
9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 
 

 

Molecular docking with Raccoon2 on clouds: 
extending desktop applications with cloud computing 

Damjan Temelkovski, Tamas Kiss, Gabor Terstyanszky 
University of Westminster 

London, UK 
damjan.temelkovski@my.westminster.ac.uk, {t.kiss, g.z.terstyanszky}@westminster.ac.uk 

 
 

Abstract—Molecular docking is a computer simulation that 
predicts the binding affinity between two molecules, a ligand and 
a receptor. Large-scale docking simulations, using one receptor 
and many ligands, are known as structure-based virtual 
screening. Often used in drug discovery, virtual screening can be 
very computationally demanding. This is why user-friendly 
domain-specific web or desktop applications that enable running 
simulations on powerful computing infrastructures have been 
created. Cloud computing provides on-demand availability, pay-
per-use pricing, and great scalability which can improve the 
performance and efficiency of scientific applications. This paper 
investigates how domain-specific desktop applications can be 
extended to run scientific simulations on various clouds. A 
generic approach based on scientific workflows is proposed, and 
a proof of concept is implemented using the Raccoon2 desktop 
application for virtual screening, WS-PGRADE workflows, and 
gUSE services with the CloudBroker platform. The presented 
analysis illustrates that this approach of extending a domain-
specific desktop application can run workflows on different types 
of clouds, and indeed makes use of the on-demand scalability 
provided by cloud computing. It also facilitates the execution of 
virtual screening simulations by life scientists without requiring 
them to abandon their favourite desktop environment and 
providing them resources without major capital investment. 

Keywords—cloud computing; molecular docking; Raccoon2; 
virtual screening; WS-PGRADE/gUSE; bioinformatics  

I.  INTRODUCTION 
Biochemical interactions between two molecules can be 

estimated using a software simulation technique known as 
molecular docking. Particularly important in drug discovery, 
this technique can predict the conformation, pose, and binding 
affinity of a ligand and a receptor. In order to achieve this, the 
3D structure of both molecules must be known. This structure 
can be determined using X-ray crystallography or NMR 
spectroscopy, or estimated using homology modelling. 
Molecular docking consists of an algorithm to search through 
the conformational space of the molecules, and a scoring 
function to estimate the energy between the ligand and the 
receptor’s binding site. Since molecular docking uses the 
structure of the receptor, large-scale molecular docking of 
hundreds of thousands of ligands and one receptor is called 
structure-based virtual screening (virtual, as opposed to high 
throughput screening, the automated laboratory experiment). In 

practice, as in the rest of this paper, these terms are often 
abbreviated to docking and virtual screening (VS). Although a 
single docking simulation is relatively short, a VS experiment 
is computationally demanding, requiring the use of Distributed 
Computing Infrastructures (DCIs).  

Cloud computing is a paradigm based on virtualisation of 
data centres, which “enables ubiquitous convenient, on-demand 
network access to a shared pool of configurable computing 
resources that can be rapidly provisioned and released with 
minimal management effort or service provider interaction” 
[1]. The scalability and elasticity provided by cloud computing 
makes it useful for VS. Clouds are available on-demand and 
users are charged on pay-per-use basis. This can make 
scientific applications, such as VS, more accessible for life 
scientists around the world, lowering the cost of using complex 
computing infrastructure. If VS is implemented based on the 
Software-as-a-Service model, life scientists will always have 
access to the latest version of the simulation software. 
Scientists and students without access to expensive DCIs, and 
without experience in configuring them, will be able to run VS 
easily. 

Scientific workflow systems such as Taverna [2], Kepler 
[3] or WS-PGRADE [4], provide a convenient way to represent 
and develop complex applications composed of multiple steps 
and executables. A user-friendly interface is usually used to 
provide convenient workflow management facilities. In some 
cases, science gateways are developed, providing a user-
friendly way to run workflows. There are several examples of 
science gateways that use workflows to run VS simulations 
[5]-[7]. However, all of these solutions require life scientists to 
become familiar with new, typically web-based user interfaces, 
and significantly restrict the use of the docking software for the 
sake of simplicity and ease of use. On the other hand, there are 
popular desktop applications which offer greater flexibility, 
such as Raccoon2 [8]. Unfortunately, these desktop 
applications are either restricted to local resources, or require 
expensive compute clusters and significant IT support to run 
them on DCIs. Such tools typically cannot utilise cloud 
computing resources.  

