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Abstract

New evidence suggests that individuals “learn from experience,”meaning they learn from

events occurring during their lives as opposed to the entire history of events. Moreover, they

weigh more heavily recent events compared to events occurring in the distant past. This

paper analyzes the implications of such learning for stock pricing in a model with finitely-

lived agents. Individuals learn about the rate of change of the stock price and of dividends

using a weighted decreasing-gain algorithm. As a result of waves of optimism and pessimism,

the stock price exhibits stochastic fluctuations around the rational expectations equilibrium.

Conditional on the historical path of dividends, the model produces a price-dividend ratio

which is in line with the evidence for the last century, except for the “dot-com”bubble in the

1990s.
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1 Introduction

The key role of expectations about the future is well understood in economics. The rational

expectations hypothesis (REH) has been a major step forward, allowing rigorous formalization of

the process of expectations formation. Yet it has often been criticized for endowing people with “too

much”knowledge about their environment.1 Empirical studies of individuals forming expectations

about aggregate economic variables does not, in general, corroborate the REH. In particular,

Malmendier and Nagel (2011, 2013) find evidence that, contrary to the REH, people “learn from

experience,”meaning that they are more influenced by observations from their own lifetimes than

by earlier historical events. More specifically, Malmendier and Nagel (2011) find that individuals

who experienced low stock market returns during their lives are more pessimistic about future

stock returns and invest a lower fraction of their liquid assets in stocks. In addition, Malmendier

and Nagel (2013) find that young individuals place more weight on recently experienced inflation

than older individuals do. The by-product of this is that learning may take forever if history “gets

lost”as new generations replace older ones.

In this paper, we explore how replacing the REH with “learning from experience”affects the

dynamics of a simple general equilibrium model of the stock market. We are interested in the

dynamics of heterogeneous beliefs and in the feedback loop that arises when individuals learn

about variables which are the result of their collective actions given their beliefs.2 To this end,

we extend the basic Lucas-tree asset pricing model to a stochastic Blanchard-Yaari overlapping

generations (OLG) setup in which individuals learn the parameters of the endogenous evolution

of the stock price as well as the exogenous process for dividends. The equilibrium we study is

“internally rational” in the sense of Adam and Marcet (2011), that is, agents in it maximize

expected utility given their subjective probability distributions.

Specifically, we assume that a small random fraction 1 − φ (with φ . 1) of individuals exit

the stock market every period, and an equal measure of new individuals enter the market. As in

Brown and Rogers (2009), each new entrant inherits the assets but does not inherit the accumulated

knowledge of his parent about the economy. Instead, children learn from their own experience,

updating their beliefs with information about stock prices and dividends which they observe during

their own lifetimes.3 As in Malmendier and Nagel (2013), agents use a decreasing-gain learning

scheme with gain parameter θ. A value of θ = 1 implies that individuals assign the same weight

to all observations they witness. In contrast, if θ > 1, as the evidence of Malmendier and Nagel

suggests, then individuals weigh more heavily recent events compared to older events.

1See, for example, Blume et. al. (1982), Arrow (1986), and Adam and Marcet (2011).
2See Eusepi and Preston (2011) who emphasize this type of self-referentiality.
3Thus, information in the model is dispersed across age cohorts, with older generations observing longer time

series than younger ones. See Angeletos and La’O (2009, 2013) for the role of geographically dispersed information
for macroeconomic dynamics.
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To analyze the model quantitatively, we propose a method that allows us to solve for the equi-

librium with heterogeneous agents. In the model, the equilibrium stock price equals the reservation

price of the marginal stock holder. Individuals who are more optimistic than the marginal agent

choose to hold the maximum possible amount of the stock, while those who are more pessimistic

choose not to hold the stock. Since the asset holding decision of each individual depends on the

current stock price (which is used to forecast future prices), the solution method involves finding

a fixed-point for the market-clearing price given the non-linear pricing function.

The introduction of “learning from experience”has several novel implications. First, we find

that, even if the retirement rate 1−φ is quite low, so that in any given period only a small fraction
of individuals are novice, the asset price fails to converge to the rational expectations equilibrium

(REE). Two forces create the oscillating dynamics. On the one hand, there is “momentum”rooted

in the information loss due to the retirement of individuals from the market and to the stronger

discounting of older information relative to the more recent one. As a result, beliefs about dividends

and the stock price are biased towards extrapolation of the more recent past, and trading on these

beliefs pushes the asset price further away from the fundamental.

