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1 Introduction

Several formulations of system security can be found in the literature. Many of
them are based on a non-interference (see [GM82]) which assumes an absence
of any information flow between private and public systems activities. More
precisely, systems are considered to be secure if from observations of their public
activities no information about private activities can be deduced. This approach
has found many reformulations for different formalisms, computational models
and nature or “quality” of observations. For many applications such properties
could be criticized for being either too restrictive or too benevolent. They are too
restrictive in the case that there exists some information flow between public and
private activities (or data) but this flow is reasonable small. For example, usually
access control processes exhibit some information flow (mostly) showing which
password is not correct but they are still considered to be secure under reasonable
password policy: it is not meaningful to consider such systems insecure in the
case that a number of possible passwords is sufficiently large. On the other
side, qualitative security properties could be too benevolent. For example, if an
intruder cannot learn the whole secrete (password, private key, etc) they could
consider a system to be safe despite the fact, that the intruder could still learn
almost all the secrete (for example, significant number of bits of private key).
Hence there is a need to quantify an amount of information flow which can be
gained from the observations of public system activities.

An amount of possibly leaked information could be expressed by means of
Shannon’s information theory as it was done, for example, in [CHM07,CMS09]
for simple imperative languages and in [Gru08] for process algebras. Another
possibility is to exploit probabilistic theory as it was used for process algebras in
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[Gru09]. Resulting techniques lead to quantifications of how many bits of private
information can leak or how probable is that an intruder can learn some secrete
property on processes. In [L02] an information flow is studied in the framework
of process algebras. Particularly, it is investigated how much information i.e. a
number of bits can be transmitted by observing some timed system activities.
In [Gru11] it is investigated which private actions can gained or excluded by
observations of public actions.

The aim of this paper is to quantify an amount of information flow by dif-
ferential privacy (see [D08]) in the framework of probabilistic process algebras.
The concept of differential privacy was originally developed to ”provide means
to maximize the accuracy of queries from statistical databases while minimiz-
ing the chances of identifying its records”. Later on it was used also for other
applications. In [X14] differential privacy is studied for probabilistic automata
and in [X12] it has been exploited in the framework of probabilistic process al-
gebra by comparing probabilities of a given output produced by inputs which
differ in one position. Here we extend and further develop this approach and
we propose several other security properties based on ε-differential privacy for
a (different) probabilistic process algebra. We show how these properties are
related as well as how they are related to some traditional qualitative secu-
rity properties (namely, Non-Deducibility on Composition [FGM03] and opacity
[BKR04,BKMR06]). Moreover, we show some of their compositionality proper-
ties as well as undecidability and decidability results.

The paper is organized as follows. In Section 2 we describe our working for-
malism - probabilistic process algebra. In Sections 3 we recall some (qualitative)
security properties based on an absence of information flow which will serve as
a motivation for our work. Section 4 is devoted to differential privacy. Here we
define and investigate various security properties based on ε-differential privacy.

2 Probabilistic Process Algebra

In this section we define the Probabilistic Process Algebra, pCCS for short, which
is based on Milner’s CCS (see [Mil89]). First we assume a set of atomic action
symbols A not containing symbol τ and such that for every a ∈ A there exists
a ∈ A and a = a. We define Act = A ∪ {τ}. We assume that a, b, . . . range over
A and u, v, . . . range over Act.

To add probabilities to CCS calculus we will follow alternating model (the
approach presented in [HJ90]) which is neither reactive nor generative nor strat-
ified (see [LN04]). Probabilistic transitions are not associated with actions but
they are labeled with probabilities. In so called probabilistic states a next tran-
sition is chosen according to probabilistic distribution. For example, process
a.(0.3.b.Nil⊕ 0.7.(a.Nil + b.Nil)) can perform action a and after that it reaches
the probabilistic state and from this state it can reach with probability 0.3 the
state where only action b can be performed or with probability 0.7 it can reach
the state where it can perform either a or b .