This paper describes a generic approach to extend domain-
specific desktop applications to execute workflows on clouds, 
while retaining the same familiar Graphical User Interface 
(GUI) presented to end-users. We demonstrate the utilisation of 

This work was funded by the CloudSME Cloud-Based Simulation platform 
for Manufacturing and Engineering Project No. 608886 and the COLA Cloud 
Orchestration at the level of Applications Project No. 731574 projects. 



9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 
 

 

 

distributed heterogeneous clouds to run VS, noting that various 
other DCIs can also be used with little or no changes to our 
approach. 

II. RELATED WORK 
Most VS experiments on DCIs have used CPU, GPU 

clusters or grid computing resources (e.g. [5], [6], [9]-[11]). 
Applying cloud computing for such experiments is still 
relatively new with much lower number of examples.  

One such example is the wFReDoW [12], a web-based 
environment for docking flexible receptors using the docking 
tool AutoDock 4.2. Their infrastructure is comprised of a 
virtual MPI master-slave environment deployed on the 
commercial Amazon EC2 cloud [13]. They have tested it using 
five c1.xlarge EC2 Amazon instances (8-cores, 7GB RAM, 
1.65TB storage), the ligand triclosan obtained from the PDB 
(Protein Data Bank) [14] (PDB ID: 1P45A), and 3,100 
snapshots of the receptor InhA from Mycobacterium 
tuberculosis, generated by Molecular Dynamics (MD) 
simulations to model the flexibility. 

Another example is AutoDockCloud [15] which uses 
Hadoop and MapReduce to run AutoDock4 on the private 
“Kandinsky” cloud at the Oak Ridge National Laboratory. 
With 57 16-core nodes reserved for MapReduce, 570 docking 
simulations can be performed simultaneously. To test their 
solution, the authors used the human estrogen receptor alpha 
obtained from the PDB (PDB ID: 1L2I) and 2,637 ligands from 
the DUD [16] database. AutoDockCloud has completed the VS 
450 times faster than a non-parallel execution without affecting 
the biochemical results. However, it only handles the docking 
stage and not the pre or post-docking preparation and analysis, 
which have to be done separately.  

In a third example [17], AutoDock and AutoDock Vina 
have been ported on the Windows Azure-based “VENUS-C” 
cloud computing service. Using a small desktop application, 
scientists were able to submit, monitor and retrieve results of 
VS simulations. 10,000 ligands and a receptor, generated from 
a short MD run on an initial structure, have been tested on 20 
extra small Azure instances (1-core, 768MB RAM, 20GB 
storage), for a total of 110,000 CPU hours and more than 
40,000 docking runs. While these experiments illustrated the 
applicability of cloud computing resources, the custom user 
interface was rather simplistic restricting the depth of 
experiments. 

As summarised above, there have been several efforts to 
run VS using cloud computing. However, all these attempts 
provided their own restricted GUI for running the simulations 
and were focusing on a specific cloud computing 
infrastructure. In comparison, the approach suggested in this 
paper, enables scientists to use the GUI of a popular domain-
specific desktop application they are familiar with. 
Furthermore, Raccoon2, the desktop application we use to 
prove our concept, provides pre-docking and post-docking 
facilities to prepare input files, and analyse results. Finally, our 
approach utilises a set of services in the form of WS-
PGRADE/gUSE and the CloudBroker Platform which support 

a wide range of clouds as well as other DCIs, not limiting life 
scientists to using a specific infrastructure. 

III. GENERIC CONCEPT 
Our aim is to enable existing desktop applications to access 

heterogeneous cloud computing resources. This should be 
achieved without major reengineering of the desktop 
application and without further burdening the end-user. Ideally, 
end-users should be able to design and execute the experiments 
in the same way they have done earlier, but with the possibility 
to send the computations to cloud computing resources.  

In order to achieve this objective, a set of services (we 
name them Cloud Access Services - CAS) can be called from 
the desktop application. CAS should be available from an 
Application Programming Interface (API) in order to facilitate 
its integration to the GUI of the desktop application. 
Additionally, CAS should provide access to a wide range of 
cloud computing resources, and should enable the design and 
execution of complex application scenarios, such as parameter 
sweep workflow applications, typically required to design VS 
experiments.  

