
15

Watch your (Development) Steps

Bert de Brock 1

1 University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands

Abstract
Agility in Information Systems Engineering should not be limited to the software design &
implementation phase. Agility should already start early during requirements analysis and
customer validation. The objective of this position paper is to sketch how to integrate
requirements engineering with agile software development, a.k.a. Agile RE. We sketch our
approach to support the agility-oriented development of the functional requirements for an
information system and to describe our ongoing research on the Agil-ISE topic. Our main
message: Align and improve the development path, not only the individual development steps.

Keywords 1
User Wish, User Story, Main Success Scenario, Alternative Scenarios, Use Case,
System Sequence Description, Natural Language Generation, Software Procedures

1. Introduction

Agility often refers to a specific software engineering process, but agility in Information Systems
Engineering should not be limited to the software design & implementation phase. Agility should
already start early during requirements analysis and customer validation (aimed at shared under-
standing, a cognitive aspect of agile ISE). In this position paper we sketch our (wholistic) approach to
the agility-oriented development of the functional requirements for an information system, as well as
our recent, ongoing, and future research on this topic. Our approach is based on the combination of our
practical experience and our theoretical insights. We concentrate on the functional requirements, which
we want to get right. Our main message is to align and improve the development path: not only the
individual development steps but also their proper combination and alignment. Alignment also supports
traceability, as we will illustrate in Section 2.

Requirements Engineering and Software (Systems) Engineering should be attuned to one another,
but the RE-world and SE-world seem two worlds apart. In this position paper we sketch how to integrate
those two worlds. Popular examples of agile Software Engineering approaches are XP (eXtreme
Programming, see http://www.extremeprogramming.org) and Scrum (see https://www.scrum.org or
https://www.atlassian.com/agile/scrum).

 We notice that certain development steps have textual contents (e.g., texts from future users/
customers) while other intermediate steps have graphical contents (e.g., UML-diagrams) and the final
steps have textual contents again (e.g., software programs). See the next suggestive picture (suggesting
that the different steps are based on different paradigms):

For instance:
 textual ⟶
 graphical ⟶

 ⟶ ⤐ ↴

Figure 1: Non-aligned paradigms

Agil-ISE 2022: Intl. Workshop on Agile Methods for Information Systems Engineering, June 06, 2022, Leuven, Belgium
EMAIL: e.o.de.brock@rug.nl (B.de Brock)
ORCID: 0000-0003-4400-0187 (B. de Brock)

© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

http://www.extremeprogramming.org/
https://www.scrum.org/
https://www.atlassian.com/agile/scrum

16

2. Our approach

Figure 2 shows a possible conceptual model for an agile development path for a functional
requirement where existing notions are in white and our notions are in yellow:

 eUW
 pUW = eUW + parameters
 US = UW + actor [+ benefit(s)]
 MSS
 AS*
 UC = MSS + AS*
 tSSD = schematic UC (MSS ⊕ AS*, integrated)
 ↙ ⇣ ↘
Text in NL ⇣ gSSD (for validation by the customer)
 ⇣
 SW-procedure(s)

elementary User Wish
parameterized User Wish
User Story
Main Success Scenario
Alternative Scenarios (0 or more)
Use Case
textual System Sequence Description

graphical System Sequence Description

Figure 2: A conceptual model for a complete development path for a functional requirement

During validation it might turn out that the result wasn’t okay yet. In that case, we have to go back,
most likely to the MSS or the ASs (as indicated in Figure 6). So, our development approach is iterative,
i.e., improving ‘the same piece’ through successive refinements/adaptions. A ‘piece’ could be only one
functional requirement / use case, or even only one scenario within a use case.

The results of a Requirements Analysis phase for a system essentially consist of a description of the
dynamics, describing the relevant processes (i.e., what the system must be able to do), and a description
of the statics, describing the relevant data structures (i.e., what the system must know). We specify the
dynamics in the form of textual System Sequence Descriptions (tSSDs). The statics are often given in
the form of a Conceptual Data Model. Together, the statics and the dynamics constitute a complete
conceptual ‘blue print’ of the system to be developed, as summarized in Table 1:

Table 1
The aspects and how they are described

Aspect to be described Requirements Analysis result

Dynamics / Processes Textual SSDs

Statics / Data structure Conceptual Data Model

For the dynamic aspects we developed:
• a syntax for our textual SSDs [1]
• a formal, declarative semantics for those textual SSDs [2]
• a mapping of those textual SSDs to Natural Language [3]
• a mapping of those textual SSDs to graphical SSDs [3]

The mappings of a textual SSD to Natural Language and to a graphical SSD can be used to validate
the textual SSD (resulting from a Requirements Analysis phase) with the user community.

