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Abstract. The paper considers mathematical and software for automated design 

of rational schemes of cutting rectangular materials into flat geometric objects 

with a complex configuration of external contours. To solve this problem suc-

cessfully, it is divided into the following four tasks: construction of a set of 

dense tabs for each of the flat geometric objects; generating a rational cutting 

scheme (sections) for each of the flat geometric objects; dense placement of 

sections in the cutting scheme; interactive adjustment of the received cutting 

scheme. For each of these four problems, mathematical models and methods 

for solving them are proposed. The tasks were implemented in software for the 

design of rational schemes for cutting rectangular materials on flat geometric 

objects with a complex configuration of external contours. 

 

Keywords:  Rational   cutting ·   System    placement, ·   Interactive adjustment 
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1        Introduction 

In any industry, the issue of material consumption in production has always been very 

relevant. High material consumption and significant cost of materials used make the 

task of minimizing costs especially important for the footwear industry. Rational and 

economic costs of material and energy resources, as well as protection of the envi-

ronment from pollution by waste, which arise during the cutting of materials are im-

portant tasks of production. Automated design of rational cutting schemes will allow 

rational use of materials when cutting parts, reduce the amount of waste that pollutes 

the environment, reduce the cost of products. 

2       Statement of the problem 

Many works have been devoted to the design of rational schemes for cutting materials 

into flat geometric objects. Mathematical models of compact arrangement of convex 



flat geometric objects are presented in [1-3]. Guo et al. [1] proposed a tree representa-

tion called O-tree: Two ordered trees for the horizontal and vertical directions are 

used to represent a coded solution Chang et al. [2] extended the result by Guo et al. 

[1]. They proposed another tree representation called B*-tree; it is easy to implement 

this data structure and a decoding algorithm for B*-tree runs in linear time with re-

spect to the number of items. Sakanushi et al. [3] proposed another coding scheme 

called quarter-state sequence. They utilized a string of items and labels to represent a 

solution and their decoding algorithm runs in linear time of the number of items. But 

in most cases, the details of the shoes are not convex flat geometric objects.  

Okano[4] designed his algorithm for the irregular two-dimensional bin packing 

problem; however, his technique is also useful for treating the irregular strip packing 

problem. Lesh et al. [5] proposed a stochastic search variation of the bottom left heu-

ristics for the strip packing problem. Their algorithm outperforms other heuristic and 

meta heuristic algorithms based on the bottom left strategy reported in the literature. 

Imahori et al. [6] proposed an improved meta heuristic algorithm based on sequence 

pair representation. Meta heuristic algorithms generate numer-ous number of coded 

solutions and evaluate all of them. Hence, the efficiency of meta heuristic algorithms 

strongly depends on the time complexity of decoding algorithms.  
Genetic algorithms are used in [7-10]. But these algorithms do not always give a 

satisfactory result in a limited time. Therefore, the task of this work is to develop a 

method of automatic design of rational schemes of cutting materials by any configura-

tion of the outer contour for flat geometric objects with a complex configuration of 

outer contours. But the problem of automated design of rational schemes of cutting 

rectangular materials into flat geometric objects was not considered in such a state-

ment. The technological formulation of this problem is as follows: on a roll of materi-

al of limited length to place a given set of flat geometric objects taking into account 

technological requirements (orientation of these objects, minimum technological dis-

tance Δ between two neigh boring objects in the cutting scheme), so that waste was 

the smallest. 

The mathematical formulation of this problem is as follows: for a given set of flat 

geometric objects Si and a given number of these objects Ňi, where i = 1..q, from the 

set of admissible layouts in a rectangular region of length DlMat and width ShMat 

find such a rational layout, which provided the maximum value of the goal function: 
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This takes into account the technological requirements (orientation of these ob-

jects, the minimum technological distance Δ between two neigh boring objects in a 

rational layout). 

Based on the practice of cutting in light industry, consider such a simplified 

mathematical model of the problem. Consider three consecutive tasks: 

Task A – System  placement  j

iN ( j

iN Ňi)   of  flat   geometric  objects   Si, i = 

1..q in a rectangular region of fixed width ShMat (Section); 

Task B - Designing a cutting scheme from sections (Scheme); 



Task C - Interactive adjustment of the scheme of the designed cutting scheme (In-

teractive adjustment). 