The integration requires two major steps from the 
developers, as illustrated in Fig. 1. During the first step, CAS is 
configured to run the application in the cloud. This step 
typically requires preparing workflow applications describing 
the experiment, and configuring CAS to interface with the 
desired cloud resources. In the second step minor modification 
of the GUI of the desktop application is required while 
integrating the execution of the workflow (practically creating 
a simple button to execute the complex workflow representing 
the experiment), and to retrieve the results. Instead of 
implementing CAS, the core component of this conceptual 
architecture from scratch, existing tools to support the creation 
of parameter sweep workflows and interfacing with cloud 
computing resources can be applied. This approach speeds up 
the development and has the potential to result in a mature and 
highly reliable solution. The rest of this paper describes this 
approach using a set of existing services and components as the 
selected CAS and their integration to a VS desktop application. 

Fig. 1. Generic concept for extending desktop applications to run on clouds 

IV. BACKGROUND 
The solution developed and presented in this paper is 

focused around the extension of the VS tool Raccoon2, by 
connecting it to a WS-PGRADE/gUSE science gateway and to 
various cloud computing resources via the CloudBroker 



9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 
 

 

 

Platform. This section briefly describes these technologies and 
components. When connected, they enable scientists to run VS 
simulations on various clouds using a familiar GUI. 

A. Raccoon2 and AutoDock Vina 
Raccoon2 is the latest version of an open-source desktop 

application for preparing and analysing VS with AutoDock 
Vina. It supports executing docking experiments a Linux 
cluster with the PBS or SGE schedulers, and it incorporates 
analysis features such as filtering, visualising, and exporting 
the results. Users can select ligands and receptors, configure 
docking options, visualise a binding site, and connect to a 
cluster to submit jobs, directly from the Raccoon2 GUI. We 
have chosen Raccoon2 in our implementation since it is the VS 
tool of choice for bio-scientists at the University of 
Westminster (UoW). 

Before the jobs can be submitted, Raccoon2 guides users to 
deploy the docking tool AutoDock Vina on a cluster. 
AutoDock Vina [18] is an open-source docking tool with built-
in support for multithreading. It uses a hybrid global-local 
conformation search with a gradient-based local optimisation, 
and its scoring function is based on empirically weighted 
parameters such as: hydrophobic (van der Waals) interactions, 
hydrogen bonding, and torsional penalties, similarly to its 
sister-tool AutoDock. 

B. WS-PGRADE/gUSE 
WS-PGRADE/gUSE [19] is a workflow-centric open-

source science gateway framework. WS-PGRADE workflows 
are dataflow directed acyclic graphs where nodes represent 
execution blocks, with input and output ports, which can be 
executed in parallel. WS-PGRADE workflows support 
parameter sweep applications, where a workflow node can be 
executed many times for multiple input data sets.  

A WS-PGRADE portal is a Liferay-based [20] e-science 
web portal for development of parallel applications executed 
on various DCIs using WS-PGRADE workflows. It has a 
graph editor which allows creating, configuring and executing 
workflows using gUSE (Grid and cloud User Support 
Environment) services. The gUSE is an open-source service 
stack that can form the back-end of science gateways executing 
applications on DCIs. It provides well-defined services for 
workflow management. Originally supporting primarily service 
grids, desktop grids, and clusters, gUSE also supports parallel 
execution on clouds. A gUSE internal component called DCI 
Bridge [21], provides a well-defined communication interface 
enabling access to many different DCIs, including clouds [22]. 

The gUSE RemoteAPI is an API that allows remote 
submission and management of WS-PGRADE workflows. 
Existing applications can call it over HTTP(S) to use gUSE 
services without a WS-PGRADE portal. The RemoteAPI 
requires a valid well-parameterised WS-PGRADE workflow to 
be attached. It submits this workflow using a temporary user. 
Once downloaded, the workflow output files and all 
information about this user are deleted from the gUSE server.  

C. CloudBroker Platform 
The CloudBroker Platform [23] is a cloud computing 

middleware and an application store developed by 
CloudBroker GmbH. It provides a web interface which can be 
used to deploy and execute an application in a cloud, and 
monitor its behaviour. The CloudBroker platform is connected 
to various kinds of clouds, including commercial (e.g. 
CloudSigma, Amazon Web Services) and open-source (e.g. 
OpenNebula, OpenStack). The CloudBroker platform has been 
integrated into gUSE’s DCI Bridge, providing various cloud 
computing resources to the WS-PGRADE/gUSE framework.  