On the other hand, there is a force of reversal toward the REE trend. Namely, when the stock

price rises too far above the fundamental value, individual asset exposure constraints begin to

bind. Because any given individual (including the optimistic types) can afford to buy less of the

stock, the asset price must decline to the valuation of less optimistic individuals for the market

to clear. The same reflecting force works also “from below”, when the stock price falls far below

the fundamental value. The combination of these two factors —momentum and trend reversal —

results in boom-and-bust cycles, which are only loosely related to dividends and are mainly due to

speculation about the future course of the stock price, in the spirit of Harrison and Kreps (1978).

We assess the empirical performance of the model by simulating the evolution of prices condi-

tional on the historical series of US dividends. Our results show that the model generates stock

market cycles similar to the ones observed in the data for the period 1920-1990. It is also able to

match the main moments of the data for the period 1920-1990, although it fails to replicate the

“dot-com”bubble. In contrast, the REE model produces a constant price-dividend ratio.

A second finding is that, although individual expectations in our framework are not model-

consistent, the agents’forecasting performance is quite close to that under rational expectations.

In particular, the mean forecasting error (averaged across cohorts) is similar to that in the rational

expectations model. Likewise, the root mean square errors (again averaged across cohorts) are not

too far from the ones obtained under rational expectations.

A third finding of our paper is that the dynamics of average beliefs in this heterogeneous-

beliefs economy can be approximated reasonably well by a CGL scheme in which the social gain

parameter is a nonlinear function of the survival rate φ and of the individual gain parameter θ.
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This implies that memories of the distant past are lost with the passage of time as a result of

population turnover combined with “learning from experience.”

Usually CGL is derived from the assumption that a representative agent uses the Kalman filter

as in Ljung and Soderstrom (1983) or Sargent (1999, ch. 8). This type of learning has received

much attention in the literature due to its ability to produce realistic model features, such as

amplification of the persistence of macroeconomic variables in response to aggregate shocks.4 Yet

Malmendier and Nagel (2013) show empirically that even though individual learning follows a

decreasing-gain scheme, the average learning-from-experience forecast can be approximated quite

closely with a CGL algorithm. Complementary to their work, we propose a theoretical model of

stock pricing which reproduces this feature and we provide an expression for the approximation

error. We verify numerically that in our model the approximation error is relatively small. We

further show that the social gain parameter is increasing in the individual gain parameter θ, and

in the rate of generational turnover, 1− φ.
Finally, we compare the behavior of the price-dividend ratio in the heterogeneous-agents model

with that in a representative-agent CGL model. We show that the representative-agent CGL

produces completely different dynamics for prices, which bear very little resemblance to those in

the data or in the OLG model. The reason for such a discrepancy is the fact that in the CGL

model the path of the stock price depends on the evolution of the average, rather than the marginal,

belief of the population. This exercise should be taken as a warning that, despite the fact that the

CGL describes well the evolution of the average belief, assuming a representative agent with CGL

is not equivalent to simulating a heterogeneous-agents economy with individuals who learn from

experience.

Our paper is related to several strands of research. First, it relates to the emerging literature on

learning with heterogeneous agents, such as Cogley, Sargent and Tsyrennikov (2012), Giannitsarou

(2003), Branch andMcGough (2004), Branch and Evans (2006), Honkapohja and Mitra (2006), and

Graham (2011). In contrast to these papers, individuals in our economy use the same decreasing-

gain learning scheme, have the same preferences, and observe the same public variables. The only

source of heterogeneity in our model is in the individual information sets used to update beliefs,

with younger cohorts focusing on a subset of the observations used by older generations.

Second, our work is related to the literature on bounded rationality with heterogeneous be-

liefs, following Brock and Hommes (1998). In this literature agents switch between heterogeneous

expectations based on the short-run profitability of the investment strategies. These models have

been estimated on different financial time series as in Boswijk, Hommes and Manzan (2007). 5

4The value of the gain parameter typically is estimated or calibrated to yield the smallest mean-squared fore-
casting error. See, e.g., Milani (2007), Carceles-Poveda and Giannitsarou (2008), Branch and Evans (2011), Adam,
Marcet, and Nicolini (2008).