We give a mathematical formulation of each of these three problems. 

Task A - Section. For 
j

iN ( j

iN Ňi)  flat geometric objects from the set of sys-

tem schemes of cutting find such a region (section Ŝi) of rectangular shape 
iS of size 

ShMat x Dl_Si, i = 1..q, for which the objective function takes a maximum, that is 
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Task B - Scheme. For the cyclic permutation μ = [Ŝ1, Ŝ2… Ŝq] of sections Ŝi, i = 

1,2..q to find such permutation μ* is μ that at dense combination of sections the 

formed scheme will have the smallest length, that is            ))((min)( ** 


LLL == . 

Task C - Interactive adjustment. In many cases, it is not possible to automatically 

build cutting schemes that would meet the technological requirements. Therefore it is 

necessary to adjust the received schemes or to build new in an interactive mode. To 

successfully solve this problem, you need to solve two problems: the placement of flat 

geometric objects in a rectangular area of given size with control: 

- belonging of a flat geometric object to a rectangular area of specified dimen-

sions; 

- not the intersection of the active flat geometric object with already placed in the 

rectangular area of flat geometric objects; 

remove any previously placed flat geometric object from the cutting scheme. 

Since flat geometric objects in most cases have a complex configuration of the 

outer contour, which cannot be described analytically, we will approximate it. For the 

approximation, we choose the piecewise-linear method of approximation as one that 

does not impose restrictions on the outer contour of a flat geometric object. In a 

piecewise linear approximation, the outer contour of a flat geometric object will be 

approximated by a polygon with vertex coordinates. Therefore, in what follows we 

will assume that flat geometric objects are polygons with a known number of vertices 

and their coordinates. 

Determine the maximum values of the coordinates of the vertices of the approxi-

mate polygon for a flat geometric object: 
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List the coordinates of the approximating polygons as follows: 
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After listing the coordinates of the approximating polygons we obtain the follow-

ing expressions for: 
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After recalculating the coordinates of the vertices of the approximating polygons 

for flat geometric objects Si, i = 1..q the coordinates of the vertices of the approximat-

ing polygon will be determined relative to the centre of the rectangles described 

around the flat geometric objects Si. These points are called the poles of flat geometric 

objects Si. 

3. Task A - Section 

To generate a set of system schemes of cutting for a flat geometric object, it is neces-

sary to generate a set of lattice dense stacks, as a set of prototypes of cutting schemes. 

3.1       Tight styling 

A system of flat geometric objects Si, i=1,2..p forms a stack on the plane, if for each 

pair of these flat geometric objects the condition of their mutual intersection is ful-

filled. This condition can be represented as follows: 
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iS  the boundary of a flat geometric object iS . 

We denote by aS


+ a flat geometric object that arises when each point of a flat 

geometric object is moved to a vector, and we will call this flat geometric object S a 

translation of a flat geometric object a


. 

Set of vectors 
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is called a lattice with basis 
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Consider a system of flat geometric objects 
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which consists of translations 
21 amanSSnm
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++= of a flat geometric object S  

into lattice vectors ),( 21 aa
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= . 

If  the system (2) is a layout, then such a layout is called a lattice layout of flat 

geometric objects S , made behind the lattice ),( 21 aa


= . The lattice    in 

this case  is called permissible for laying flat geometric objects S . 

In the future, only those flat geometric objects that can be translated into each 

other by translation to some vector will be considered the same. From this point of 

view, the basic flat geometric object )0(S and the same flat geometric object )(S , 

but rotated by 180o are further considered as different. Let's make from these figures 

dense single-row placements: 
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By alternating the formed rows and pressing them tightly, we create a laying 

W on the plane so that the mutual arrangement of the row consisting of flat geomet-

ric objects )0(S , in relation to the adjacent rows of flat geometric objects )(S , in 

the whole laying was the same (Fig. 1). . 

Laying W is a combination of two lattice layouts 
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= with the 

same basis ba


, . Therefore, the layout W of the form is called double lattice laying 

of flat geometric objects )0(S  and )(S . 

 

Fig.1. Dense lattice laying 

A system consisting of two simultaneously defined on the plane identical but not 

coinciding lattices with nodes points Qj, j = 1,2..m and Pi, i = 1,2..n one of which is a 

translation of the second to some vector, is called double lattice and is denoted 

),,( qbaWW


= . Here is the basis of each of the lattices of the system and the vec-

tor of their mutual displacement. (Q1Q2 = =P2P3, Q1Q5 = P2P5 and =q


Q6P4 (Fig. 1). 