V. DESIGN AND IMPLEMENTATION 
Based on the generic concept described in Section III and 

the tools introduced in Section IV, a reference implementation 
of the proposed architecture has been completed. When 
implementing the generic concept of Fig. 1, the domain-
specific desktop application is Raccoon2; the CAS is composed 
of a gUSE server connected to the CloudBroker Platform, a 
WS-PGRADE portal for workflow development, and the 
CloudBroker web interface for deployment; while the cloud 
infrastructures are the UoW OpenStack cloud, and the 
CloudSigma [25] cloud (Fig. 2). 

As described in Section III, the development is divided into 
two major steps: configuration of the CAS (1) and modification 
of the desktop GUI (2). First, the CAS is prepared to execute 
the VS experiment which includes creating the required WS-
PGRADE workflow and configuring the CloudBroker 
platform. When accessing gUSE through the RemoteAPI, a 
valid well-configured WS-PGRADE workflow needs to be 
attached. To simplify this step, a developer can create the 
workflow using a WS-PGRADE portal, test it with test input 
data, and then export it. The exported workflow can be 
configured from the code of the domain-specific desktop 
application and attached to a RemoteAPI call, rather than 
created from scratch. To conclude (1), the executable files that 
are needed to run the workflow should be deployed to the 
cloud, using the CloudBroker platform. In step (2) the source 
code of the domain-specific desktop application is extended, in 
order to make the appropriate RemoteAPI calls. The next 
sections will elaborate on these steps. 

Fig. 2. Architecture of our reference implementation using Raccoon2, WS-
PGRADE/gUSE, CloudBroker, and the UoW or CloudSigma clouds 



9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 
 

 
A. Creating the WS-PGRADE Workflow 

The execution steps of the domain-specific desktop 
application are recreated using a WS-PGRADE workflow. In 
this particular case a simple one-node workflow with four input 
(ligand files, receptor file, Vina configuration file, and an 
additional file to overcome an output names issue) and one 
output (the zipped results from the multiple docking runs) ports 
were created. However, please note that based on the desktop 
application more complex workflows may be required.  

After consultation with life scientists, an issue with 
previous implementations of AutoDock Vina as a WS-
PGRADE workflow was discovered. It was difficult to 
understand which output file resulted from which input due to 
automatically generated output names. AutoDock Vina, by 
default, uses the names of the input ligand and receptor to 
name the result file. However, WS-PGRADE changes the 
names of parametric input files internally. In order to avoid 
this, we do not to use parametric input ports, but rather apply 
an additional text file which contains pre-generated names of 
the expected result file, for each ligand-protein pair. This file is 
created within Raccoon2 before the workflow is submitted.  

Once submitted, the workflow invokes CloudBroker’s 
execution script which runs AutoDock Vina for each ligand it 
receives as input. In order to run this workflow on many cloud 
instances, our extended code of Raccoon2 splits the set of 
ligands into as many zip archives as the number of instances, 
and submits a separate workflow to each instance.  

B. Deployment on the CloudBroker Platform 
The CloudBroker deployment process requires a 

deployment script and an execution script. They need to be 
uploaded and executed on the CloudBroker platform. If an 
image of the Operating System (OS) is not present in the image 
repository of the target cloud, it should also be installed. The 
deployment script is run only once, to prepare the OS and 
install any required dependencies. A snapshot of the prepared 
OS image is then used for future jobs, when the execution 
script is called. The execution script validates inputs, executes 
the application and stores the outputs in a particular folder. 

In our example extension of Raccoon2, Ubuntu 14.04 is 
used to run the deployment script which creates the appropriate 
folder structure and installs the required tools: AutoDock Vina, 
zip, and unzip. After validating the input files, the execution 
script runs AutoDock Vina with appropriate parameters for 
each ligand. This deployment process is simplified because 
AutoDock Vina is included in the Ubuntu package repository. 

C. Extending the Raccoon2 Source Code with the RemoteAPI 
In order to conduct VS on a cloud, we need to submit the 

WS-PGRADE workflow using the gUSE RemoteAPI. A WS-
PGRADE workflow consists of an XML file (workflow.xml) 
which describes the workflow and the input files. The XML 
file contains other valuable information, such as which kinds of 
cloud instances would be used. 