5For a survey, see Hommes (2006).
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Third, a related line of research analyzes the dynamics of asset prices under learning by a

representative agent. Timmermann (1994), Weitzman (2007), and Cogley and Sargent (2008),

among others, explain some puzzling asset pricing phenomena based on rational learning by a

representative agent. Unlike our setup, individuals in their models use all available past information

and know ex ante the correct mapping between asset prices and fundamentals. Hence, they only

need to learn about the latter in order to achieve convergence to the REE.

Finally, a recent line of research focuses on the role of higher-order expectations for asset prices.

For example, Allen, Morris, and Shin (2006) analyze a linear model with asymmetric information.

They find that, in the absence of common knowledge about higher-order beliefs, asset prices

generally depart from the market consensus of the expected fundamental value, typically reacting

more sluggishly to changes in fundamentals.

The rest of our paper is organized as follows. Section 2 presents the model. In section 3, we

calibrate it and analyze the properties of “learning from experience.” In section 4, we analyze

to what extent the benchmark model can be approximated by a representative agent with CGL.

Conclusions are presented in section 5.

2 The model

The economy is populated by N risk-neutral ex-ante identical dynasties, with N large. Members

of each dynasty have stochastic lifetimes with death (or retirement) occurring with a constant

exogenous probability, 1 − φ. Thus, in each period, the number of dynasts of age s ∈ N0 is

constant and equal to fs = N(1 − φ)φs. Upon retirement, a successor inherits the assets of the

former dynast but not his accumulated knowledge about the processes governing the stock price and

dividends. Instead, successors embark on their own learning experience “from scratch”, starting

with the identical initial belief that their predecessors had at birth, namely the belief consistent

with REE.

The dynasts trade among themselves a single divisible stock which is in fixed supply, normalized

to N . Each individual decides how much to invest in the asset based on inter-temporal arbitrage.

Note, however, that the relevant arbitrage is not the one between selling the stock and holding

it forever for its dividends. Instead, the condition that governs savings decisions is a one-period-

ahead comparison between the value of the stock in the current period and the subjective expected

payoff in the following trading period.

The equilibrium stock price in our model equals the marginal asset holder i’s subjectively

expected payoff from holding the stock for one period —that is, the present value of his expected

dividend Eit(Dt+1) plus his expected price Eit(Pt+1) in the following period. Because expectations

about future prices and dividends differ across individuals, the law of iterated expectations does
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not apply, and the pricing conditions of individuals do not aggregate to the familiar asset pricing

formula with a representative agent.

2.1 Preferences and constraints

The dynast i ∈ {1, ..., N} receives utility from consumption u(Cit) = Cit per period. He discounts

future consumption by factor βφ, where β < 1 is a time preference parameter and φ < 1 is a

constant probability of survival. The expected value of lifetime utility for dynast i is thus

Ei0

∞∑
t=0

(βφ)t u(Cit), (1)

where Ei0 is individual i’s expectation formed at time 0.

Individual i faces the period budget constraint

Cit + PtSit ≤ (Pt +Dt)Sit−1 + Yit, (2)

where Sit denotes his stock holdings, Pt is the asset price, Dt is the dividend, and Yit is a per

period income endowment. We assume for simplicity that Yit = κDt, with κ a positive constant.

In addition, the individual faces constraints on the minimum and the maximum asset exposure,

defined as the maximum value in terms of consumption that he stands to lose (or gain if short-

selling) if the stock price falls to zero.

L
¯ t
≤ PtSit ≤ L̄t. (3)

Constraints (3) imply that an individual investor cannot go arbitrarily short or long in the stock.

In a more detailed model, these limitations can be derived from underlying credit constraints that

prevent agents from borrowing unlimited amounts of resources. Instead, we will simply assume

that L
¯ t

= 0 and L̄t = λDt > 0, where parameter λ > 0 (which we loosely refer to as the

permissible “leverage”) is the maximum multiple of the current dividend that an individual can

maintain invested in the risky stock. Our specification of the stock holding constraints puts

effective bounds on the price-to-dividend ratio, without the need for a “projection facility” that

mechanically constrains beliefs to a pre-specified neighborhood.

Dividends follow the exogenous stochastic process

log (Dt/Dt−1) = µ+ εt, εt ∼ N(0, σ2), (4)

where µ > 0 and σ2 > 0 are, respectively, the mean and the variance of the growth rate of dividends
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and where D−1 is known.

