optimal scaling, elastic scaling (McGee, 1966, <doi:10.1111/j.2044-8317.1966.tb00367.x>) with ratio and interval optimal scaling, r-stress MDS (De Leeuw, Groenen & Mair, 2016, <https://rpubs.com/deleeuw/142619>) with ratio, interval and non-metric optimal scaling, power-stress MDS (POST-MDS; Buja & Swayne, 2002 <doi:10.1007/s00357-001-0031-0>) with ratio and interval optimal scaling, restricted power-stress (Rusch, Mair & Hornik, 2021, <doi:10.1080/10618600.2020.1869027>) with ratio and interval optimal scaling, approximate power-stress with ratio optimal scaling (Rusch, Mair & Hornik, 2021, <doi:10.1080/10618600.2020.1869027>), Box-Cox MDS (Chen & Buja, 2013, <https://jmlr.org/papers/v14/chen13a.html>), local MDS (Chen & Buja, 2009, <doi:10.1198/jasa.2009.0111>), curvilinear component analysis (Demartines & Herault, 1997, <doi:10.1109/72.554199>) and curvilinear distance analysis (Lee, Lendasse & Verleysen, 2004, <doi:10.1016/j.neucom.2004.01.007>). There also are experimental models (e.g., sparsified MDS and sparsified POST-MDS). Some functions are suitably flexible to allow any other sensible combination of explicit power transformations for weights, distances and input proximities with implicit ratio, interval or non-metric optimal scaling of the input proximities. Most functions use a Majorization-Minimization algorithm. Currently the methods are only available for one-mode data (symmetric dissimilarity matrices).

Version: 1.6-1
Depends: R (≥ 3.5.0), smacof (≥ 1.10-4)
Imports: MASS, minqa, plotrix, ProjectionBasedClustering, weights, vegan
Published: 2024-09-22
DOI: 10.32614/CRAN.package.smacofx
Author: Thomas Rusch ORCID iD [aut, cre], Jan de Leeuw [aut], Lisha Chen [aut], Patrick Mair ORCID iD [aut]
Maintainer: Thomas Rusch <thomas.rusch at wu.ac.at>
BugReports: https://r-forge.r-project.org/tracker/?atid=5375&group_id=2037&func=browse
License: GPL-2 | GPL-3
URL: https://r-forge.r-project.org/projects/stops/
NeedsCompilation: no
Materials: NEWS
In views: Psychometrics
CRAN checks: smacofx results

Documentation:

Reference manual: smacofx.pdf

Downloads:

Package source: smacofx_1.6-1.tar.gz
Windows binaries: r-devel: smacofx_1.6-1.zip, r-release: smacofx_1.6-1.zip, r-oldrel: smacofx_1.6-1.zip
macOS binaries: r-release (arm64): smacofx_1.6-1.tgz, r-oldrel (arm64): smacofx_1.6-1.tgz, r-release (x86_64): smacofx_1.6-1.tgz, r-oldrel (x86_64): smacofx_1.6-1.tgz
Old sources: smacofx archive

Reverse dependencies:

Reverse depends: cops, stops

Linking:

Please use the canonical form https://CRAN.R-project.org/package=smacofx to link to this page.