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Abstract. We describe the design, implementation, and empirical eval-
uation of some automated exercises that we are using in a lecture on
Constraint Programming. Topics are propositional satisfiability, resolu-
tion, the DPLL algorithm, with extension to DPLL(T), and FD solving
with arc consistency. The automation consists of a program for grad-
ing student answers, and in most cases also a program for generating
random problem instances. The exercises are part of the autotool E-
assessment framework. The implementation language is Haskell. You can
try them at https://autotool.imn.htwk-leipzig.de/cgi-bin/Trial.
cgi?lecture=199.

1 Introduction

I lecture on Constraint Programming [Wal14a], as an optional subject for master
students of computer science. The lecture is based on the books Principles of
Constraint Programming by Apt[Apt03] and Decision Procedures by Kroening
and Strichman [KS08]. Topics include propositional satisfiability (SAT) and res-
olution, the DPLL algorithm for deciding SAT, with extension to DPLL(T) for
solving satisfiability modulo theory (SMT), and FD solving with arc consistency.

I do want to assign homework problems, but I do not have a teaching assis-
tant for grading. This is one motivation for writing software that automates the
grading of solutions, and also the generation of random (but reasonable) prob-
lem instances. Another motivation is that the software is much more available,
reliable and patient than a human would be, so I can pose homework problems
that would require super-human teaching assistants.

This software is part of the autotool E-assessment framework [GLSW11,RRW08].
It provides the following functionality (via a web interface):

– the tutor can choose a problem type, then configure parameters of an in-
stance generator,

– the student can view “his” problem instance (that had been generated on
first access) and enter a solution candidate,

– the grading program immediately evaluates this submission and gives feed-
back, sometimes quite verbose,

– based on that, the student can enter modified solutions, any number of times.
The exercise counts as “solved” if the student had at least one correct solu-
tion during a given time interval (say, two weeks).
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A distinctive feature is that autotool exercises are graded “semantically”
— as opposed to “schematically”, by syntactic comparison with some prescribed
master solution. E.g., for propositional satisfiability, the student enters an as-
signment, and the program checks that it satisfies all clauses of the formula, and
prints the clauses that are not satisfied (see more detail in Section 2).

In the language of complexity theory, the student has to find a witness for the
membership of the problem instance in a certain problem class, and the software
just verifies the witness. In many cases, the software does not contain an actual
solver for the class, so even looking at the source code does not provide shortcuts
in solving the exercises. But see Section 5 for an example where a solver is built
in for the purpose of generating random but reasonable instances.

Section 6 shows an example for an “inverse” problem, where the witness (a
structure that is a model) is given, and the question (a formula of a certain
shape) has to be found.

If the software just checks a witnessing property, then it might appear that
it cannot check the way in which a student obtained the witness. This seems to
contradict the main point of lecturing: it is about methods to solve problems,
so the teacher wants to check that the methods are applied properly. In some
cases, a problem instance appears just too hard for brute force attempts, so the
only way of solving it (within the deadline) is by applying methods that have
been taught.

Another approach for designing problems is presented in Sections 5,7,8.
There, the solution is a sequence of steps of some algorithm, e.g., Decide, Prop-
agate and Backtrack in a tree search, and the witnessing property is that each
step is valid, and that the computation arrives in a final state, e.g., a solution in a
leaf node, or contradiction in the root. Here, the algorithm is non-deterministic,
so the student must make choices.

Another feature of autotool is that most output and all input is textual.
There is no graphical interface to construct a solution, rather the student has to
provide a textual representation of the witness. This is by design, the student
should learn that every object can be represented as a term. Actually, we use
Haskell syntax for constructing objects of algebraic data types throughout.

For each problem type, the instructor can pose a fixed problem instance
(the same for all students). For most problem types, there is also a generator
for random, but reasonable instances. Quite often, the generator part of the
software is more complicated than the grading part. Then, each student gets an
individual problem instance, and this minimizes unwanted copying of solutions.

For fixed problem instances, autotool can compute a “highscore” list. Here,
correct solutions are ranked by some (problem-specific) measure, e.g., for res-
olution proofs, the number of proof steps. Some students like to compete for
positions in that list and try to out-smart each other, sometimes even writing
specialized software for solving the problems, and optimizing solutions. I wel-
come this because they certainly learn about the problem domain that way.