For the static aspects we developed:
• a mapping of conceptual data models to Natural Language [4]
• a mapping of conceptual data models to SQL [5]

The mapping of a Conceptual Data Model to Natural Language can be used to validate the
Conceptual Data Model (resulting from Requirements Analysis) with the user community. The mapping
to SQL gives (a first version of) an implementation design.

Figure 3 positions and links our ‘development products’ schematically (with existing components
in white and our ‘development products’ in yellow):

17

 Dynamics Statics

 textual SSDs Conceptual Data Model
 ↙ ↘ ↙ ↘
graphical SSDs unambiguous SQL
 texts in NL

Figure 3: What we did so far

It is worthwhile to sketch a complete example of a development path for a concrete functional
requirement, showing the artefacts produced along the development path. Figure 4 contains such an
example.

 eUW

 pUW

 US

 MSS

 AS*

 UC

 tSSD

 SW-procedure(s)

Register a student

Register a student with a given name, address, country, birth date, …

As an administrator, I want to Register a student [because …..]

1. The user asks the system to <pUW> (Register a student with …)
2. The system fulfils <pUW> (Register a student with …)
3. The system sends result to the user (e.g., registered data including the generated student nr.)

AS1: If (s)he is a foreigner then …
AS2: If (s)he was a student before then …
AS3: …
⁞

MSS + AS1 + AS2 + AS3 + …
(But what if the foreigner was a student before?)

User System: <pUW> ;
if student is a foreigner
 then ….. (even if the foreigner was a student before, as the customer told us)
 else if (s)he was not a student before
 then System System: generate new student number ;
 System System: fulfil <pUW, with new student number>
 else …..
 end
end ;
System User: result (e.g., registered data including generated student number)

E.g., a stored procedure in SQL
@output is declared as a return parameter here
(Let’s suppose that student number is declared as an AUTO-INCREMENT primary key field)

CREATE PROCEDURE RegisterStudent @n VARCHAR(50), @a VARCHAR, @c VARCHAR(20),
 @bd DATE,, @output VARCHAR OUTPUT
AS
BEGIN
 IF @c <> ‘NL’
 THEN
 ELSE IF
 THEN BEGIN INSERT INTO Student(name, address, country, ...)
 VALUES(@n, @a, @c, @bd, ...)
 SELECT @output = ‘Done. New student nr. is ’+ < . . . >
 END
 ELSE
END

Figure 4: A complete example of a development path for a concrete functional requirement

Note that the resulting procedure follows the structure of the textual SSD.

Figure 4 also illustrates the traceability virtues of our aligned approach: The original user wish
(Register a student) forms a ‘trace’ all the way from that user wish down to the software procedure
(RegisterStudent). Since textual SSDs can also be named in our syntax, the textual SSD produced
during the development could be named RegisterStudent as well. All in all, the traces arise during and
as part of the development, not produced as a (ceremonial) duty afterwards, as is typically the case [6].

18

In Figure 5 we show the graphical SSD generated from our textual SSD and the generated NL-text
next to it, but both with all scenarios integrated now. For the generation of the graphical SSD we used
the drawing generation tool Plantuml (see https://plantuml.com/sequence-diagram, and our appendix
for the code). For a complex example we refer to [7].

The User asks the System to <pUW>.
If student is a foreigner
 then …..
 else if (s)he was not a student before
 then the System does generate new student number.
 The System does fulfil <pUW>
 else …..
 end
end.
The System sends result to User

Figure 5: The graphical SSD and the natural language text generated from our textual SSD

All this is worked out in detail in the forthcoming book [8].

3. An Agile Method for Information Systems Engineering

Now we are ready to sketch an agile method for information systems engineering (Agil-ISE).

When a new user wish pops up, then you can ‘walk the line’ we sketched, i.e., follow the aligned
development path, completely from initial user wish all down to implementation (say, in Java or SQL).
The development path for a single functional requirement also includes validation.