The  problem  of   generating  a   set of dense tabs is considered in detail in [11]. 

To reproduce dense lattice laying ),( ba


= on a single lattice it is necessary to 

determine two lattice vectors ba


, . To reproduce dense lattice laying on a double 

lattice ),,( qbaWW
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= it is necessary to determine two lattice vectors ba


,  and the 

lattice shift vector .q


 



3.2       Generating a set of sections 

The source information for generating the set of allowable sections for a flat geomet-

ric object 
iS  will be the set of allowable dense stacks built on single 

0...2,1),,( ppba ppp ==
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and double lattices 
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To successfully solve the problem Section it is necessary to describe its structural 

components, namely: 

- analytical description of the rectangular area і  and the size ShMat x Dl_Si, in 

which it is necessary to tightly place flat geometric objects 
iS ; 

- determination of parameters that unambiguously determine the position of a flat 

geometric object 
iS in a rectangular region і  and given dimensions; 

- conditions under which a flat geometric object 
iS  is in the middle of the rectangular 

region і ; 

- mathematical description of the set of admissible solutions; 

- goal function. 

We will connect the coordinate system with a material that has a rectangular 

shape (rolls or sheets). Let the origin be in the lower left corner of the material. Then 

the allowable area (Fig. 2), where flat geometric objects can be placed can be repre-

sented as a system of inequalities: 
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where Dl_Si, ShMat - respectively the length and width of the rectangular region і. 

To unambiguously display a flat geometric object on the material, you need to 

know the following information: 

          i is the code of the flat geometric object 
iS that is placed (in our case   i = 

1,2..q); 

         Хрm, Ypm, m = 1,2..t - coordinates of the pole of a flat geometric object 
iS rela-

tive to the coordinate system associated with the rectangular region і, on which is 

located 

        Pr - a sign of the position of the part (in our case: 0 - the main position; 1 - a flat 

geometric object rotated 180o relative to the main position) 

We find the conditions under which a flat geometric object 
iS is inside the rec-

tangular region і. Obviously, if the pole of a flat geometric object 
iS  inside the 

rectangle ABCD, then this flat geometric object will be inside the rectangular region 

і (Fig. 2) Then it is obvious that if the inequality holds 
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then a flat geometric object 
iS  that will be placed in a rectangular area і  will never 

go beyond that area. 



 

Fig. 2. Determining the mutual position of the plane geometric object 
iS and rectangular area 

і 
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the set ,2,1,0   that satisfy inequalities (5). Using the     sign (x) function 
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4 Task B - Scheme 

Often the cutting scheme consists of separate schemes, which we will call sections.   

These sections are combined as rectangles described around them when constructing 

the cutting scheme. And this is not always rational, as in this case the sections are not 

aligned tightly everywhere (Fig. 3). 

4.1 Tight alignment of sections 

 Let the length of the j-th section be equal to Dl_Sj and the coordinates of the poles of 

the parts be where k = 1,2..nj. To tightly align the j-th and i-th sections, it is necessary 

to find new coordinates i

kXp , where k = 1,2..ni. Their initial value can be defined as 

j

i

k

i

k sDlXpXp _+= , that is for alignment without taking into account the possibility of 

tight alignment of sections. For tight  alignment  of  sections it is necessary to find the 

right boundary of the j-th section and the left boundary of the i-th section after the 

previous alignment. By the right boundary of a flat geometric object, t = 1,2… tR we 

mean the contours of this object, which are to the right of the reference line drawn 

from the right edge of the j-th section at a distance Dl_dj / 2 parallel to the axis 0Y , 

where Dl_dj is the length of the rectangle, which is described around a flat geometric 

object Sj (Fig. 3). 