Given the information set available to individual i, his problem is to choose consumption and

equity holdings so as to maximize lifetime utility (1), subject to the budget constraint (2). The

first-order optimality conditions (FOC) of the individual’s problem are:

if Pt < Pit, then Sit = L̄t/Pt (5a)

if Pt = Pit, then Sit ∈ [L
¯ t
/Pt, L̄t/Pt], (5b)

if Pt > Pit, then Sit = L
¯ t
/Pt, (5c)

∀t, where
Pit = βφEit (Pt+1 +Dt+1) , (6)

is individual i’s “reservation price”. Because the objective function is linear and the feasible set is

closed, a maximum exists (and generally is a corner solution). We assume that κ is large enough

so that the condition Cit ≥ 0 is never binding.

The FOC can also be written as

Pt = βφEit (Pt+1 +Dt+1) + µit, (7)

where µit ∈ R is the Lagrange multiplier associated with the exposure constraints (3).
The market clearing condition is

N∑
i=1

Sit =
∞∑
s=0

fsSst = N. (8)

If all individuals share the same model consistent expectations, Eit(·) = Et(·) and the transver-
sality condition limT→∞ (βφ)T Et(PT ) = 0 is satisfied, the REE solution is

PREE
t =

βφeµ+σ2/2

1− βφeµ+σ2/2
Dt. (9)

Further imposing the parameter restrictions

βφeµ+σ2/2 < 1 and σ2/2 ≈ 0

would imply that the stock price is finite, and that it does not depend on the variance of dividends:

PREE
t = βφeµ

1−βφeµDt.
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2.2 Learning from experience

We depart from model-consistent expectations by assuming that individuals have only limited

information about the world they live in. In particular, they do not know anything about other

market participants’preferences or constraints. However, they do know their own objectives and

constraints and have a prior belief about parameters µ and σ2 governing the dividend process

(4). In the absence of common knowledge, from an individual’s perspective, the price of the asset

itself is a stochastic process affecting optimal savings decisions much like dividends do. Hence

individuals try to forecast both the dividend and the stock price, conditioning their forecasts on

the history of past dividends and stock price realizations.

Individuals update their beliefs about the mean growth rate of the stock price and of dividends,

µ. Given Pt−1 and Dt−1, the perceived law of motion (PLM) is

xt = m+ εt, (10)

where

xt =

[
log (Pt/Pt−1)

log (Dt/Dt−1)

]
, m =

[
mP

mD

]
, εt ∼ N(0,Σ), Υ =

[
σ2
P σ2

PD

σ2
DP σ2

D

]
. (11)

This specification allows for beliefs about the growth rates in the share price and dividends to take

on different values and their innovations to be imperfectly correlated.

Individuals are assumed to “learn from experience,”that is, the information set xts of an agent

of age s consists of the realizations of stock prices and dividends observed during his lifetime:

xts = {log(Pτ/Pτ−1), log(Dτ/Dτ−1)}tτ=t−s .

Individuals are assumed to be born with identical beliefs, centered on the REE outcome in

which the asset price grows in lockstep with dividends,
(
mP

0 ,m
D
0

)
= (µ, µ).

As in Malmenadier and Nagel (2011, 2013), individuals estimate m recursively using past

information xts. Let ms,t be the estimator of m using information xts, ms,t = E[m|xts]:

ms,t = ms−1,t−1 + γs,t (xt −ms−1,t−1) , where m0,t = [µ, µ]′. (12)

This is a particular case of the formulation employed in Malmenadier and Nagel (2013). The

sequence of gains γs,t determines the rate of updating of cohort s. With γs,t = 1/t it corresponds

to the special case of recursive least squares, which uses all available data up to time t with

equal weights. Instead, with γs,t set to a constant, it is a constant-gain learning algorithm, which
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weighs past data with exponentially decaying weights. In the case of “learning from experience”

the gain depends on the age s of each cohort. As a result, individuals of distinct ages differ in

their forecasts and adjust forecasts differently in response to changes in prices and dividends. The

particular decreasing-gain specification which we adopt from Malmenadier and Nagel is

γs,t = γs ≡
{

θ
s
, if s ≥ θ,

1, if s < θ,
, (13)

where θ ≥ 1 is a constant parameter that determines the shape of the implied function of weights

on past prices and dividends. Notice that this specification is not microfounded as it is obtained

as an approximation to the empirical data. However, for the case of θ = 1 Nakov and Nuño (2011)

show that a decreasing-gain scheme is the optimal Bayesian learning strategy for a PLM such as

(10).