Formally, we introduce a new operator
⊕

i∈I qi.Pi, qi being real numbers in
(0, 1] such that

∑
i∈I qi = 1. Processes which can perform as the first action

probabilistic transition will be called probabilistic processes or states (to stress
that P is non-probabilistic process we will sometimes write PN if necessary).
Hence we assume the signature Σ =

⋃
n∈N Σn, where

Σ0 = {Nil}
Σ1 = {x. | x ∈ Act} ∪ {[S] | S is a relabeling function}

∪{\M | M ⊆ A}
Σ2 = {|}
Σn = {

⊕
i∈I

qi, |I| = n}

with the agreement to write unary action operators in prefix form, the unary
operators [S], \M in postfix form, and the rest of operators in infix form. Re-
labeling functions, S : Act → Act are such that S(a) = S(ā) for a ∈ A and
S(τ) = τ .

The set of pCCS terms over the signature Σ is defined by the following BNF
notation:

P ::= X | op(P1, P2, . . . Pn) | µXP

where X ∈ V ar, V ar is a set of process variables, P, P1, . . . Pn are pCCS terms,
µX− is the binding construct, op ∈ Σ. We require that all Pi processes in⊕

i∈I qi.Pi are non-probabilistic ones. By pCCS we will denote the set of all
probabilistic and non-probabilistic processes and all definitions and notations for
CCS processes (see [Mil89]) are extended for pCCS ones. Structural operational
semantics is given by labeled transition systems. The transition relation → is a
subset of pCCS×Act∪ (0, 1]× pCCS. We just mention the new transition rules
for probabilitis.

PN
1→ PN

A1 ⊕
i∈I qi.Pi

qi→ Pi

A2

P
q→ P ′, Q

r→ Q′

P | Q q.r→ P ′ | Q′
Pa

For probabilistic choice we have the rule A2 and for a probabilistic transition
of two processes running in parallel we have the rule Pa. The technical rule A1
enables parallel run of probabilistic and non-probabilistic processes by allowing
to non-probabilistic processes to perform 1→ transition and hence the rule Pa
could be applied.

We will use an usual definition of opened and closed terms where µX is the
only binding operator. Closed terms which are guarded (each occurrence of X
is within some subexpression u.A are called pCCS processes. Note that Nil will
be often omitted from processes descriptions and hence, for example, instead of
a.b.Nil we will write just a.b. We write P

x→ P ′ instead of (P, x, P ′) ∈ → and
P 6 x→ if there is no P ′ such that P

x→ P ′. The meaning of the expression P
x→ P ′



is that the term P can evolve to P ′ by performing action x, by P
x→ we will

denote that there exists a term P ′ such that P
x→ P ′.

To express what an observer can see from system behaviour we will define
modified transitions x⇒ which hide the action τ and probabilities. Formally, we
will write P

x⇒ P ′ iff P
s1→ x→ s2→ P ′ for s1, s2 ∈ ({τ}∪ (0, 1])? and P

s⇒ instead of
P

x1⇒x2⇒ . . .
xn⇒. We will write P

x⇒ if there exists P ′ such that P
x⇒ P ′. By ε we

will denote the empty sequence of actions and by s v s′, s, s′ ∈ (Act∪ (0, 1])? we
will denote that s is a prefix of s′. By Sort(P ) we will denote the set of actions
from A which can be performed by P i.e. Sort(P ) = {x|P s.x−→ for some s ∈
(Act ∪ (0, 1])? and x ∈ A}.

As regards behaviorial semantics, we will work with the weak trace equiva-
lence.

Definition 1. The set of weak traces of process P is defined as Trw(P ) =
{s ∈ A?|∃P ′.P

s⇒ P ′}. Two processes P and Q are weakly trace (P ≈w Q)
iff Trw(P ) = Trw(Q).

We conclude this section with a definition of probabilities of traces for a
given process. Let P be a pCCS process and let P

x1→ P1
x2→ P2

x3→ . . .
xn→ Pn,

where xi ∈ Act ∪ (0, 1] for every i, 1 ≤ i ≤ n. The sequence P.x1.P1.x2 . . . xn.Pn

