
Focused Web Crawling of Relevant Pages on e-Shops 
 

Rudolf Pavel, Peter Gurský 

  Institute of Computer Science 

Faculty of Science, P.J.Šafárik University in Košice 

  Jesenná 5, 040 01 Košice, Slovakia 
rudolf.pavel@student.upjs.sk, peter.gursky@upjs.sk 

 
Abstract: E-shop data extraction requires all detail pages of 
products to be crawled. To maintain extracted data actual, the 
crawling needs to be periodical. E-shops contain many 
irrelevant pages such as ads, basket or contact information that 
are good to avoid during a crawling process. This paper 
presents a focused web crawling method based on an analysis 
of a previous initial crawling that eliminates irrelevant paths 
from the following crawls of the e-shop. The method preserves 
the ability to collect all products of all product domains, even 
the new ones. 

1 Introduction 

Focused crawling is a common way to search and collect 

data relevant to user’s needs on the web. The scope of 

project Kapsa [1] is to retrieve information about e-shop 

products by crawling and extracting, and presenting them 

in unified form, which simplifies user’s choice of preferred 

product. This paper focuses on the beginning of the 

process, i.e. crawling and extracting products data from e-

shops.  

Crawling all objects (HTML files, images, scripts, CSS 

files …) from e-shop portal generates quite extensive data 

traffic. Polite crawling handles this issue by download 

speed restriction. Polite crawling of even small complete e-

shop can easily take more than one hour.  

The aim of our crawling is not retrieving all pages of the 

e-shop, just the pages that contain detail data about 

products. Any other downloaded page increases crawling 

time and e-shop’s traffic.  

To extract the most detailed information about a product 

on e-shop, the crawler needs to navigate itself to product’s 

detail page. Detail page usually contains product name, 

price, photos, product properties, product description, 

customer reviews, etc. Useful property of detail pages is, 

that they usually have uniform design, different from any 

other page on e-shop. Thus the identification of a detail 

page can be done by few simple rules applicable for every 

product on e-shop: presence of an element on special 

position of the HTML source (product name, price tag, 

product image, etc.) and/or special URL form. These rules 

can be easily created by administrator together with data 

extraction rules in annotation web browser extension 

Exago [2]. We believe that automatic content based 

detection of detail page is also possible, but we didn’t focus 

on it. 

Product prices are changing in time, some products can 

be removed form an e-shop, new products can be added 

and sometimes a completely new product domain can be 

inserted to an e-shop portfolio. To keep data about offered 

products actual, crawling of e-shops needs to be periodical. 

The naïve approach to decrease the amount of pages of 

periodical crawling, would be to remember URLs of all 

detail pages of an e-shop and download them the next time. 

This approach decreases the amount of downloaded pages 

drastically. On the other hand, new products and product 

domains would not be detected, which is undesirable. 

To retrieve all offered products and product domains, the 

crawling method must fetch also webpages containing lists 

of products as well as webpages that lead to them. We call 

these pages, together with detail pages, the relevant pages. 

All other pages and objects are irrelevant and we want to 

avoid downloading them.  

Navigation through relevant pages can be configured by 

a set of manually created rules too. This approach is typical 

for most web scrappers. Manual creation of such navigation 

rules is usually not an easy task, if we want all relevant 

pages to be downloaded.  

In this paper we present our automatic approach to crawl 

all relevant pages based on analysis of initial complete 

crawl of an e-shop. Following crawlings of the e-shop 

navigates on every relevant page excluding irrelevant 

pages, until e-shop design is changed. The changed design 

is easily detected, because the original extraction rules 

cease to function. In this case, crawler can switch to classic 

crawling approach and inform administrator that the 

extraction rules need to be changed.  

2 Related Work 

Focused crawling systems are usually designed to collect 

web pages with a certain topic. Such crawlers guess the 

relevance of the page based on anchor texts and PageRank 

and prioritize the URLs to crawl like in [4,7]. These 

crawlers do not care about site map.  

Methods based on context graphs [12], learning 

automata [8] and Hidden Markov Models (HMM) [5,6] 

analyzes downloaded pages with classifiers and set the 

priority of all URLs found on them uniformly, based on 

score of the page. The classifiers give high rates to the 

pages that are similar to pages that leaded to desired goals. 

The position of the links on the page is not considered.  

The method in [9] analyzes the relevance of parts of 

downloaded pages separately using their HTML structure 

position and prefers the URLs found in relevant parts of the 

pages.  

Periodical crawling research is mainly focused on 

estimation of frequency of repeatable crawls to maintain 

up-to-date data [10].    