We can write it out as a business process, an agile ISE-business process. In other words, this is about
business process alignment and ISE-business agility. All in all, it brings us to the following agile method
for information systems engineering (Agil-ISE):

An agile method for information systems engineering (Agil-ISE)
for the development of a functional requirement

eUW An elementary User Wish comes in
pUW Which parameters should it have?
US Which benefit(s) does it have? (Mention at least one)
US Which actor(s)/role(s)?

MSS Write out the Main Success Scenario
tSSD Convert it to a textual SSD
NL-text Generate the corresponding NL-text
gSSD Generate the corresponding graphical SSD (if desirable)
Validate Let the customer validate the generated NL-text and/or gSSD
SW-procedures Convert the (possibly adapted) tSSD to software procedure(s)

For each individual Alternative Scenario there is an additional integration step:
AS Write out the Alternative Scenario
tSSD Convert it to a (local) textual SSD

https://plantuml.com/sequence-diagram

19

MSS ⊕ AS* Integrate it into the already existing textual SSD
NL-text Generate the corresponding NL-text
gSSD Generate the corresponding graphical SSD (if desirable)
Validate Let the customer validate the generated NL-text and/or gSSD
SW-procedures Convert the (possibly adapted) tSSD to (adapted) software procedure(s)

Note that each development cycle results in one or more actual software procedures.
Until now we discussed the development of an individual functional requirement (FR). Developing

several FRs can be done incrementally, i.e., developing (and delivering) the system ‘piece by piece’.
And if there are several development teams to develop the FRs, an individual FR should preferably be
handled within one team. Figure 6 illustrates these aspects. This way of working makes the approach
well scalable.

Team 1 Team 2 . . .

 . . .

 . . .

Figure 6 Iterative and incremental development with several teams

Furthermore, the usual agile practices can be applied here. We use the principles so nicely formulated
in the Agile Manifesto (http://agilemanifesto.org/):

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

Our approach is worked out in more detail in [8]

4. Future work / Research agenda

Currently we are working on a mapping of those textual SSDs to SQL (see the dotted downward arrow
in Figure 2). Our planned future research is to elevate our theory to meta-level in order to be able to
generate all this from a central repository (so, automation in agile ISE).

5. References

[1] E.O. de Brock: From Business Modeling to Software Design. In B. Shishkov (ed.): Proceedings

BMSD (Business Modeling and Software Design), LNBIP 391, pp. 103–122 (2020)
[2] E.O. de Brock: Declarative Semantics of Actions and Instructions. In B. Shishkov (ed.):

Proceedings BMSD (Business Modeling and Software Design), LNBIP 391, pp. 297–308 (2020)
[3] E.O. de Brock: On System Sequence Descriptions. In M. Sabetzadeh et al (eds.): Joint Proc. of

REFSQ-2020 Workshops, Doctoral Symposium, Live Studies Track, and Poster Track (2020)

http://agilemanifesto.org/

20

[4] E.O. de Brock and C. Suurmond: NLG4RE: How NL Generation Can Support Validation in RE.
In J. Fischbach et al (eds.): Joint Proceedings of REFSQ-2022 Workshops, Doctoral Symposium,
and Poster & Tools Track (2022)

[5] E.O. de Brock: Foundations of Semantic Databases. Prentice Hall (1995)
[6] R. Kasauli, E. Knauss, J. Horkoff et al: Requirements Engineering Challenges and Practices in Large-

Scale Agile System Development. Journal of Systems and Software, vol. 172 (2021)
 http://dx.doi.org/10.1016/j.jss.2020.110851
[7] E.O. de Brock: Converting a non-trivial Use Case into an SSD: An exercise.

SOM Research Report 2018011, University of Groningen (2018)
[8] E.O. de Brock: Developing Information Systems Accurately - A Wholistic Approach.

Springer books (2022)

6. Appendix: Plantuml-code used to generate the graphical SSD

The Plantuml-code used for generating the graphical SSD has a close resemblance to the original tSSD:

User -> System: <pUW>
group if [student is a foreigner]
 rnote over User, System #white: …..
else else
group if [(s)he was not a student before]
 System -> System: generate new student number
 System -> System: fulfil <pUW>
 else else
 rnote over User, System #white: …..
 end
end
System -> User: result

http://dx.doi.org/10.1016/j.jss.2020.110851

	1. Introduction
	2. Our approach
	3. An Agile Method for Information Systems Engineering
	4. Future work / Research agenda
	5. References
	6. Appendix: Plantuml-code used to generate the graphical SSD