will be called a finite computational path of P (path, for short), its label is a
subsequence of x1. . . . .xn consisting of those elements which belong to Act i.e.
label(P.x1.P1.x2 . . . xn.Pn) = x1. . . . .xn|Act and its probability is defined as a
multiplication of all probabilities contained in it, i.e. Prob(P.x1.P1.x2 . . . xn.Pn) =
1× q1 × . . .× qk where x1. . . . .xn|(0,1] = q1 . . . gk. The multiset of finite paths of
P will be denoted by Path(P ). For example, the path (0.5.a.Nil ⊕ 0.5.a.Nil).
0.5.(a.Nil).a.(Nil) is contained in Path(0.5.a.Nil⊕ 0.5.a.Nil) two times. There
exist a few techniques how to define this multiset. For example, in [SL95] a tech-
nique of schedulers are used to resolve the nondeterminism and in [GSS95] all
transitions are indexed and hence paths can be distinguished by different indexes.
In the former case, every scheduler defines (schedules) a particular computation
path and hence two different schedulers determine different paths, in the later
case, the index records which transition was chosen in the case of several pos-
sibilities. The set of indexes for process P consists of sequences i1 . . . ik where
ij ∈ {0, . . . , n}∪{0, . . . , n}×{0, . . . , n} where n is the maximal cardinality of I for
subterms of P of the form

⊕
i∈I qi.Pi. An index records how a computation path

of P could be derived, i.e. it records which process was chosen in case of several
nondeterministic possibilities. If there is only one possible successor transitions
are indexed by 1 (i.e. corresponding il = 1). If transition Pi

x→ P ′ is indexed by
k then transition

⊕
i∈I qi.Pi

x→ P ′ is indexed by k.i, and if transitions P
x→ P ′

and Q
x→ Q′ are indexed by k and l, respectively, then transitions of P |Q have

indexes from {(k, 0), (0, l), (k, l)} depending on which transition rule for parallel
composition was applied. Every index defines at most one path and the set of
all indexes defines the multisets of paths Path(P ). Let C,C ⊆ Path(P ) be a
finite multiset. We define Pr(C) =

∑
c∈C Prob(c) if C 6= ∅ and Pr(∅) = 0. For



s ∈ Trw(P ) we will denote by Pr(s) the probability of performing s (i.e. it is
the sum of probabilities of all paths c ∈ Path(P ) such that label(c) = s).

3 Information Flow

In this section we recall two (qualitative) security properties for CCS (i.e. non-
probabilistic process algebra). The first inspiration for our work is the security
property Non-Deducibility on Composition (NDC for short, see in [FGM03]).
Suppose that all actions are divided in two groups, namely public (low level)
actions L and private (high level) actions H i.e. A = L ∪ H,L ∩ H = ∅. Then
process P has property NDC if for every high level user A, the low level view of
the behaviour of P is not modified (in terms of weak trace equivalence) by the
presence of A. The idea of NDC can be formulated as follows.

Definition 2. (NDC) P ∈ NDC iff for every A,Sort(A) ⊆ H ∪ {τ}

(P |A) \H ≈w P \H.

Now we introduce another information flow notion, which is based on a
more general concept of observation and opacity. This concept was exploited
in [BKR04] and [BKMR06] in a framework of Petri Nets and transition systems,
respectively. First we assume an observation function O : Act? → Act?.

Now suppose that we have some security property. This might be an execution
of one or more classified actions, an execution of actions in a particular classified
order which should be kept hidden, etc. Suppose that this property is expressed
by predicate φ over process’s traces. Contrary to the original definition we do not
require that the predicate is total. We would like to know whether an observer
can deduce the validity of the property φ just by observing sequences of actions
from Act? performed by given process. The observer cannot deduce the validity
of φ if there are two traces w,w′ ∈ Act? such that φ(w),¬φ(w′) and the traces
cannot be distinguished by the observer i.e. O(w) = O(w′). We formalize this
concept by opacity.

Definition 3 (Opacity). Given process P , a predicate φ over Act? is opaque
w.r.t. the observation function O if for every sequence w, w ∈ Trw(P ) such that
φ(w) holds and O(w) 6= ε, there exists a sequence w′, w′ ∈ Trw(P ) such that
¬φ(w′) holds and O(w) = O(w′). The set of processes for which the predicate φ

is opaque with respect to O will be denoted by Opφ
O.

Now we are prepared to define several quantitative security properties based
on differential privacy. Actually, as we will see later, two of them are really
quantitative counterparts of the above mentioned qualitative properties.

4 Differential Privacy

Differential privacy was originally developed for privacy protection of statistical
databases (see [D08]). In the original definition, a query mechanism A is ε-
differentially private if for any two databases D1 and D2 which differ only for



one individual (one raw, for example, data of one person), and any property S,
the probability distributions of A(D1), A(D1) differ on S at most by eε, namely,

Pr(A(D1) ∈ S) ≤ eε × Pr(A(D2) ∈ S).