The combined task of downloading and extracting data 

from web pages is called Web scrapping. There are a lot of 

web scrappers on the market. We haven’t found any web 

scrapper, which cooperates with optimized crawling as the 

one, presented in this paper.  

3 Initial Crawling and Its Analysis 

Project Kapsa uses a modification of open source web 

crawler Crawler4j [3]. It’s a multithreaded crawler written 

in Java. If there is a need to simulate clicks and/or scrolling 

J. Hlaváčová (Ed.): ITAT 2017 Proceedings, pp. 35–39
CEUR Workshop Proceedings Vol. 1885, ISSN 1613-0073, c© 2017 R. Pavel, P. Gurský



actions on the web page (page content is changed by 

JavaScript calls), Selenium-WebDriver is used.  

Crawling is configured by wrapper – the result of 

annotation process in web browser extension Exago [2]. 

Wrapper consists of the following data: 

 seed_URL, which is the starting page of the crawling 

process, usually the home page, 

 detail page identification rules, and 

 product data extraction rules. 

The detail page identification rules are a combination of 

XPaths or/and regular expressions. XPath can localize an 

element or elements on a web page and regular expression 

can locate special substrings of the element content. 

Regular expressions are also applicable to URL. Each rule 

can be set to be mandatory (the rule must match) or 

forbidden (the rule may not match). 

Initial crawling starts on seed_URL and navigates to 

every object of the same domain recursively. Unlike the 

standard crawling, we do not store downloaded pages. 

Every page is checked to be detail page. Detail pages are 

sent to Extractor module that extracts all product details 

and stores them to storage. If the page is not a detail page, 

the crawler analyzes the page source to extract all links 

together with their XPath position on the page. It is 

important to note, that every URL is downloaded only 

once, even if it is present on many pages.  

It is usual that there are links to other products on detail 

pages, typically they are recommended using collaborative 

filtering (“people that bought this also bought:” section). 

Our method does not analyze source of detail pages for new 

URL links on them. There are two main reasons for that: 

 All products on a common e-shop are accessible 

from some product list page, i.e. a page containing 

list of links to subset of products. It is highly 

unlikely that there would be some product on e-shop 

accessible only from other product detail page. 

 The navigation graph would contain more edges 

with no positive effect. With some effort a situation 

can be found, when we can eliminate a download of 

some product list page, because all products on it are 

Figure 1: Initial crawling graph of a fictive e-shop http://e-shop.sk. Black vertexes represent relevant pages, white vertex 

represents a sample of irrelevant pages. Elements on pages containing links to other pages are represented as outgoing 

edges, labeled with XPath localization of the elements, heading to those pages.  

 

Figure 2: DAG with relevant pages and relevant XPaths extracted from the graph in Figure 1 in bottom-up analysis. 

36 R. Pavel, P. Gurský



accessible from other detail pages, but this can be 

only temporary status. If a new product would be 

added, it could be missed out in the next crawl.  

The results of the initial crawling are extracted products 

and a directed graph of the e-shop links. Edges are labeled 

by XPaths that leads to HTML elements where the link was 

found. Detail pages have no outgoing edges – thus they are 

leafs of the graph.  

3.1 Bottom-up Analysis: Creation of DAG with 

Relevant Pages and Relevant Links 

When the whole e-shop is crawled and all products are 

extracted, the analysis of collected crawling data prepares 

the next optimized crawling, which usually takes place a 

few days later.  

Bottom-up analysis creates a reduced graph that contains 

only vertexes with relevant pages. This graph is always 

a directed acyclic graph (DAG).  

The analysis follows edges of the initial crawling graph 

in opposite direction.  

 Initial step: every detail page vertex is added to 

a result graph.  

 Iteration step: Let B be a set of all vertexes added in 

the previous step. Let A be a set of all vertexes, not 

present in a result graph, which have an outgoing 

edge to any vertex in B. Add set A and edges from 

A to B to the result graph.  

 The iteration stops, if DAG contains seed_URL or 

no vertexes were added in the previous step, i.e. 

set A was empty. 

Since we do not add all outgoing edges of vertexes in 

set A, just the ones that lead to vertexes in B, no cycle can 

be present in the result graph.  

Unfortunately, this graph is not necessary connected. We 

need a connected graph to reach every detail page by 

navigation from seed_URL. Therefore, in the final step:   

 Let M be a set of all vertexes in DAG with no 

incoming edges. Add all edges and vertexes on the 

shortest paths in from seed_URL to every vertex 

in M in original graph to result DAG.  