2.3 Numerical algorithm

The source of heterogeneity in this model is that different age groups form different beliefs. The

key diffi culty in solving the model lies in finding the stock price in each period given the current

dividend realization and the entire distribution of beliefs about price and dividend growth. Updat-

ing dividend beliefs mD
s,t following (12) poses no major problem since dividends Dt are exogenous

and known at time t. The problem lies in the computation of Pt, since it determines the beliefs

mP
s,t, which in turn are used to compute the reservation price of each agent

Ps,t = βφ
[
em

P
s,t(Pt)Pt + em

D
s,t(Dt)Dt

]
, s ∈ N+, (14)

and the quantities of stock Ss,t(Pt) demanded by agents given FOCs (5a) —(5c). The equilibrium

stock price should clear the market as per equation (8).

We find the equilibrium stock price Pt by solving a fixed point problem. Appendix B provides

a sketch of the algorithm. In order to satisfy the FOCs, the price that clears the market must be

that of the marginal stock holder. The cohorts in which agents are more optimistic (Pt < Pit) face

condition (5a), Sit = L̄t/Pt = λDt/Pt, whereas the cohorts in which agents are more pessimistic

(Pt > Pit) face condition (5c), Sit =L
¯ t
/Pt = 0. Given an initial price guess P guess

t , we have a series

of reservation prices Ps,t(P
guess
t ) as per (14). We sort these reservation prices in decreasing order

and index them by j ∈ 0, ..., s− 1, where j = 0 corresponds to the highest reservation price, j = 1

to the second highest, and so on. Proceeding down the list from the highest reservation price, we

find the reservation price P ∗t of the marginal cohort n, P
∗
t = Pn,t. The marginal cohort is the one
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for which
1

N

n−1∑
j=0

fjS̄t < 1, and
1

N

n∑
j=0

fjS̄t ≥ 1, (15)

where S̄t = λ Dt
P guesst

. This means that cohorts which are more optimistic than the marginal one

(j < n) choose to hold the stock to the upper limit S̄t, while cohorts which are more pessimistic

(j > n) choose not to hold the stock at all, satisfying the FOCs. The error in the guess is

P guess
t − P ∗t (P guess

t ). We use a standard numerical algorithm to find the fixed point Pt = P ∗t (Pt)

starting from an initial guess P guess
t = Pt−1.

Figure 1 illustrates the equilibrium computation under the baseline calibration described below.

The dark line in the upper panel represents the reservation prices of the different cohorts arranged

in declining order for some arbitrarily chosen period t, Pj,t (the stock prices have been normalized

by the price under rational expectations, PREE
t ). The most optimistic cohort has a reservation

price of 0.925 times PREE
t , whereas the most pessimistic one has 0.887PREE

t . The marginal cohort

is in position n = 391 and its reservation price is 0.889PREE
t , equal to the equilibrium stock market

price, depicted by the light colored line. The lower panel displays the cumulative normalized asset

demand S(n) = 1
N

∑n
j=0 fjS̄t. The equilibrium is achieved for S(391) = 1, where demand for the

stock equals its supply of unity.

3 A learning-from-experience view of the evolution of the

US stock market in the last century

In this section, we explore the empirical implications of heterogeneity due to agents being born

on different dates and focusing on data realizations from their own lifetimes, rather than on all

historical data.

3.1 Calibration

The model’s parameters are calibrated to match the U.S. stock market evidence as documented

by Shiller (2005). We assume that each period in the model is a month.

Dynasts discount future consumption by the factor βφ, where β is a time preference parameter

and φ is the probability of survival. The survival rate is set equal to φ = 0.9979, implying an

“average life on the market” of about 40 years. We use Shiller’s (2005) stock market dataset

covering the S&P index from January 1871 to May 2014 to calibrate our model. In particular,

consistent with Shiller’s data, we set the mean growth rate of dividends to µ = 0.0012 per quarter,

and its standard deviation to σ = 0.0145. We set the time preference parameter to β = 0.9979,

consistent with a price-to-dividend ratio in the REE case of 27, as in the data, and a real interest
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rate of 5 percent. The leverage ceiling parameter is set to λ = 480. Note that, by imposing a limit

on each individual’s investment in the stock, λ affects the measure of households who hold the

asset. Setting λ = 480 is consistent with an average stock market participation rate of around 65

percent, which is the estimate reported by Poterba et. al. (1995) for U.S. households of income

$50,000-$75,000 in 1992.6 The value of θ = 1.0147, which controls the rate of learning of each

agent, comes from the empirical analysis of Malmendier and Nagel (2013), who find it to be 3.044

in quarterly data. For our numerical simulations, we truncate the maximum number of cohorts to

S = 960 (80 years), which includes most of the mass of the distribution.