Now we will reformulate ε-differential privacy for our process algebra frame-
work. Every sequence of high level actions s (i.e. s ∈ H∗) represents a secrete
input. The public output o is a sequence of low level actions (i.e. o ∈ L∗). First
we start with formulation of ε-differential privacy for the given secrete input and
public output. Note that this definition is similar to the one which appeared
in [X12]. We will write for a given process P conditional probability Pr(o|s) as
probability Pr(o) for process (P |s.Nil) \H.

Definition 4. P ∈ DFε(o, s) iff o ∈ Trw((P |s.Nil) \H) and

Pr(o|s) ≤ eε × Pr(o|s′)
for every s′ ∈ H∗ which differs from s in one position.

Note that in the previous definition we assume that if s = x1 . . . xn s′ =
x′1 . . . x′n then there exists j such that xj 6= x′j and xi = x′i for i 6= j. The property
DFε(o, s) says that by observing the public output o an intruder cannot be pretty
sure (expressed by ε) whether the secrete input was s or s′. Note that for ε = 0
the inputs s and s′ do not lead to different probabilities for the corresponding
output. Now we will formulate several properties of differential privacy. First,
differential privacy is not sensitive to a length of the observation (public output)
i.e. a longer observation can leak less as well as more on private inputs as it is
stated by the following proposition.

Proposition 1. For every ε there exist processes P, P ′, s ∈ H∗ and o1, o2, o3, o4 ∈
L∗ such that o1 v o2 and o3 v o4 and such that P ∈ DFε(o1, s), P 6∈ DFε(o2, s)
and P ∈ DFε(o4, s), P ′ 6∈ DFε(o3, s).

Proof. Let P = (1−ε)/2.(h1.l1.(p.l2.Nil⊕(1−p).l3.Nil))⊕((1+ε)/2.h1.l1.l2.Nil),
s = h1 and o1 = l1, o2 = l1.l2. By appropriate choice of p we get P ∈ DFε(o1, s),
P 6∈ DFε(o2, s). The second case is similar.

Differential privacy is neither sensitive to a length of secrete as it is stated by
the following proposition, its proof is similar to the proof of previous proposition.

Proposition 2. For every ε there exist processes P, P ′, o ∈ L∗ and s1, s2, s3, s4 ∈
H∗ such that s1 v s2 and s3 v s4 and such that P ∈ DFε(o, s1), P 6∈ DFε(o, s2)
and P ∈ DFε(o, s4), P ′ 6∈ DFε(o, s3).

Now we will formulate and prove some compositional properties of DFε(o, s)
property.

Proposition 3. P ∈ DFε(o, s) then l.P ∈ DFε(l.o, s) and h.P ∈ DFε(o, h.s).

Proof. Clearly, every observation of the process l.P has to start with l and
probabilities of all traces with the proper prefix l do not change. Similarly for
the process h.P .



Proposition 4. Let us assume processes Pi and let p = min(q1.P r(o|s)1, . . .
qn.P r(o|s)n) and let us suppose that p = qi.P r(o|s)i, and p′ = max(q1.P r(o|s)1, . . .
qn.P r(o|s)n) and let us suppose that p′ = qj .P r(o|s)j, where Pr(o|s)i is the
corresponding probability for the process Pi. Let P =

⊕
i∈{1,...,n} qi.Pi then

P ∈ DFln(p′/p)(o, s).

Proof. The main idea. The process P can output o with the input s by perform-
ing Pi and can output o with the input s′ by performing Pj . The rest of the
proof could be done by computing the corresponding probability.

Proposition 5. Let S be a bijection on L and on H and P ∈ DFε(o, s). Then
P [S] ∈ DFε(S((o), S(s)) and P \M ∈ DFε(o, s).

Proof. The first part follows directly from the definition of relabeling. The sec-
ond part follows from the fact that the restriction either has no influence on
performing o and hence the corresponding probabilities are not changed or
M ∪ Sort(o.Nil) 6= ∅ and in this case probabilities are equal to 0.

As regards the recursion we need an auxiliary definition.