 

Fig. 3. Sections J and I before alignment 



The sides of the rectangle are parallel to the sides of the j-th layout. By the left 

boundary 
L

itG , t=1,2…tL of the flat geometric object, t = 1,2… tL, we mean the con-

tour of the flat geometric object  which is to the left of the reference line, drawn from 

the left edge of the i-th section at a distance Dl_di / 2 parallel to the axis 0Y, where 

Dl_di is the length of the rectangle , which is described around a flat geometric object 

Si (Fig. 3). The sides of the rectangle are parallel to the sides i-th layout. The right   

boundary   of   the   j-th   section  consists  of  the    right   boundaries 
R

jtG , t=1,2…tR  

t = 1,2… tR of flat geometric objects, for which the inequality holds 

jj

j

k dDlsDlXp __ − , where 
jsDl _  is the length of the j-th section (Fig. 3). The left 

boundary of the i-th layout consists of the left boundaries 
L

itG , t = 1,2… tL of flat 

geometric objects, ,for which the inequality holds 
i

i

k dDlXp _  (Fig. 3). To closely 

match the j-th and i-th layouts, it is necessary to tightly align the right boundary of the 

j-th section and the left boundary of the i-th section (Fig. 4). 

To do this first we select the left boundary 
L

itG , t = 1,2… tL for each flat geometric 

object Si of the i-th section, the poles of which satisfy the condition 
i

i

k dDlXp _ and 

the right boundary 
R

jtG , t = 1,2… tR for each flat geometric object Sj   j-th sections 

whose poles satisfy the condition 
jj

j

k dDlsDlXp __ − . 

 

Fig. 4. The magnitude δ  of the possible displacement of the sections  



Then the left boundary 
L

iG for the i-th section can be represented as the union of 

the left boundaries of flat geometric objects Si, that is 
Lt

t

L

it

L

i GG
1=

= . Similarly, the 

right boundary 
R

jG for the j-th section can be represented as the union of the right 

boundaries of flat geometric objects Sj, that is 
Rt

t

r
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R

j GG
1=

= . For each left boundary 

L

iG we find points for which the X coordinate reaches a local  minimum.  Let  it  be  

an  array  of  points  Ak (Xak, Yak), k = 1,2..ki (Fig. 4). For each right boundary 
R

jG we 

find points for which the X coordinate   reaches   a    local   maximum.  Let  it  be  an  

array   of   points Bk (Xbk, Ybk), k = 1,2..kj. Draw from each point Ak (Bk) a straight 

line parallel to the axis OX to the intersection with the left boundary 
L

iG  (right 

boundary
R

jG ) i-th (j-th) section (Fig. 3-5). Find the length of the segments AkOk = 

δk1, k = 1,2..kj (BkOk = δk2, k = 1,2..ki). 
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found value of δji will be the value by which you  want  to  shift  the  i-th  layout  so  

that  it fits snugly with the j-th layout (Fig. 5). Then the coordinates of the poles of the 

parts in the i-th section after close alignment with the j-th section will take the follow-

ing form: 
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where k = 1,2, .. hi. 

Now we can always closely match the two layouts (sections) Ŝi and Ŝj by calculat-

ing δіj, but we must remember that δіj determines the tight fit when Ŝi the layout is on 

the left and Ŝj the layout is on the right, δji determines the tight fit when Ŝj layout is on 

the left, and Ŝi layout is on the right, as δіj ≠ δjі. 

4.2       Search for the optimal permutation of sections 

The mathematical model of this problem can be represented as follows. You need to 

minimize the function: 
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with the following restrictions: 
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As a result of solving this problem, we obtain the order of alignment of the sections in 

the cutting scheme, which, when the sections are tightly placed, will ensure the mini-

mum length of the cutting scheme. This task can be reduced to the task of a salesman 

by entering the following notation 
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         After that, the mathematical model of the problem can be represented as fol-

lows: 
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with the following restrictions: 
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This is a mathematical model of the problem of the salesman.  

5     Task C - Interactive adjustment 

In many cases, it is not possible to automatically build cutting schemes that would 

meet the technological requirements. Therefore it is necessary to adjust the received 

schemes or to build new in an interactive mode. To successfully solve this problem, 

you need to solve the following problems: 



• placement of parts on the material of the specified dimensions and not crossing the 

boundaries of the material details; 

• removal of any previously placed part from the cutting scheme; 

• not the intersection of parts when placing them. 

Let's dwell in more detail on each of the above tasks. The problem of placing parts on 

the material of a given size and not crossing the boundaries of the material details was 

discussed in detail in the first section. 