3.2 From 1920 to 1990

In order to evaluate the empirical performance of the model, we take the (exogenous) dividend

series directly from the data by Shiller (2005) for the period January 1871 to May 2014 and

then simulate the model to obtain the price-dividend ratio.7 We discard the first 50 years of the

simulation to ensure the propagation of beliefs though the entire demographic structure.

Results are displayed in Figure 2. The dark (blue) line reproduces the model simulated price-

dividend ratio, the light (green) line is the ratio in the historical data and the (black) dotted line is

the constant ratio predicted by the REE model. Our heterogeneous-agents overlapping-generations

model (HA-OLG) broadly reproduces the main dynamics of the price-dividend ratio: it grows in

the 1920s and collapses in the early 1930s, recovering later in the decade. It falls again during the

WWII period but, in contrast to the data, the post-war recovery is delayed until the late 1940s.

This is one of the main discrepancies between the model and the data, as the model generates a

price-dividend (PD) ratio around 25 in the first half of the 1950s whereas it is below 15 in the

actual data. The model and the data broadly concide again during the 1960s’boom, with PD

ratios around 30. The decline in the 1970s is more gradual in the model than in the data whereas

the recovery in the 1980s is somewhat stronger in the data than in the model.

The stochastic oscillations of the stock price in the model around the REE are related to the

dynamics of learning. To see this, Figure 3 plots the evolution of the expected growth of prices

across generations, Est [log(Pt+1/Pt)] , where Est(·) is the expected value using the information set
of cohort s at time t. We plot the expectations of the youngest (s = 1, cyan light line) and the

oldest (s = 960, thin black line) cohorts.8 Notice that individuals’beliefs regarding the rate of

change of the stock price do not converge to the REE value. Instead, they go through successive

6Including mutual fund and 401(k) plan participation. The number varies from 10 percent for households with
income below $15,000 to 79 percent for households with income above $250,000.

7Notice that our test of the model is more demanding than the one in Adam, Beutel and Marcet (2013) who feed
their model with the historical capital gains (both prices and dividends). In contrast, we only use the information
on dividends.

8Recall that the belief of newborns (cohort s = 0) is set to the REE solution.
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waves of optimism and pessimism.

Two elements of our model are responsible for the oscillating dynamics of the PD ratio. On the

one hand, there is a force of momentum, which is rooted in the infrequent resetting of the learning

of successive cohorts of individuals as well as in the fact that agents discount older data more

heavily than more recent information. Thus, at any given date, a fraction of young individuals

enters the market whose learning path initially is more strongly influenced by the more recent

stock price and dividend realizations. Their forecasts inform their trading activities, and, through

trade, affect the realized stock price, pulling the beliefs of older generations toward the more recent

price change realizations.

On the other hand, there is a force of trend-reversion, emanating from the constraints on

individual risky asset exposure. Namely, as the stock price rises far above the REE, the upper

bound in (3) implies that optimistic investors can buy less shares for any given dividend realization.

Because, in equilibrium, all shares must be held by someone, the stock price has to fall to the

valuation of less optimistic investors. The same reflecting force operates “from below”, when the

stock price falls too far beneath the REE.9 The combination of the two factors —momentum and

trend reversion —results in boom-and-bust cycles that are only loosely related to dividends.

Indeed, similar to Harrison and Kreps (1978), asset price cycles in our model are partially the

result of speculation about the future course of the asset price. Naturally, shocks to dividends do

have an influence on the stock price, although the link is not nearly as direct as in the case of

REE. Recall that in the REE model, the percentage change in the stock price tracks one-for-one

the change in dividends, inheriting the persistence of dividend growth. In contrast, in the OLG

model with “learning from experience,”a sequence of positive dividend surprises has an escalating

effect on asset price changes. This amplification occurs because, through trade, the overreaction to

more recent information affects the stock price and, progressively, the beliefs of other individuals,

creating a non-linear feedback, which reinforces the effects of dividend shocks on the stock price.