Definition 5. Process variable X is sequential in P if every subterm of P con-
taining X (except X itself) is of a form y.P ′ or

∑
Pi. Let M ⊆ Act. Process

variable X is M -guarded in P if it is contained in a subterm of P of the form
u.P ′, u ∈ M .

Proposition 6. Let P ∈ DFε(o, s) and Pr(o|s) 6= 0 for P and P is sequential
and process variable X is M -guarded in P for some nonempty M such that
Sort(o.Nil) ∩M = ∅ . Then µX.P ∈ DFε(o, s).

Proof. Sketch. We have to eliminate the case when o could be produced by
application of the recursion what is satisfied by proposition’s requirements. The
rest follows directly from the definitions of DFε(o, s) and recursion.

Now we can define the property expressing security of the input s with respect
to ε-differential privacy. Process has this property if there is no observation
(output) which could distinguish between the input s and input s′ (which differs
from s in one element). The formal definition is the following.

Definition 6. P ∈ DFε(s) if for every o ∈ L∗ it holds P ∈ DFε(o, s).

The property DFε(s) is rather strong but in general it is undecidable as it is
stated by the following proposition.

Proposition 7. Property DFε(s) is undecidable.

Proof. The main idea. We exploit Turing power of pCCS and hence we reduce
the property to the halting problem. Let R be an arbitrary process and let
T = µX.

∑
y∈Act y.X. By deciding (P |((R|T ) \ Act)) ∈ DFε(s) we could decide

halting problem for R.



We could put some restrictions on processes in such a way that the property
DFε(s) is decidable for them.

Proposition 8. Property DFε(s) is decidable for finite processes and for pro-
cesses which are sequential and H-guarded.

Proof. Sketch. Only the case of infinite processes is interesting. If a process
is sequential and H-guarded this process can produce public outputs only by
reading secrete inputs and hence we can limit length of possible outputs o i.e.
there are only finitely many cases to be checked.

Now we define which observations could leak something about the secrete s
with respect to ε-differential privacy.

Definition 7. DF (P, ε, s) = {o|Pr(o|s) > eε×Pr(o|s′) and o ∈ Trw((P |s.Nil)\
H)}.

Clearly, P ∈ DFε(s) iff DF (P, ε, s) = ∅. On the other side, if DF (P, ε, s) 6= ∅
we can ask what is the minimal length of o, o ∈ DF (P, ε, s). Usually, longer o (a
higher value of |o|) means that the secrete s could be considered safer.

Similarly to the previous definition, we can specify which secretes could by
leak (with respect to ε-differential privacy) by the given observation o.

Definition 8. DF (P, ε, o) = {s|Pr(o|s) > eε×Pr(o|s′) and o ∈ Trw((P |s.Nil)\
H)}.

There is a simple relation between sets from Definition 7 and 8, namely,
o ∈ (P, ε, s) iff s ∈ (P, ε, o). Another generalization of above mentioned concepts
is overall security of processes with respect to ε-differential privacy which requires
that processes are secure with respect to every secrete input and public output.
The formal definition follows.

Definition 9. DF (ε) = {P |P ∈ DFε(o, s) for every o ∈ L∗, s ∈ H∗}.

Note that for P ∈ DF (ε) it holds that DF (P, ε, o) = DF (P, ε, s) = ∅ i.e. for
such the process there is no secret which could leak by any observation.

Naturally, all above mentioned sets depend on value of ε as corresponding
”security” level. So it is meaningful to define ”highest” security as the minimal
ε such that by observing o an intruder cannot be sure (in terms of ε differential
privacy) about the value of s.

Definition 10. PDF (P, o, s) = min{ε|P ∈ DFε(o, s)}.

Clearly, for ε1 < ε2 it holds DF (P, ε1, s) ⊆ DF (P, ε2, s) and DF (P, ε1, o) ⊆
DF (P, ε2, o). Hence for PDF (P, o, s) we obtain the smallest sets DF (P, ε, o),
DF (P, ε, s) and DF (ε). As regards ”length” of observations and secrets we have
the following proposition.



Proposition 9. There exist P , s ∈ H∗ and o1, o2, o3, o4 ∈ L∗ such that o1 ⊂ o2

and o3 ⊂ o4 such that PDF (P, o1, s) < PDF (P, o2, s) and PDF (P, o4, s) <
PDF (P, o3, s).