To fill in the cloud configuration information correctly, we 
added a section in the Raccoon2 GUI which enables users to 

select the number of cloud instances, their size, the name of the 
cloud, and the region. We store all possible values, and their 
encoded versions, in an additional XML file 
(gUSECloudConfiguration.xml). At the moment, this file is 
manually synchronised to contain the correct values of all 
supported types of cloud instances. If, for example, there is a 
change in the maximum number of instances a cloud can 
handle, a value in this file should be changed. 

Within the original Raccoon2 GUI, the user can attach a set 
of ligands and a receptor. In our extension, the attached files 
are grouped in as many folders as the number of selected cloud 
instances. On submission, one workflow will be run for each 
folder, where its results will be stored after downloading. 
Before submitting it, the WS-PGRADE workflow file is 
configured to include the cloud selected in the GUI by the 
scientist.  

Finally the updated workflow.xml file is zipped along with 
the rest of the input files, following the WS-PGRADE naming 
convention, to compose a well-formed WS-PGRADE 
workflow. Thus, the Raccoon2 code can submit it by calling a 
gUSE RemoteAPI method using the command curl.   

Apart from the attached workflow, this RemoteAPI method 
requires authentication. Namely, it needs a RemoteAPI 
password set by the gUSE server administrators, and 
CloudBroker user credentials (username and password). In the 
current implementation, for security reasons, the end-user is 
asked to provide these. In line with gUSE conventions, the 
credentials file should be named x509._credentialsID, where 
_credentialsID is the name of the middleware that requires the 
authentication (this naming convention remains, even though 
the X.509 standard is not used). This file is then zipped and 
along with the RemoteAPI password and the zipped WS-
PGRADE workflow, they are sent as POST parameters. The 
RemoteAPI method returns a workflowID, which is used to 
check the workflow’s status. 

Monitoring the VS simulation is done by polling for the 
status of the workflows using the RemoteAPI. In our current 
implementation, a status check is performed every 20 seconds. 
The status is displayed to the user and if there were errors they 
can re-submit the workflows. Once a workflow has finished, a 
final RemoteAPI call retrieves the output. When the workflows 
complete successfully, their output is downloaded and only the 
relevant AutoDock Vina result files (.pdbqt_log.txt and .pdbqt) 
are extracted into a result folder. This folder can be directly 
used by the original analysis tab of Raccoon2. The scientist 
needs to simply select it in order to view the ligands sorted by 
the docking results. The filtering and visualisation features can 
be used, exactly as in the original Raccoon2. The source code 
of our extended version of Raccoon2 is available at  
https://github.com/damjanmk/Raccoon2. 

VI. RESULTS AND EVALUATION 

A. Proof of Concept on the UoW and CloudSigma Clouds 
To show that our concept can be implemented to run a real-

life VS on different clouds, we obtained biochemically relevant 



9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 
 

 

15h

18h

21h

24h

27h

30h

33h

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

UoW small (64-bit) CloudSigma small (64-bit) CloudSigma small (32-bit)

 

0h

24h

48h

72h

96h

120h

144h

7 UoW large7 UoW medium7 UoW small

Experiment

Proportional

0h

24h

48h

72h

96h

120h

144h

7 UoW small 14 UoW small 28 UoW small

Experiment

Proportional

 

input data from life scientists. The receptor is an enzyme called 
ribokinase, which is part of the salvage pathway of nucleotides 
in the protozoan parasite Trichomonas Vaginalis (TV). The 3D 
structure of this receptor has been created by homology 
modelling. TV causes trichomoniasis, a very common sexually 
transmitted infection. A set of 130,216 ligands have been 
obtained from the ZINC [24] database of drug-like small 
molecules. It is a diverse subset of ligands that may bind and 
antagonise the receptor. We tested our extended Raccoon2 
using these input files, conducting three runs, effectively 
130,216 docking simulations each. The UoW OpenStack cloud 
(at London, UK) was used to prove that the approach works, 
and two runs on the commercial CloudSigma cloud (at Zürich, 
Switzerland) were conducted to show the use of different 
clouds. 