3.3 From 1990 to 2014

We extend our analysis to cover the most recent period from 1990 to 2014. This period is charac-

terized by the surge in the PD ratio during the “dot-com bubble”and its collapse, together with

the fall in the PD ratio during the “Great Recession.”Following the methodology described above,

we compare the simulated outcome of the model to that in the data in Figure 4. The results show

that the HA-OLG model fails to replicate the observed dynamics in the last quarter of the century.

Instead, it produces some moderate oscillations around the REE solution.

The model fails to match the data due to the presence of an individual upper bound in (3). This

9Note that trend reversal kicks in before the aggregate leverage constraint Pt/Dt = λ becomes binding. Thus,
the turning points of the stock price cycles are endogenous in the model.
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bound limits the maximum PD ratio to the value of λ, which is calibrated (to replicate the stock

market participation rate) to a value of 480, equivalent to a PD ratio of 40. In the period 1920-

1990, this constraint is not binding at the aggregate level. However, during the period 1990-2014,

the PD ratio rises above this level, so it is impossible for the model to replicate the data.

We next explore the possibility of relaxing the constraint by allowing λ to linearly increase

from 480 to 1440 between January 1995 and June 2000, in line with the build-up of the bubble.

We interpret this as an increase in the allowed leverage ratio (and market participation) of the

agents in the stock market.

Figure 4 displays this case with a black line. The expansion in λ allows the model to replicate

the 1990s boom and the crash in 2001. However, the model generates a counterfactual rise in the

PD ratio again in 2004 which collapses abruptly in 2008-2009. The conclusion is that, even if the

change in λ improves the fit of the model, it still offers an unsatisfactory evolution of the PD ratio

in the 2000s.

In Table 1 we compare the moments in the data and the model for the full period 1920-2014.

We show the first two moments of the growth rate of stock prices and of dividends, and the

price-dividend ratio, in the data and in alternative model simulations. The first column reports

the actual data, the second column shows the REE model, while columns three to four show the

baseline and the alternative parameterization of our HA-OLG model. One clear advantage of the

HA-OLG model is that it generates dynamics of the price-dividend ratio, unlike the REE model,

due to the extra volatility of the growth rate of stock prices. The table shows that the HA-OLG

provides a better fit of the moments in the data than the REE model.

To summarize these results, the baseline HA-OLG model reasonably reproduces the evolution

of stock prices during the period 1920-1990, generating most of its boom-bust cycles, but fails to

reproduce the last 25 years. In contrast, the REE model predicts a constant PD ratio with prices

proportional to dividends. Taking into account that the model lacks many realistic features, such

as risk-aversion, portfolio diversification between risky and riskless assets or financial frictions,

the good fit in the first seven decades of the sample suggests that learning from experience may

explain, at least partially, the evolution of stock prices. At the same time, the fact that the model

fails to generate the large PD ratios observed in the late 1990s might indicate the important role

of expectations about future prices in contrast to the mechanic updating of beliefs during the

“dot-com”bubble.

3.4 Forecasting errors

Learning from experience implies that individuals’ forecasts in our model are not fully rational

because agents do not take into account all the available information. The important question

however is to what extent the suboptimality of agents’ forecasts is detectable from the data.
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Figure 5 plots the mean and the standard deviation of the 1-period ahead forecasting error in the

HA-OLG model as a function of the cohort age,

es,t =

[
ePs,t

eDs,t

]
=

[
log(Pt/Pt−1)−mP

s,t−1

log(Dt/Dt−1)−mD
s,t−1

]
,

alongside the forecasting error of the REE model. The two top panels show that in both models

forecasts are approximately unbiased in the sense that mean forecasting errors for both prices and

dividends are very close to zero. The two bottom panels show the root mean squared error, which,

given unbiasedness, equals the standard deviation of the error. The standard deviations of the

forecasting errors in the HA-OLG model for both dividends and stock prices are larger than in the

REE model.

In the REE case the root mean squared errors for prices and dividends are the same, equal to

σ. In contrast, in the HA-OLG model, the volatility of prices is considerably higher than that of

dividends and hence the volatility of the forecasting errors for prices is higher. This occurs because

the stock price depends on market expectations, creating self-referential dynamics as emphasized

by Eusepi and Preston (2011). Conversely, in the REE model, uncertainty about prices and

dividends is the same because agents coordinate ex-ante onto “the right model”for asset pricing.

Younger cohorts display more significant forecasting error variances in both prices and dividends

than older cohorts. This is because older cohorts observe longer histories of data.

4 Comparison with a constant-gain learning representative-

agent model

This section explores the comparison between the HA-OLGmodel and the more standard representative-

agent constant-gain learning (RA-CGL) framework.