Proof. The proof follows from Proposition 1.

Till now we have investigated an impact of probability distributions for two
secret inputs which differ only in one position. This approach could be too re-
strictive in many cases so we extend it now. We assume a metric ρ on the set
of secretes, i.e. sequences of high level actions. Hence we can relate probabilities
of the output o produced by arbitrary secretes s, s′ not only those ones which
differ only in one position.

Definition 11. P ∈ DFε,ρ(o, s) iff o ∈ Trw((P |s.Nil) \H) and

Pr(o|s) ≤ eε×ρ(s,s′) × Pr(o|s′)
Similarly to Definition 9 we can define the set of secure properties with

respect to metrics ρ and ε-differential privacy.

Definition 12. DF (ε, ρ) = {P |P ∈ DFε(o, s) for every o ∈ L∗, s ∈ H∗}.

Now we can relate qualitative security property NDC to quantitative one,
namely ε-differential privacy.

Proposition 10. Let P be a process and ρ be a metric on sequences of H ac-
tions. Then if P ∈ NDC then for every o ∈ L∗, s ∈ H∗ there exists ε such
that P ∈ DFε,ρ(o, s). Moreover, if P ∈ DF (ε, ρ) for some ε and ρ is such that
ρ(x, y) 6= 0 whenever x 6= y, then P ∈ NDC.

Proof. Let P ∈ NDC, i.e. (P |A)\H ≈w P \H for every A such that Sort(A) ⊆
H∪{τ}. This means that also (P |s.Nil)\H ≈w (P |s′.Nil)\H and so Pr(o|s) = 0
iff Pr(o|s′) = 0 for every o i.e. it cannot happen that one of these probabilities
is non-zero and another one is equal to zero, hence there exists ε such that
P ∈ DFε,ρ(o, s).

Now suppose that for every o ∈ L∗, s ∈ H∗ there exists ε such that P ∈
DFε,ρ(o, s). This means that for any two secretes if one could output o then also
another one can do the same and hence P ∈ NDC.

As regards the metric, there are several meaningful choices how to measure a
distance between two secrets. First we consider a variant of Hamming distance.

Definition 13. Let s, s′ ∈ Act∗ and s = x1.x2. . . . .xn, s′ = x′1.x
′
2. . . . .x

′
m. We

define metrics ρ0 as a number of positions where s and s′ differ, i.e. ρ0(s, s′) =
|m− n|+

∑min(n,m)
i=1,xi 6=x′

i
1.

For the metric ρ0 we have the following result which relates DFε(o, s) and
DFε(o, s) properties.

Proposition 11. Let P ∈ DFε(o, s) for every s ∈ H∗. Then P ∈ DFε,ρ0(o, s).



Proof. Suppose that ρ0(s, s′) = n, then there exist s1, . . . , sn−1 such that si, si+1

differ by one element as well as s, s1 and sn−1, s
′. Since we have P ∈ DFε(o, s),

P ∈ DFε(o, si) for all i, 1 ≤ n− 1 we have Pr(o|s) ≤ eε×n × Pr(o|s′).

The metric ρ0 does not take into account the length of inputs. If we have two
completely different inputs of length 2 and inputs which differ in two positions
but both of length 128, in both cases the metric is 2 what does not express
an amount of secrecy which could leak or is protected. In the first case the
whole secrete is protected and in the second case only a fraction of secrecy
could be protected if P ∈ DFε,ρ0(o, s). Hence we could consider more elaborated
metrics, for example ρmin(s, s′) = (ρo + min |s|, |s′|)/ min(|s|, |s′|), ρmax(s, s′) =
(ρo + max |s|, |s′|)/ max(|s|, |s′|), ρsum(s, s′) = (ρo + |s|+ |s′|)/(|s|+ |s′|) etc.

Now we can reformulate Definition 7 and 8 taking into account a given metric.
We illustrate this by generalization of the set DF (P, ε, o).

Definition 14. DF (P, ε, ρ, δ, o) = {s|Pr(o|s) > eε×δ × Pr(o|s′) and
o ∈ Trw((P |s.Nil) \H) and ρ(s, s′) = δ}.

The sets of secretes DF (P, ε, ρ, δ, o) represents those secrets which could (at
least partially) leak under the observation o. The amount of leakage is given by
ρ and δ. It is easy to check that DF (P, ε, ρ0, 1, o) = DF (P, ε, o). Similarly, we
could generalize the set DF (P, ε, s).