There are several types of 64-bit (x86_64) instances that 
can be used in the UoW cloud: small (1-core 2GB RAM), 
medium (2-core 4GB RAM), large (4-core 8GB RAM), and 
extra-large (8-core 16GB RAM). At the time of the tests, the 
UoW cloud had a maximum capacity of 29 instances and 
processor cores that could be allocated for this experiment. 
Therefore, we tested our implementation on 29 small instances. 
In order to do this the extended code of Raccoon2 split the 
130,216 ligands into 29 groups. A total of 7 jobs (24.14%) had 
errors due to connection problems between CloudBroker and 
UoW cloud, but all finished successfully after re-submission. 
The average execution time per instance was 26h 35min 52s. 
To compare the results of both clouds, we decided to use 29 
instances most similar in type to the UoW small instances.  

There are 32-bit or 64-bit CloudSigma small (1-core 1GB 
RAM) instances, note that they have only 1GB RAM. There 
were noticeable differences in the execution time between the 
fastest and the slowest job per run (e.g. 64-bit fastest: 17h 5min 
57s; slowest: 22h 53min 59s). The average time per job for the 
64-bit instances was 19h 55min 59s, while the 32-bit instances, 
17h 21min 23s. Fig. 3 shows the execution time for each of the 
29 jobs (instances numbered 1, 2, 3, etc. in each run may be 
docking different ligands). 

Fig. 3. Comparison of the execution times of each of the 29 instances 

The AutoDock Vina software has been developed for 32-bit 
machines and as noted on their official website, it is compatible 
with 64-bit machines (http://vina.scripps.edu/manual.html). 
However, it seems that the overhead produced is significant 

and we can generally recommend using 32-bit cloud instances 
for this kind of VS experiments since the average execution 
time decreased by 12.92%. Furthermore, although the 
CloudSigma instances had half the memory, due to various 
performance optimisations in the CloudSigma cloud, they 
finished the docking significantly faster (on average the 32-bit 
CloudSigma run was 34.74% faster than the 64-bit UoW run). 

B. Scalability tests on the UoW cloud 
In order to show the scalability of our solution we designed 

several more experiments using the same input files described 
in part A. Firstly, we ran the VS using our cloud-enabled 
Raccoon2, selecting 7 small instances on the UoW cloud. The 
average time per instance was 123h 12min 1s. Then, we 
increased the instance type to medium while keeping the 
number of instances to 7. The average time per instance was 
75h 35min 16s. Finally, we used 7 large instances, resulting in 
average time per instance of 51h 47min 29s. These results 
demonstrate reasonable scalability of Raccoon2 when 
increasing the number of cores inside the instances. The left 
panel of Fig. 4 demonstrates the scale-up when compared to an 
ideal proportional scale-up (double the cores = half the time).  

In a second set of experiments we kept the instance type the 
same (UoW small) while increasing the number of instances. 
Namely, we ran 14 small instances with the average time per 
instance of 61h 31min 1s, followed by 28 small instances 
resulting with average time per instance of 31h 29min 14s. The 
right panel of Fig. 4 shows that these results very closely 
resemble the ideal proportional scale-up. It shows that although 
AutoDock Vina has multithreading capabilities, it is faster to 
run 28 small instances than 7 large. Therefore, to maximise 
efficiency, we can recommend using more, but less powerful, 
rather than less, but more powerful instances. 

Fig. 4. Scalability - Our experiment compared to a proportional: increasing 
the configuration of instances (left), increasing the number of instances (right) 

C. Price Estimate 
As of March 2017, CloudSigma cloud computing prices are 

$0.0195 per hour for 1-core CPU, $0.007 per GB RAM, 
$0.1329 per GB SSD storage, and $0.04 per GB of outbound 
data transfer [25]. Therefore, running our VS on 29 small 
instances would cost $15.83.  

D. Exploring the potential of using other DCIs 
As WS-PGRADE/gUSE is connected to other DCIs such as 

desktop grids, clusters or service grids via the DCI Bridge, the 



9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 
 

 
same generic solution and the same workflow mapped to these 
different resources can also be applied to further extend the 
applicable resources of the experiments. In order to 
demonstrate this possibility the experiments were executed on 
the SZTAKI Desktop Grid (SZDG), a BOINC-based desktop 
grid, integrated in gUSE’s DCI Bridge [26].  Desktop grids use 
spare CPU cycles from desktop computers to create a powerful 
DCI. To prove our concept, we used a WS-PGRADE portal 
(https://autodock-portal.sztaki.hu/liferay-portal-6.1.0) to run 
AutoDock Vina workflows on the SZDG using the same input 
as above 5 times, with average execution time of 30h 16min 9s.  