In the following sections, I will present exercise problems. For each problem
type I’ll give



– the motivation (where does the problem fit in the lecture),
– the instance type, with example,
– the solution domain type,
– the correctness property of solutions,
– examples of system answers for incorrect solution attempts,
– the parameters for the instance generator (where applicable).

The reader will note that the following sections show inconsistent concrete syn-
tax, e.g., there are different representations for literals, clauses, and formulas.
Also, some system messages are in German, some in English. These inconsisten-
cies are the result of incremental development of the autotool framework over
> 10 years. The exercises mentioned in this paper can also be tried online (with-
out any registration) at https://autotool.imn.htwk-leipzig.de/cgi-bin/

Trial.cgi?lecture=199

2 Propositional Satisfiability

– instance: a propositional logic formula F in conjunctive normal form,
– solution: a satisfying assignment for F

Motivation: At the very beginning of the course, the student should try this
by any method, in order to recapitulate propositional logic, and to appreciate
the NP-hardness of the SAT problem, and (later) the cleverness of the DPLL
algorithm. We use the problem here to illustrate the basic approach.

Problem instance example:

( p || s || t) && ( q || s || t) && ( r || ! q || ! s)

&& ( p || t || ! r) && ( q || s || t) && ( r || ! s || ! t)

&& ( p || ! q || ! s) && ( q || t || ! p) && ( s || t || ! q)

&& ( p || ! q || ! t) && ( q || ! p || ! s) && ( s || ! r || ! t)

&& ( p || ! r || ! t) && ( r || s || ! q) && (! p || ! q || ! r)

&& ( q || r || ! p) && ( r || ! p || ! t) && (! p || ! r || ! s)

Problem solution domain: partial assignments, example

listToFM [ ( p , False ), (q, True), (s,True) ]

Correctness property: the assignment satisfies each clause.

Typical system answers for incorrect submissions: the assignment is partial, but
already falsifies a clause

gelesen: listToFM

[ ( p , False ) , ( q , True ) , ( s , True ) ]

Diese vollständig belegten Klauseln sind nicht erfüllt:

[ ( p || ! q || ! s) ]
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No clause is falsified, but not all clauses are satisfied:

gelesen: listToFM

[ ( p , False ) , ( s , False ) , ( t , True ) ]

Diese Klauseln noch nicht erfüllt:

[ ( p || ! q || ! t) , ( p || ! r || ! t) , ( r || s || ! q)

, ( s || ! r || ! t) ]

Instance generator: will produce a satisfiable 3-SAT instance according to algo-
rithm hgen2 [SDH02]. Parameters are the set of variables, and the number of
clauses, for example,

Param { vars = mkSet [ p , q , r , s , t ] , clauses = 18 }

3 SAT-equivalent CNF

– instance: formula F in conjunctive normal form with variables x1, . . . , xn,
– solution: formula G in conjunctive normal form with variables

in x1, . . . , xn, y1, . . . , yk such that ∀x1 · · · ∀xn : (F ↔ ∃y1 · · · ∃yk : G)
– measure: number of clauses of G.

Motivation: for arbitrary F , this is solved by the Tseitin transform [Tse70]. The
student learns the underlying notion of equivalence, and that auxiliary variables
may be useful to reduce formula size. The problem is also of practical relevance:
for bit-blasting SMT solvers, it is important to encode basic operations by small
formulas.

Problem instance example:

(x1 + x2 + x3 + x4 + x5) * (x1 + x2 + x3 + -x4 + -x5) *

(x1 + x2 + -x3 + x4 + -x5) * (x1 + x2 + -x3 + -x4 + x5) *

(x1 + -x2 + x3 + x4 + -x5) * (x1 + -x2 + x3 + -x4 + x5) *

(x1 + -x2 + -x3 + x4 + x5) * (x1 + -x2 + -x3 + -x4 + -x5) *

(-x1 + x2 + x3 + x4 + -x5) * (-x1 + x2 + x3 + -x4 + x5) *

(-x1 + x2 + -x3 + x4 + x5) * (-x1 + x2 + -x3 + -x4 + -x5) *

(-x1 + -x2 + x3 + x4 + x5) * (-x1 + -x2 + x3 + -x4 + -x5) *

(-x1 + -x2 + -x3 + x4 + -x5) * (-x1 + -x2 + -x3 + -x4 + x5)

Correctness property: existential closure of G is equivalent to F , and |G| < |F |.