3.2 Generalization of Relevant XPaths on Relevant 

Pages 

During the initial crawling, each visited web page, 

except the detail pages, is processed to localize URL links 

in the HTML source. For every element containing URL, 

the pair of URL and XPath localizing the element in HTML 

is stored. Bottom-up analysis divides pages and XPaths to 

relevant  and  irrelevant.  Fig. 3. shows  a print  screen  of 

e-shop www.rajdazdnikov.sk. Links to relevant pages are 

encircled by light gray oval and irrelevant ones by a dark 

gray oval. When crawling, we want to follow every 

relevant link and no irrelevant links.  

If we look at the elements of relevant links, we can see 

that some of them have very similar XPaths. This is, 

because they are presented to user in repeating structures, 

Figure 3: XPaths and their generalized XPath of elements representing list of products on www.rajdazdnikov.sk 

Focused Web Crawling of Relevant Pages on e-Shops 37



typically in lists. On Fig. 3 we can see four XPaths of 

elements with links heading to detail pages of umbrellas. 

The XPaths differ only in numbers in the last brackets. 

When we remove the brackets with the numbers, the 

resulting single generalized XPath localizes all four 

elements. This generalized XPath will localize all products 

on any page of the same HTML template, even if it 

contains less or more products.  

Input for the algorithm that extracts generalized XPaths, 

is a list of XPath-URL pairs of relevant links found on the 

page. First, the pairs are divided to clusters of pairs, which 

differ only in one number between brackets on the same 

position. This is done by iterative partial clustering based 

on the longest common prefix. Finally, in each cluster, the 

different numbers and surrounding brackets of XPaths are 

removed resulting in a single generalized XPath for the 

cluster. 

3.3 Top-Down Analysis: Creation of Generalized 

XPaths Graph 

Having the algorithm that computes a list of generalized 

XPaths, we can run the algorithm on each relevant page of 

the DAG except the detail pages. The result is the modified 

DAG that has all edge labels replaced by generalized 

versions of the previous XPaths. 

There is an important observation that pages accessible 

by the same generalized XPath, are all detail pages, or they 

all have (almost) equal set of generalized XPaths on them. 

This is because the objects accessible from the same list 

structure are logically of the same type (typically, they are 

all products, or all of them are product domains with list of 

products).  

Sometimes, children of the same parent in the DAG do 

not have exactly the same set of generalized XPaths. 

Usually, some of the generalized XPaths are common, and 

some of them are missing on few of them. Pagination of the 

list is usually the reason. Some product domains are large 

and require paginated list of products and some are so 

small, that all products can fit into one page, therefore 

pagination links list and its generalized XPath are missing.  

If there are only two pagination pages in product domain, 

there is only one XPath in its own cluster of similar XPaths 

and no generalization inside the cluster is possible.  In this 

case the XPath has an extra pair of brackets with a number 

in it, when compared to corresponding generalized XPath 

in page’s siblings in DAG. The more specific XPath (with 

extra brackets) can be replaced by more general one from 

its siblings. 

Many times, the parent in DAG has equal (sub)set of 

generalized XPaths as some of its children, typically they 

are all lists of products.  

The analysis of DAG goes from the root of DAG that is 

the seed_URL (usually the home page of the e-shop) using 

breadth-first traverse. In every vertex, we obtain the pairs 

of generalized XPaths and clusters of vertexes reachable by 

them. Vertexes in each cluster have computed their own 

generalized XPaths. The generalized XPaths of vertexes in 

cluster are unified with each other and possibly with parent 

vertex, if they have at least half of generalized XPath 

unifiable. 

Next, a hash of the set of its generalized XPaths is 

computed and stored in each vertex. If the vertex 

corresponds to detail page, the hash’s value is set to 0.  

Finally, the generalized crawling graph is created. This is 

done by unification of the vertexes having the same hash. 

This graph has usually at least one edge heading to the 

same vertex.  

Consider the DAG on Figure 2. The analysis starts with 

seed_URL http://e-shop.sk. Since it has only one outgoing 

edge, no generalization is possible, and the analysis goeas 

to vertex http://e-shop.sk/tables. This vertex has two 

outgoing edges, but not unifiable, so it has two pairs of 

generalized XPaths and set of vertexes reachable by them: 

{<//li[1]/a, {http://e-shop.sk/tablet_1}>} and 

{<//*[class=”pagination”]/span[1]/a, {http://e-shop.sk/ 

tablets/page2}>}. The first pair has detail page in the 

cluster, so the analysis continues with the second pair. 

