Abbaszadeh, P., Moradkhani, H., & Zhan, X. (2019). Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resources Research, 55(1), 324–344. Paper not yet in RePEc: Add citation now
Agricultural and Forest Meteorology, 220, 200–206. https://doi.org/10.1016/J.AGRFORMET.2015. 12.066 Brahm, M., Vila, D., Martinez Saenz, S., & Osgood, D. (2019). Can disaster events reporting be used to drive remote sensing applications? A Latin America weather index insurance case study. Paper not yet in RePEc: Add citation now
Agricultural and Forest Meteorology, 73(3), 265–283. https://doi.org/10.1016/0168-1923(94) 05078-K Seyyedi, H., Anagnostou, E. N., Beighley, E., & McCollum, J. (2014). Satellite-driven downscaling of global reanalysis precipitation products for hydrological applications. Hydrology and Earth System Sciences, 18(12), 5077–5091. https://doi.org/10.5194/hess-18-5077-2014 958 S. ELTAZAROV ET AL. Paper not yet in RePEc: Add citation now
Bastola, S., & Misra, V. (2014). Evaluation of dynamically downscaled reanalysis precipitation data for hydrological application. Hydrological Processes, 28(4), 1989–2002. https://doi.org/10.1002/hyp. Paper not yet in RePEc: Add citation now
Enenkel, M., Osgood, D., Anderson, M., Powell, B., McCarty, J., Neigh, C., Carroll, M., Wooten, M., Husak, G., Hain, C., & Brown, M. (2018). Exploiting the convergence of evidence in satellite data for advanced weather index insurance design. Weather, Climate, and Society, 11(1), 65–93. https://doi. Paper not yet in RePEc: Add citation now
https://doi.org/10.1029/2018WR023354 Alexakis, D. D., & Tsanis, I. K. (2016). Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data. Environmental Earth Sciences, 75(14), 1077. https://doi.org/10.1007/s12665-016-5883-z Bai, J., Cui, Q., Zhang, W., & Meng, L. (2019). An approach for downscaling SMAP soil moisture by combining sentinel-1 SAR and MODIS data. Remote Sensing, 11(23), 2736. https://doi.org/10.3390/ rs11232736 Bartkowiak, P., Castelli, M., & Notarnicola, C. (2019). Downscaling land surface temperature from MODIS dataset with random forest approach over alpine vegetated areas. Remote Sensing, 11(11), 1319. https://doi.org/10.3390/rs11111319 954 S. ELTAZAROV ET AL. Paper not yet in RePEc: Add citation now
https://doi.org/10.1109/TGRS.2018.2870199 Möllmann, J., Buchholz, M., & Musshoff, O. (2019). Comparing the hedging effectiveness of weather derivatives based on remotely sensed vegetation health indices and meteorological indices. Paper not yet in RePEc: Add citation now
Journal of Geophysical Research Atmospheres, 119(18), ,10,610–619,644. https://doi.org/10.1002/ 2014JD021927 Mega, T., Ushio, T., Takahiro, M., Kubota, T., Kachi, M., & Oki, R. (2019). Gauge-adjusted global satellite mapping of precipitation. IEEE Transactions on Geoscience and Remote Sensing, 57(4), 1928–1935. Paper not yet in RePEc: Add citation now
Scaling up index insurance for smallholder farmers: Recent evidence and insights. https://hdl.handle. net/10568/53101 Haag, I., Jones, P. D., & Samimi, C. (2019). Central asia’s changing climate: How temperature and precipitation have changed across time, space, and altitude. Climate, 7(10), 123. https://doi.org/ 10.3390/cli7100123 Ha, W., Gowda, P. H., & Howell, T. A. (2013). A review of downscaling methods for remote sensingbased irrigation management: Part I. Irrigation Science, 31(4), 831–850. https://doi.org/10.1007/ s00271-012-0331-7 Hellmuth, M. E., Osgood, D. E., Hess, U., Moorhead, A., & Bhojwani, H. (2009). Index insurance and climate risk: Prospects for development and disaster management. International Research Institute for Climate and Society (IRI). Paper not yet in RePEc: Add citation now
Spatial Downscaling of Satellite-Based Precipitation and Its Impact on Discharge Simulations in the Magdalena River Basin in Colombia. Frontiers in Earth Science, 6, 6. https://doi.org/10.3389/ feart.2018.00068 BIG EARTH DATA Maidment, R. I., Grimes, D., Allan, R. P., Tarnavsky, E., Stringer, M., Hewison, T., Roebeling, R., & Black, E. (2014). The 30 year TAMSAT African rainfall climatology and time series (TARCAT) data set. Paper not yet in RePEc: Add citation now
The Australian Journal of Agricultural and Resource Economics, 65(1), 66–93. n/a(n/a. https://doi. org/10.1111/1467-8489.12403 Konduri, V. S., Vandal, T. J., Ganguly, S., & Ganguly, A. R. (2020). Data science for weather impacts on crop yield. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.00052 Liu, Y., Jing, W., Wang, Q., & Xia, X. (2020). Generating high-resolution daily soil moisture by using spatial downscaling techniques: A comparison of six machine learning algorithms. Advances in Water Resources, 141, 103601. https://doi.org/10.1016/j.advwatres.2020.103601 Liu, Y., Yang, Y., Jing, W., & Yue, X. (2018). Comparison of different machine learning approaches for monthly satellite-based soil moisture downscaling over Northeast China. Remote Sensing, 10(2), 31. https://doi.org/10.3390/rs10010031 López López, P., Immerzeel, W. W., Rodríguez Sandoval, E. A., Sterk, G., & Schellekens, J. (2018). Paper not yet in RePEc: Add citation now
Weather and Climate Extremes, 12, 69–79. https://doi.org/10.1016/j.wace.2016.02.003 R Development Core Team. (2018) . R: A language and environment for statistical computing. R Foundation for Statistical Computing. Paper not yet in RePEc: Add citation now
Weather, Climate, and Society, 11(1), 33–48. https://doi.org/10.1175/WCAS-D-17-0127.1 NCEI, N. C. for E. I. (2021). Observational data map of daily weather stations networks from around the world. https://gis.ncdc.noaa.gov/maps/ncei/cdo/daily Ndegwa, M. K., Shee, A., Turvey, C., & You, L. (2022). Sequenced crop evapotranspiration and water requirement in developing a multitrigger rainfall index insurance and risk-contingent credit. Paper not yet in RePEc: Add citation now