Typical system answers for incorrect submissions:

gelesen: (x1 + x2 + x3 + x6) * (-x6 + x1)

nicht äquivalent, z. B. bei Belegung(en)

listToFM [ ( x1 , True ) , ( x2 , True ) , ( x3 , False )

, ( x4 , False ) , ( x5 , False ) ]



The equivalence check uses a BDD implementation [Wal14b].
Hint for solving the example: invent an extra variable that represents the

XOR of some of the xi.
This problem type is a non-trivial highscore exercise. The given example

instance (size 16) has a solution of size 12.

4 Propositional Logic Resolution

– instance: an unsatisfiable formual F in conjunctive normal form,
– solution: a derivation of the empty clause from F by resolution,
– measure: number of derivation steps.

Motivation: the student should see “both sides of the coin”: resolution proves
unsatisfiability. Also, the student sees that finding resolution proofs is hard, and
they are not always short (because if they were, then SAT ∈ NP ∩ coNP, which
nobody believes).

Resolution of course has many applications. In the lecture I emphasize cer-
tification of UNSAT proof traces in SAT competitions.

Problem instance example: clauses are numbered for later reference

0 : ! a || b || c 6 : a || ! b || d

1 : a || b || c 7 : a || ! b || ! d

2 : a || ! c || ! d 8 : ! a || d

3 : ! a || ! c || ! d 9 : ! c || ! d

4 : a || c 10 : ! b || c || ! d

5 : ! c || d 11 : a || b || ! d

Problem solution domain: sequence of resolution steps, example:

[ Resolve { left = 4 , right = 8 , literal = a }

, Resolve { left = 12, right = 5, literal = c }

]

Correctness property: for each step s it holds that literal s occurs in clause
left s, and ! (literal s) occurs in clause right s. If so, then the system
computes the resolvent clause and assigns the next number to it. The clause
derived in the last step is the empty clause.

Typical system answer for an incomplete submission:

nächster Befehl Resolve { left = 4 , right = 8 , literal = a }

entferne Literal a aus Klausel a || c ergibt c

entferne Literal ! a aus Klausel ! a || d ergibt d

neue Klausel 12 : c || d

nächster Befehl Resolve { left = 12 , right = 5 , literal = c }

entferne Literal c aus Klausel c || d ergibt d

entferne Literal ! c aus Klausel ! c || d ergibt d

neue Klausel 13 : d

letzte abgeleitete Klausel ist Zielklausel? Nein.



Instance generator: is controlled by, for example,

Config { num_variables = 5 , literals_per_clause_bounds = ( 2 , 3 ) }

The implementation uses a BDD implementation [Wal14b] to make sure that
the generated formula is unsatisfiable. The generator does not actually produce
a proof trace, because it must exist, by refutation completeness.

5 Backtracking and Backjumping: DPLL (with CDCL)

– instance: a CNF F ,

– solution: a complete DPLL proof trace determining the satisfiability of F .

Motivation: The DPLL algorithm [DP60,DLL62] is the workhorse of modern
SAT solvers, and the basis for extensions in SMT.

This exercise type should help the student to understand the specification of
the algorithm, and also the design space that an implementation still has, e.g.,
picking the next decision variable, or the clause to learn from a conflict, and the
backjump target level.

This is an instance of the “non-determinism” design principle for exercises:
force the student to make choices, instead of just following a given sequence
of steps. It fits nicely with abstract descriptions of algorithms that postpone
implementation choices, and instead give a basic invariant first, and prove its
correctness.

Problem instance example:

[ [ 3 , -4 ] , [ 4 , 5 ] , [ 3 , -4 , 5 ] , [ 1 , -2 ]

, [ 3 , 4 , 5 ] , [ 1 , 2 , 4 , 5 ] , [ -1 , 4 , -5 ]

, [ -1 , -2 ] , [ 2 , 3 , -4 ] , [ -3 , -4 , -5 ] , [ 2 , 3 , -5 ]

, [ -2 , -3 , 4 ] , [ -1 , -4 ] , [ -3 , 4 ] , [ 1 , -3 , -4 , 5 ] ]

Problem solution domain: sequence of steps, where

data Step = Decide Literal

| Propagate { use :: Clause, obtain :: Literal }

| SAT

| Conflict Clause

| Backtrack

| Backjump { to_level :: Int, learn :: Clause }

| UNSAT

Correctness property: the sequence of steps determines a sequence of states (of
the tree search), where



data State = State { decision_level :: Int

, assignment :: M.Map Variable Info

, conflict_clause :: Maybe Clause

, formula :: CNF

}

data Info = Info { value :: Bool, level :: Int, reason :: Reason }

data Reason = Decision | Alternate_Decision

| Propagation { antecedent :: Clause }

A state represents a node in the search tree. For each state (computed by the
system), the next step (chosen by the student) must be applicable, and the last
step must be SAT or UNSAT.