Vertex http://e-shop.sk/tablets/page2 has only one pair of 

generalized XPath and set of vertexes reachable by it: 

{<//li/a, {http://e-shop.sk/tablet_11, http://e-shop.sk/ 

tablet_12}>}. Then we try to unify this pair with pairs in 

parent vertex, which is successful resulting in pairs for both 

vertexes: {<//li/a, {http://e-shop.sk/tablet_1, http://e-

shop.sk/tablet_11, http://e-shop.sk/tablet_12}>} and 

{<//*[class=”pagination”]/span[1]/a, {http://e-shop.sk/ 

tablets/page2}>}. Finally each vertex computes hash of its 

generalized XPaths. The clusters in pairs are replaced by 

the hash of their representatives which creates the edges of 

the final generalized crawling graph as depicted in Fig. 4. 

The final generalized crawling graph is stored as a 

configuration for the next focused crawlings of the e-shop. 

  

  

 
Figure 4: Generalized XPaths graph obtained from the 

graph in Fig. 2.  

3.4 Crawling with Generalized Crawling Graph 

Having the generalized crawling graph, the traversal 

trough the e-shop uses it as a finite-state automaton. 

Crawling starts at start state of the automaton and the 

seed_URL. On each downloaded page, all generalized 

XPaths of the outgoing edges are computed. Found URLs 

are scheduled to be downloaded together with the state on 

the end of the corresponding edge. 

4 Conclusions 

We have tested our approach on two e-shops so far: 

peazenkyshop.sk and rajdazdnikov.sk. The results of our 

experiments are in the table below: 

38 R. Pavel, P. Gurský



Table 1. Number of all pages vs. number of pages 

downloaded by crawling with generalized crawling graph 

e-shop #products #pages #downloaded 

penazenkyshop.sk 512 2730 1966 

rajdazdnikov.sk 265 303 290 

 

We can see that number of downloaded pages decreased 

to 72% resp. 96% in our tests. The tests showed that 

focused crawling is faster than initial crawling and the 

same set of detail pages was downloaded, which is our 

goal. 

We showed that our automatic creation of crawling 

strategy is sufficient to eliminate irrelevant pages and 

download all detail pages. 

 

This work was supported by the Agency of the Slovak 

Ministry of Education for the Structural Funds of the EU, 

under project CeZIS, ITMS: 26220220158 

References 

[1] Project Kapsa web page: http://kapsa.sk/ 
[2] P. Gurský, M. Vereščák, Extrakcia štruktúrovaných 

objektov z webových portálov na pár klikov, WIKT & 
DaZ, ISBN 978-80-227-4619-9, pp.225-228, 2016 

[3] Crawer4j: Open source web crawler for Java, available 
on: https://github.com/yasserg/crawler4j 

[4] Y. Uemura, T. Itokawa, T. Kitasuka, M. Aritsugi: An 
Effectively Focused Crawling System. Innovations in 
Intell. Machines – 2, SCI 376, Springer, pp. 61–76., 
2012 

[5] H. Liu, J. Janssen, E. Milios: Using HMM to learn user 
browsing patterns for focused Web crawling. Data & 
Knowledge Engineering 59, Elsevier, pp. 270–291, 
2006 

[6] S. Batsakis, E.G.M. Petrakis, E. Milios: Improving the 
performance of focused web crawlers. Data & 
Knowledge Engineering 68, Elsevier, pp. 1001-1013, 
2009 

[7] M.M.G. Farag, S. Lee, E.A. Fox: Focused crawler for 
events. International Journal on Digital Libraries, DOI 
10.1007/s00799-016-0207-1, pp 1–17, 2017 

[8] J.A. Torkestani: An adaptive focused Web crawling 
algorithm based on learning automata. Applied 
Intelligence, Volume 37, Issue 4, pp 586–601, 2012 

[9] A. Patel, N. Schmidt: Application of structured 
document parsing to focused web crawling. Computer 
Standards & Interfaces 33, Elsevier, DOI 
10.1016/j.csi.2010.08.002,  pp. 325–331, 2011 

[10] K. S. Kim, K. Y. Kim, K. H. Lee, T. K. Kim, W. S. 
Cho: Design and Implementation of Web Crawler 
Based on Dynamic Web Collection Cycle. Computer 
Standards & Interfaces, Volume 33, Issue 3, pp. 325-
331, 2011 

[11] G. Gouriten, S. Maniu, P. Senellart: Scalable, Generic, 
and Adaptive Systems for Focused Crawling. 
Proceedings of the 25th ACM conference on Hypertext 
and social media, ISBN: 978-1-4503-2954-5, pp. 35-
45, 2014 

[12] M. Diligenti, F. Coetzee, S. Lawrence, C. Giles, M. 
Gori: Focused crawling using context graphs. 
Proceedings of VLDB, pp. 527–534., 2000 

 

  

Focused Web Crawling of Relevant Pages on e-Shops 39