Now we have taken into account a more appropriate distance between two
secrets but we have omitted a length of observations. It makes a difference if
a secrete could leak by short observation or it could leak only by very long
observations. For example, if s1 ∈ DF (P, ε, ρ, δ, o) and |o| is small but s2 ∈
DF (P, ε, ρ, δ, o′) only for a very big |o′| then s2 should be considered safer. This
leads us to further generalization of ε-differential privacy. We consider function f
which could take into account a distance between secrete inputs, their length, as
well as length of outputs. Moreover, it can incorporate also a cost of observations
(it could be different from it length) and other relations.

Definition 15. P ∈ DFε,f (o, s) iff o ∈ Trw((P |s.Nil) \H) and

Pr(o|s) ≤ eε×f(s,s′,o) × Pr(o|s′).
We believe that by appropriate choice of the function f we obtain more

realistic security properties based on ε-differential privacy but we leave this for
the further research. But now we turn to another generalization of ε-differential
privacy which is inspired by opacity (see Definition 3).

Definition 16. Suppose that we have the predicate φ over secrets. Then we
define P ∈ oDFε,φ(o, s) if for o ∈ Trw((P |s.Nil) \H) where s is such that φ(s)
holds we have

Pr(o|s) ≤ eε × Pr(o|s′)
for some s′ ∈ H∗ such that ¬φ(s′).

There is a clear relationship between qualitative property ”opacity” Opφ
O and

its quantitative variant based on ε-differential privacy.



Proposition 12. Suppose that for every o ∈ L∗, s ∈ H∗ there exists ε such
that P ∈ oDFε,φ(o, s). Then P ∈ Opφ

O for O which maps high level actions,
probabilities as well as τ action to empty sequence, and vice versa.

Proof. The main idea. Let us assume that P ∈ oDFε,φ(o, s). This means that for
every secrete s for which φ holds there exists s′ for which φ does not hold. Since
we consider the observation function O which ”does not see” high level actions
and τ , we have P ∈ Opφ

O. The proof of the opposite implication is similar.

We can relate oDFε,φ(o, s) also to the property oDFε(o, s).

Proposition 13. Let us assume that P ∈ oDFε(o, s). Then P ∈ oDFε,φs
(o, s)

where φs(s′) holds if s = s′ and does not hold if s and s′ differ in one position.

Proof. The main idea. Let us assume that P ∈ oDFε(o, s). This means that
probability of the output o with the secrete input s′ which differs form s in one
position (i.e. φs(s),¬φs(s′) hold) is non zero and hence P ∈ oDFε,φs(o, s).

Note that it is easy to prove that the most of the above mentioned properties
(sets) are undecidable in general (it follows from undecidable result stated by
Proposition 7). We leave for further work to specify conditions for which they
are decidable.

5 Conclusions

We have presented several (quantitative) security concepts based on ε-differential
privacy. They could be seen as quantifications of some qualitative properties,
namely non-deducibility on composition [FGM03] and opacity [BKR04,BKMR06]).
They express how secure is the secrete input s with respect to the public out-
put o, which secrete could leak by observing the public output o, which output
could leak the secrete s or which processes are completely safe i.e. there is no
secrete and output which could leak it. Even very basic of these properties are
undecidable in general but we have shown under which conditions they become
decidable. But since also in this case complexity remains very high we propose
some compositional properties to manage it at least somehow. We propose also
some metrics on inputs which could be exploited to obtain more realistic secu-
rity properties. As it was mentioned, one should consider also length of inputs
and relate it to the length of public outputs. Without this we could obtain too
restrictive security notions. The price of leakage - as a relation between amount
of leaked secrecy with respect to the length of observation is a crucial security
characterization. Otherwise no access control process based on passwords would
be considered safe (if a number of attempts to guess the password is not limited).

As regards the future work, besides already mentioned plans, we also plan to
exploit information theory to express how much information on secrete inputs
could leak with a given probability. This is particularly interesting if secrete
inputs have qualities which cannot be simply captured. Then we will use differ-
ences between entropy of inputs as a metric. Moreover, we plan to concentrate
on efficient techniques for checking of above proposed security properties.
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