The reason for a variable shows whether its current value was chosen by a
Decision (then we need to take the Alternate_Decision on backtracking) or
by Propagation (then we need to remember the antecedent clause, for checking
that a learned clause is allowed).

A SAT step asserts that the current assignment satisfies the formula. A
Conflict c step asserts that Clause c is falsified by the current assignment.
The next step must be Backtrack (if the decision level is below the root) or
UNSAT (if the decision level is at the root, showing that the tree was visited
completely).

A Step Propagate {use=c, obtain=l} is allowed if clause c is a unit clause
under the current assignment, with l as the only un-assigned literal, which is
then asserted. A Decide step just asserts the literal.

Then following problem appears: if the student can guess a satisfying assign-
ment σ of the input formula, then she can just Decide the variables, in sequence,
according to σ, and finally claim SAT. This defeats the purpose of the exercise.

The following obstacle prevents this: each Decide must be negative (assert
that the literal is False). This forces a certain traversal order. It would then
still be possible to “blindly” walk the tree, using only Decide, Conflict (in
the leaves), and Backtrack. This would still miss a main point of DPLL: tak-
ing shortcuts by propagation. In the exercise, this is enforced by rejecting all
solutions that are longer than a given bound.

Instance generator: will produce a random CNF F . By completeness of DPLL, a
solution for F (that is, a DPLL-derivation) does exist, so the generator would be
done here. This would create problem instances of vastly different complexities
(with solutions of vastly different lengths), and this would be unjust to students.
Therefore, the generator enumerates a subset S of all solutions of F , and then
checks that the minimal length of solutions in S is near to a given target.

The solver is written in a “PROLOG in Haskell” style, using Control.Monad.Logic
[KcSFS05] with the fair disjunction operator to model choices, and allow a
breadth-first enumeration (where we get shorter solutions earlier).

There is some danger that clever students extract this DPLL implementation
(autotool is open-sourced) to solve their problem instance. I think this approach



requires an amount of work that is comparable to solving the instance manually,
so I tolerate it.

DPLL with CDCL (conflict driven clause learning): in this version of the ex-
ercise, there is no Backtrack, only Backjump { to_level = l, learn = c }.
This step is valid right after a conflict was detected, and if clause c is a conse-
quence of the current antecedents that can be checked by reverse unit propaga-
tion: from not c and the antecedents, it must be possible to derive the empty
clause by unit propagation alone. This is a “non-deterministic version” of Algo-
rithm 2.2.2 of [KS08].

I introduced another point of non-determinism in clause learning: the student
can choose any decision level to backjump to. Textbooks prove that one should
go to the second most recent decision level in the conflict clause but that is a
matter of efficiency, not correctness, so we leave that choice to the student.

If the Backjump does not go high enough, then learning the clause was not
useful (it is just a Backtrack). If the Backjump does go too high (in the extreme,
to the root), then this will lead to duplication of work (re-visiting parts of the
tree). Note that the target node of the backjump is re-visited: we return to a
state with a partial assignment that was seen before. But this state contains
the learned clause, so the student should use it in the very next step for unit
propagation, and only that avoids to re-visit subtrees.

A challenge problem: the following pigeonhole formula is unsatisfiable for n > m,
but this is hard to see for the DPLL algorithm: “there are n pigeons and m holes,
each pigeon sits in a hole, and each hole has at most one pigeon” [Cla11]. I posed
this problem for n = 5,m = 4. The resulting CNF on 20 variables (vp,h: pigeon
p sits in hole h) has 5 clauses with 4 literals, and 40 clauses with 2 literals.
My students obtained a DPLL solution with 327 steps, and DPLL-with-CDCL
solution with 266 steps. (Using software, I presume.)

6 Evaluation in Finite Algebras

– instance: a signature Σ, two Σ-algebras A,B, both with finite universe U ,

– solution: a term t over Σ with tA 6= tB .