VII. CONCLUSION AND FUTURE WORK 
This paper presented a generic approach to extend domain-

specific desktop applications, enabling the execution of 
simulations on different clouds. Several experiments were run 
to test and evaluate our approach on two different cloud 
infrastructures and measure the scalability of our solution. We 
noticed better performance when using many smaller rather 
than a few larger, and 32-bit rather than 64-bit instances. 
Although our implementation is based on the VS software 
Raccoon2, WS-PGRADE/gUSE and CloudBroker, the concept 
of extending desktop applications to run on clouds is generic. 
With our extension, Raccoon2 users can use the same familiar 
GUI to run their VS experiments on clouds. They no longer 
require access to a Linux PBS CPU or GPU cluster, which 
brings down the cost of running large VS simulations, making 
them affordable for scientists around the world. As shown in 
our tests, the solution works for different kinds of clouds. 
Considering all gUSE supported DCIs, it could use clusters, 
grids, and desktop grids.  

In the future, we plan to test our implementation on other 
DCIs and different desktop applications. Instead of the classical 
method used here, container technology could help automate 
the software deployment. At the moment, due to the nature of 
the gUSE RemoteAPI, result files can only be downloaded to 
the user’s desktop. We will focus future work on exploring 
ways to store and further analyse them, easing access to, and 
facilitating the sharing of docking results. This can provide a 
training set for machine learning-based prediction of execution 
time and cost, and optimising cloud resource utilisation. 

REFERENCES 
[1] P. Mell, T. Grance, and others, “The NIST definition of cloud 

computing”, 2011. 
[2] K. Wolstencroft et al., “The Taverna workflow suite: designing and 

executing workflows of Web Services on the desktop, web or in the 
cloud”, Nucleic Acids Res., vol. 41, no. W1, pp. W557-W561, Jul, 2013. 

[3] B. Ludäscher et al., “Scientific workflow management and the Kepler 
system”, Concurr. Comp. Pract E., vol. 18, no. 10, pp. 1039-1065, Aug, 
2006. 

[4] P. Kacsuk, K. Karoczkai, G. Hermann, G. Sipos, and J. Kovacs, “WS-
PGRADE: supporting parameter sweep applications in workflows”, in 
The 3rd workshop on Workflows in Support of Large-Scale Science, 
WORKS 2008, Austin, TX, USA, 17 Nov 2008, IEEE, 2008. pp. 1-10. 

[5] M. M. Jaghoori, A. J. van Altena, B. Bleijlevens, S. Ramezani, J. L. 
Font, and S. D. Olabarriaga, “A multi-infrastructure gateway for virtual 
drug screening”, Concurr. Comp. Pract E., vol. 27, no. 16, pp. 4478-
4490, Nov, 2015. 

[6] J. Krüger et al., “Performance studies on distributed virtual screening”, 
BioMed Res. Int., vol. 2014, pp. 1-7, Jun, 2014. 

[7] T. Kiss, P. Greenwell, H. Heindl, G. Terstyanszky, and N. Weingarten, 
“Parameter sweep workflows for modelling carbohydrate recognition”, 
J. Grid Comput., vol. 8, no. 4, pp. 587-601, Dec, 2010. 

[8] S. Forli et al., “Computational protein-ligand docking and virtual drug 
screening with the AutoDock suite”. Nat. Protoc., vol. 11, no. 5, pp. 
905-919, Apr, 2016. 

[9] N. D. Prakhov, A. L. Chernorudskiy, and M. R. Gainullin, “VSDocker: a 
tool for parallel high-throughput virtual screening using AutoDock on 
Windows-based computer clusters”, Bioinformatics, vol. 26, no. 10, pp. 
1374-1375, May, 2010. 

[10] X. Jiang, K. Kumar, X. Hu, A. Wallqvist, and J. Reifman, “DOVIS 2.0: 
an efficient and easy to use parallel virtual screening tool based on 
AutoDock 4.0”, Chem. Cent. J., vol. 2, no. 1, p. 18, Sep, 2008. 

[11] I. Sánchez-Linares, H. Pérez-Sánchez, J. Cecilia, and J García, “High-
Throughput parallel blind Virtual Screening using BINDSURF”, BMC 
Bioinformatics, vol. 13, suppl. 14, S13, Sep, 2012. 