To remove any previously placed part from the cutting scheme, it is necessary to iden-

tify the part that needs to be removed. To do this, you must decide whether the point 

is inside a convex-concave polygon. To speed up the algorithm for determining the 

mutual location of the point O(X0, Y0) and the  polygon  A,  consider  the  problem  of 

mutual placement of the point O(X0, Y0) and the rectangle described around the poly-

gon P. Let this rectangle be defined by a system of inequalities: 
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Then the point O(X0, Y0)  is located outside the polygon A, if it does not satisfy the 

system of inequalities (15), otherwise the point O may or may not belong to the poly-

gon A(рис. 5). To clarify this fact, we use the method of angles[12]. 

Consider the method of angles [12] to solve the problem of belonging to a point. 

In this approach, it is necessary to define the concept of an angle with a sign. Suppose 

we have a vector OAi and a vector OAi+1 . Denote the angle between them by 

і=АіОАі+1, where і=1,2...np-1.   The angle і will be with a plus sign, when rotating 

the vector OAi around the point O the closest path to the vector OAi+1 will be when 

rotating the vector OAi counterclockwise, otherwise this angle і will be negative. The 

point O will be outside the polygon A, if o

n

i

i

p

0

1

1

=
−

=

 (fig. 5.a). The point O is inside the 

polygon A, if o

n

i

i

p

360

1

1

=
−

=

 (fig. 5.b). 

 
Fig. 5. Location of the point 

a) outside the polygon b) in the polygon 

 



To determine the total angle, it is necessary to find the elementary angles. Ele-

mentary angles will have a sign. To determine the sign of the elementary angle i use 

the module of the vector product: 

Determine the angle between the vectors OAi  and OAi+1. To do this, we find the 

modulus of the vector product and the scalar product of the vectors OAi  and OAi+1.. 

We introduce the notation: ai= OAi=(Xai, Yai)=(Xi-X0, Yi-Y0); bi= OAi+1 =(Xai+1, 

Yai+1)=(Xi+1-X0, Yi+1-Y0); 

Then  [OAі x OAі +1]=  [aix bi] =−== iiii

ii

ii
YaXbYbXa

YbXb

YaXa
 

=ai۰bi۰sin i, 

 (OAі+1۰ OAі+1)=(ai۰ bi)=Xai۰Xbi+ Yai۰Ybi =  ai۰bi۰cos i.  

From here::            sin i = (Xai۰Ybi- Yai۰Хbi)/( ai۰bi), 

                               cos i=(Xai۰Xbi- Yai۰Ybi)/( ai۰bi), 

where ai=
22 )()( YoYXoX ii −+− and  bi = 2

1

2

1 )()( YoYXoX ii −+− ++
.  

If   [OAi x OAi+1] =  [aix bi]>0, then the angle will be positive. 

 If  [OAi x OAi+1] =  [aix bi]<0 , then the angle will be negative.  

Then: 

- if cos i>0, then j=arctg( [ai x bi]/(ai۰ bi); 

- if cos i=0 та sin i=1, then i=/2; 

- if cos i=0 та sin i=-1, then i=-/2; 

- if cos i<0 та sin i≥0, then i=+ arctg( [ai x bi]/(ai۰ bi);  

- if cos i<0 та sin i<0, then i=-- arctg( [ai x bi]/ (ai۰ bi)). 

 
Fig. 6.  An example of the designed rational scheme of cutting 

 



To find out the intersection of two plane geometric objects, it is necessary to find out the 

intersection of the polygons P and Q, which approximate these objects. 

The above-mentioned problems A-С were implemented in software for automated 

design of rational schemes of cutting rectangular materials into flat geometric objects 

of arbitrary shape of the outer contour, taking into account the need for these objects. 

An example of the designed rational scheme of cutting by means of the developed 

software is presented in fig. 6. 

6    Conclusions 

The article considers the task of computer-aided design of rational schemes for cut-

ting rectangular materials onto flat geometric objects with a complex configuration of 

the external contour. For its successful solution, the task was divided into three con-

secutive tasks: task A – Section; task B – Scheme; task C - Interactive  adjustment.  

For  their  tasks, methods and algorithms for solving them were proposed.  The   pro-

posed  mathematical  models and algorithms allowed to develop software for auto-

mated design of rational schemes of cutting rectangular materials into flat geometric 

objects with a complex configuration of the outer contour. This software can be used 

in various fields, where it is necessary to rationally cut rectangular materials into flat 

geometric objects and will increase the efficiency of materials in cutting. 
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