Motivation: the introduction, or recapitulation, of predicate logic basics. The
exercise emphasizes the difference and interplay between syntax (the signature,
the term) and semantics (the algebras).

This exercise type shows the design principle of inversion: since we usually
define syntax first (terms, formulas), and semantics later (algebras, relational
structures), it looks natural to ask “find an algebra with given property”. Indeed
I have such an exercise type (“find a model for a formula”), but here I want the
other direction.



Problem instance example:

Finden Sie einen Term zur Signatur

Signatur

{ funktionen = listToFM [ ( p , 2 ) , ( z , 0 ) ]

, relationen = listToFM [ ]

, freie_variablen = mkSet [ ]

}

, der in der Struktur

A = Struktur

{ universum = mkSet [ 1 , 2 , 3 ]

, predicates = listToFM [ ]

, functions = listToFM

[ ( p

, {(1 , 1 , 3) , (1 , 2 , 3) , (1 , 3 , 3) , (2 , 1 , 2) ,

(2 , 2 , 1) , (2 , 3 , 1) , (3 , 1 , 3) , (3 , 2 , 1) ,

(3 , 3 , 2)}

)

, ( z , {(3)} )

]

}

eine anderen Wert hat

als in der Struktur

B = Struktur

{ universum = mkSet [ 1 , 2 , 3 ]

, predicates = listToFM [ ]

, functions = listToFM

[ ( p

, {(1 , 1 , 1) , (1 , 2 , 3) , (1 , 3 , 3) , (2 , 1 , 2) ,

(2 , 2 , 1) , (2 , 3 , 1) , (3 , 1 , 3) , (3 , 2 , 1) ,

(3 , 3 , 2)}

)

, ( z , {(3)} )

]

}

here, k-ary functions are given as sets of (k + 1)-tuples, e.g., (2, 2, 1) ∈ p means
that p(2, 2) = 1.

Problem solution domain: terms t over the signature, e.g.,

p (p (p (p (z () , z ()) , z ()) , z ()) , z ())

Correctness property: value of term t in A is different from value of t in B.
Example solution: the student first notes that the only difference is at pA(1, 1) =

3 6= 1 = pB(1, 1), so the solution can be p(s, s) where sA = 1 = sB . Since
zA() = 3, pA(3, 3) = 2, pA(3, 2) = 1, a solution is

p (p (p (z(),z()),z()),p (p (z(),z()),z()))



Instance generator: is configured by the signature, and the size of the universe.
It will build a random structure A, and apply a random mutation, to obtain B.
It also checks that the point of mutation is reachable by ground terms, and none
of them are too small.

7 Satisfiability modulo Theories: DPLL(T)

– instance: a conjunction F of clauses, where a clause is a disjunction of literals,
and a literal is a Boolean literal or a theory literal

– solution: a DPLL(T) proof trace determining the satisfiability of F .

Motivation: Satisfiability modulo Theories (SMT) considers arbitrary Boolean
combinations of atoms taken from a theory T , e.g., the theory of linear inequali-
ties over the reals. DPLL(T) is a decision procedure for SMT that combines the
DPLL algorithm with a “theory solver” that handles satisfiability of conjunctions
of theory literals [NOT06].

E.g., the Fourier-Motzkin algorithm (FM) for variable elimination is a theory
solver for linear inequalities. It is not efficient, but I like it for teaching: it has
a nice relation to propositional resolution, and it is practically relevant as a
pre-processing step in SAT solvers [EB05]. Also, some students took the linear
optimization course, some did not, so I do not attempt to teach the simplex
method.

We treated DPLL in Section 5, and give only the differences here.

Problem instance example:

[ [ p , q ] , [ ! p , ! 0 <= + x ]

, [ ! q , 0 <= + 2 -1 * x ] , [ 0 <= -3 + x ] ]

this represents a set of clauses, where ! p is a (negative) Boolean literal, and
0 <= -3 + x is a (positive) theory literal.

Problem solution domain: sequence of steps, where

data Step = Decide Literal

| Propagate { use :: Conflict , obtain :: Literal }

| SAT

| Conflict Conflict

| Backtrack

| Backjump { to_level :: Int, learn :: Clause }

| UNSAT

data Conflict = Boolean Clause | Theory

Note that this Step type results from that of Section 5 by replacing Clause with
Conflict in two places (arguments to Propagate and Conflict).