[12] R. De Paris, F. A. Frantz, O. Norberto de Souza, and D. D. A. Ruiz, 
“wFReDoW: a cloud-based web environment to handle molecular 
docking simulations of a fully flexible receptor model”, BioMed Res. 
Int., vol. 2013, pp. 1-12, Mar, 2013. 

[13] Amazon Web Services, Inc. “Amazon EC2”. [Online]. Available: 
https://aws.amazon.com/ec2/. [Accessed: 7 Mar 2017] 

[14] H. Berman, K. Henrick, H. Nakamura, and J. L. Markley, “The 
worldwide Protein Data Bank (wwPDB): ensuring a single, uniform 
archive of PDB data”, Nucleic Acids Res., vol. 35, Database Issue, pp. 
D301-D303, Jan, 2007. 

[15] S. R. Ellingson and J. Baudry, “High-throughput virtual molecular 
docking with AutoDockCloud”, Concurr. Comp. Pract E., vol. 26, no. 4, 
pp. 907-916, Mar, 2014. 

[16] N. Huang, B. K. Shoichet, and J. J. Irwin, “Benchmarking sets for 
molecular docking”, J. Med. Chem., vol. 49, no. 23, pp. 6789-6801, Oct, 
2006. 

[17] T. Kiss et al., “Large-scale virtual screening experiments on Windows 
Azure-based cloud resources”, Concurr. Comp. Pract E., vol. 26, no. 10, 
pp. 1760-1770, Jul, 2014. 

[18] O. Trott and A. J. Olson, “AutoDock Vina: improving the speed and 
accuracy of docking with a new scoring function, efficient optimization, 
and multithreading”, J. Comput. Chem., pp. 455-461, Jun, 2009. 

[19] P. Kacsuk et al., “WS-PGRADE/gUSE generic DCI gateway framework 
for a large variety of user communities” J. Grid Comput., vol. 10, no. 4, 
pp. 601-630, Dec, 2012. 

[20] Liferay Inc. “Liferay” [Online]. Available: https:liferay.com. [Accessed: 
7 Mar 2017] 

[21] M. Kozlovszky, K. Karóczkai, I. Márton, P. Kacsuk, and T. Gottdank, 
“DCI bridge: executing WS-PGRADE workflows in distributed 
computing infrastructures”, in Science Gateways for Distributed 
Computing Infrastructures, Springer, 2014, pp. 51-67. 

[22] S. J. Taylor, T. Kiss, G. Terstyanszky, P. Kacsuk, and N. Fantini, “Cloud 
computing for simulation in manufacturing and engineering: introducing 
the CloudSME simulation platform”, in Proceedings of the 47th Annual 
Simulation Symposium, ANSS 14, Tampa, FL, USA, 13-16 Apr 2014, 
A. Tolk, Ed. SCS, 2014. pp. 12-19. 

[23] CloudBroker GmbH. “CloudBroker Platform”. [Online]. Available: 
http://cloudbroker.com/platform/. [Accessed: 7 Mar 2017] 

[24] J. J. Irwin and B. K. Shoichet, “ZINC-a free database of commercially 
available compounds for virtual screening”, J. Chem. Inf. Model., vol. 
45, no. 1, pp. 177-182, Dec, 2004. 

[25] Cloudsigma Holding AG. “Cloud servers & Hosting”. [Online]. 
Available: https://www.cloudsigma.com/. [Accessed 7 Mar 2017] 

[26] P. Kacsuk, J. Kovacs, Z. Farkas, A. C. Marosi, G. Gombas, and Z. 
Balaton, “SZTAKI Desktop Grid (SZDG): a flexible and scalable 
desktop grid system”, J. Grid Comput., vol. 7, no. 4, pp. 439-461, Dec,  
2009. 


	I.  Introduction
	II. Related Work
	III. Generic Concept
	IV. Background
	A. Raccoon2 and AutoDock Vina
	B. WS-PGRADE/gUSE
	C. CloudBroker Platform

	V. Design and Implementation
	A. Creating the WS-PGRADE Workflow
	B. Deployment on the CloudBroker Platform
	C. Extending the Raccoon2 Source Code with the RemoteAPI

	VI. Results and Evaluation
	A. Proof of Concept on the UoW and CloudSigma Clouds
	B. Scalability tests on the UoW cloud
	C. Price Estimate
	D. Exploring the potential of using other DCIs

	VII. Conclusion and Future Work
	References