Correctness property: The sequence of steps determines a sequence of states
(of the tree search). As long as we use only the Boolean Clause :: Conflict

constructor, we have a DPLL computation — that may use theory atoms, but
only combines them in a Boolean way. The underlying theory solver is only used
in the following extra cases:

A Conflict Theory step is valid if the conjunction of the theory literals
in the current assignment is unsatisfiable in the theory. E.g., ! 0 <= x and
0 <= -3 + x is not a Boolean conflict, but a theory conflict.

A Propagate { use = Theory, obtain = l } step is valid if l is a theory
literal that is implied by the theory literals in the current assignment, in other
words, if ! l together with these literals is unsatisfiable in the theory.

Example solution:

[ Propagate {use = Boolean [ 0 <= -3 + x ], obtain = 0 <= -3 + x }

, Propagate {use = Theory, obtain = 0 <= + x }

, Propagate {use = Boolean [ ! p , ! 0 <= + x ], obtain = ! p }

, Propagate {use = Boolean [ p , q ], obtain = q}

, Propagate {use = Boolean [ ! q , 0 <= + 2 -1 * x ], obtain = 0 <= + 2 -1 * x }

, Conflict Theory

, UNSAT ]

E.g., to validate the second step (theory propagation), the T-solver checks that
the conjunction of (0 <= -3+x) (from the current assignment) and !(0 <= x)

(negated consequence) is unsatisfiable. We arrive at a T-conflict at the root
decision level, so the input formula is unsatisfiable.

8 Solving Finite Domain Constraints

– instance: a relational Σ-structure R over finite universe U , and a conjunction
F of Σ-atoms

– solution: a complete FD tree search trace determining the satisfiability of F .

Motivation: Finite Domain (FD) constraints can be seen as a mild generaliza-
tion of propositional SAT. Methods for solution are similar (tree search), but
have differences. In particular, I use FD constraints to discuss (arc) consistency
notions, as in [Apt03], and this automated exercise type also makes that point.

The design principle is again non-determinism: the student has to make a
choice among several possible steps. In particular, propagation and conflict de-
tection are done via arc consistency deduction.

Problem instance example:

Give a complete computation of an FD solver

that determines satisfiability of:

[ P ( x , y , z ) , P ( x , x , y ) , G ( y , x ) ]

in the structure:



Algebra

{ universe = [ 0 , 1 , 2 , 3 ]

, relations = listToFM

[ ( G , mkSet

[ [ 1 , 0 ] , [ 2 , 0 ] , [ 2 , 1 ]

, [ 3 , 0 ] , [ 3 , 1 ] , [ 3 , 2 ] ] )

, ( P , mkSet

[ [ 0 , 0 , 0 ] , [ 0 , 1 , 1 ] , [ 0 , 2 , 2 ]

, [ 0 , 3 , 3 ] , [ 1 , 0 , 1 ] , [ 1 , 1 , 2 ]

, [ 1 , 2 , 3 ] , [ 2 , 0 , 2 ] , [ 2 , 1 , 3 ]

, [ 3 , 0 , 3 ] ] ) ]

}

Problem solution domain: sequence of steps, where (u is the universe)

data Step u = Decide Var u

| Arc_Consistency_Deduction

{ atoms :: [ Atom ], variable :: Var, restrict_to :: [ u ] }

| Solved

| Backtrack

| Inconsistent

Correctness property: the sequence of steps determines a sequence of states (of
the tree search) where a state is a Stack containing a list of domain assignments
(for each variable, a list of possible values)

data State u = Stack [ M.Map Var [u] ]

A state is Solved if each instantiation of the current assignment (at the top
of the stack) satisfies the formula. A state is conflicting if the current assign-
ment contains a variable with empty domain. In a conflicting state, we can do
Backtrack (pop the stack) or claim Inconsistent (if the stack has one element
only).

A step Decide v e pops an assignment a off the stack, and pushes two
assignments back: one where the domain of v is the domain of v in a, without
e (that is where we have to continue when backtracking), and the other where
the domain of v is the singleton [e]

A step Arc_Consistency_Deduction { atoms, var, restrict } is valid
if the following holds:

– atoms is a subset of the formula
– for each assignment from var to current-domain var without restrict: it

cannot be extended to an assignment that satisfies atoms.

This constitutes a proof that the domain of v can be restricted to restrict.
We have non-determinism here, as we are not enforcing that the restricted set
is minimal. If the restricted set is empty, we have detected a conflict. Since we
want a minimal design, there is no other Step constructor for stating conflicts.

There are several arc consistency concepts in the literature. Ours has these
properties:



– we allow to consider a set of atoms (its conjunction), but we can restrict its
size (to one, then we are considering each atom in isolation)

– we can restrict the number of variables that occur in the set of atoms.
this number is the size of the hyper-edges that are considered for hyperarc-
consistency. For 1, we get node consistency; for 2, standard arc consistency.

– from this number, we omit those variables that are uniquely assigned in
the current state. This allows to handle atoms of any arity: we just have to
Decide enough of their arguments (so their domain is unit), and can apply
arc consistency deduction on those remaining.

Example solution: starts like this:

[ Decide x 0

, Arc_Consistency_Deduction

{ atoms = [ P ( x , x , y ) , G ( y , x ) ]

, variable = y , restrict_to = [ ]

}

, Backtrack

, Decide x 1

, Arc_Consistency_Deduction

{ atoms = [ P ( x , x , y ) , G ( y , x ) ]

, variable = y , restrict_to = [ 2 ]

}

]

After the first step (Decide x 0), the state is

Stack [ listToFM [ ( x , [ 0 ] )

, ( y , [ 0 , 1 , 2 , 3 ] )

, ( z , [ 0 , 1 , 2 , 3 ] ) ]

, listToFM [ ( x , [ 1 , 2 , 3 ] )

, ( y , [ 0 , 1 , 2 , 3 ] )

, ( z , [ 0 , 1 , 2 , 3 ] ) ] ]

Typical system answers for incorrect submissions: hyperarc size restriction is
violated:

current

Stack

[ listToFM

[ ( x , [ 0 , 1 , 2 , 3 ] )

, ( y , [ 0 , 1 , 2 , 3 ] )

, ( z , [ 0 , 1 , 2 , 3 ] ) ] ]

step

Arc_Consistency_Deduction

{ atoms = [ P ( x , x , y ) , G ( y , x ) ]

, variable = y , restrict_to = [ 2 ] }



these atoms contain 2 variables with non-unit domain:

mkSet [ x , y ]

but deduction is only allowed for hyper-edges of size up to 1

elements are incorrectly excluded from domain:

current

Stack [ listToFM [ ( x , [ 0 ] )

, ( y , [ 0 , 1 , 2 , 3 ] )

, ( z , [ 0 , 1 , 2 , 3 ] ) ] ]

step

Arc_Consistency_Deduction

{ atoms = [ P ( x , x , y ) ]

, variable = y , restrict_to = [ 1 ]

}

these elements cannot be excluded from the domain of the variable,

because the given assignment is a model for the atoms:

[ ( 0 , listToFM [ ( x , 0 ) , ( y , 0 ) ] ) ]

Instance generator: uses the same idea as for DPLL: generate a random instance,
solve it breadth-first, and check for reasonable solution length.

9 Related Work and Conclusion

We have shown automated exercises for constraint programming, and also pre-
sented the intentions behind their design. In particular, we described how to
test the student’s understanding of constraint solving algorithms by making use
of non-determinism, similar in spirit to the inference systems (proof rules) in
[Apt03]. These exercise types are part of the autotool framework for generat-
ing exercise problem instances, and grading solutions semantically.

There are several online courses for constraint programming, Few of them
seem to contain online exercises. In all cases, computerized exercises (offline or
online) focus on teaching a specific constraint language, as a means of modelling,
e.g., Gnu-Prolog [Sol04], ECLIPSe [Sim09], CHR [Kae07].

The exercises from the present paper do not focus much on modelling, and
learning a specific language. The aim is to teach the semantics of logical formulas,
and fundamental algorithms employed by constraint solvers. One could say that
each exercise uses a different problem-specific language. Each exercise is graded
automatically, and immediately, while giving feedback that helps the student.

So, the approaches are not competing, but complementary.

Acknowledgments: Many thanks to the students of my Constraint Programming
course (Sommersemester 2014) for working on these exercises, fighting for high-
scores, and reporting bugs in the software and in a draft of this report; and
to Alexander Bau, Carsten Fuhs, and Sibylle Schwarz for helpful comments on
exercise design and implementation.
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