4.1 Constant-gain learning as an approximation to the average belief

We begin by approximating the aggregate dynamics of our economy without having to deal with the

entire distribution of beliefs across agents. We show that the average belief can be approximated

by a RA-CGL scheme. Let us define the average belief across age cohorts,

m̄t =
[
m̄P
t , m̄

D
t

]′
=

1

N

[ ∞∑
s=0

fsm
P
s,t(Pt),

∞∑
s=0

fsm
D
s,t(Dt)

]′
, (16)
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and the maximum belief dispersion Σ =
[
ΣP ,ΣD

]′
Σi = max

t
max
s

∥∥mi
s,t − m̄i

t

∥∥ , i = P,D.

The evolution of the average belief is given by the following proposition:

Proposition 1 (Average market beliefs) The average market belief is given by

m̄t = m̄t−1 + γ̄ (xt − m̄t−1) + ξt, (17)

where

γ̄(φ, θ) ≡ 1

N

∞∑
s=1

fsγs = (1− φ)

 bθc∑
s=1

φs
(

1− θ

s

)
− θ log(1− φ)

 , (18)

is the average gain factor across age cohorts and the residual term ξt is bounded by

‖ξt − (1− φ)m0 + (φ+ γ̄ − 1) m̄t−1‖ ≤ γ̄Σ.

Proof. See Appendix A.
Notice that bθc is the largest integer smaller or equal to θ and m0 = µ (prior belief). Therefore,

average beliefs about price and dividend growth are updated approximately according to a constant

gain learning (CGL) scheme plus a residual term ξt. The approximation will be good provided that

ξt is small compared to the rest of the terms in (17). The value of ξt depends on a time-varying

term (1 − φ) (m0 − m̄t−1) plus a term proportional to the maximum belief dispersion Σ. CGL

can thus be viewed as an approximate aggregation of the beliefs of individuals who learn from

experience, using data realized in their lifetimes. Notice that the CGL algorithm differs from the

actual learning scheme of any of the individual agents because individual learning happens with a

decreasing gain, as shown in (13). The population as a whole, however, learns approximately with

a constant gain. This has been empirically verified by Malmendier and Nagel (2013).

The social gain parameter γ̄ is a non-linear function of the survival probability φ and the

individual gain θ. The value of γ̄ is increasing and concave in θ and 1 − φ. Under our baseline
calibration, the social gain is equal to 0.013, which in quarterly terms is around 0.039. These

numbers are larger, but of the same order of magnitude as existing estimates of the constant-gain

parameter both from macro time series data and from surveys. Milani (2007) estimates the gain-

parameter in a representative agent model to be 0.018 in U.S. data, which is the same as the 0.018

estimated by Malmendier and Nagel (2013).

Proposition 1 states that the average beliefs follow a CGL updating scheme provided that ξt is

small relative to m̄t−1 and γ̄ (xt − m̄t−1) .We analyze whether this condition holds for the baseline
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calibration considered here. To do so, we simulate the baseline model (HA-OLG) and construct

the vector xt using the simulated prices and historical dividends. Then we run the CGL algorithm

(17) and compute m̄t and ξt.We call this “open-loop”as there is no feedback from the CGL beliefs

to the model, that is, these are the results taking the series of prices and dividends as exogenous

for the representative-agent CGL (RA-CGL) algorithm.

Figure 6 compares the HA-OLG model with the RA-CGL approximation. Both expectations

about price and dividend growth are well approximated by the CGL algorithm. Notice that the

values of Σ′ =
[
ΣP ,ΣD

]
are [1.68, 0.06] so that the error bounds γ̄Σi are 2.2 percent and 0.08

percent for prices and dividends respectively. The first one is one order of magnitude smaller than

the volatility of the growth in prices, 53.76/
√

12 = 15.52 percent, according to Table 1. The second

one is two orders of magnitude smaller than the volatility of the growth in dividends, 14.07/
√

12 =

4.06. In addition, the term (φ+ γ̄ − 1) is 0.01. This confirms that the CGL approximation is a

reasonable approximation to the average belief under this calibration.

4.2 A “closed-loop”RA-CGL model

We next analyze the “closed-loop”RA-CGL model. This amounts to analyzing an independent

representative-agent economy with CGL. First we present the model in a similar fashion to the

ones in Adam, Marcet and Nicolini (2008) or Adam, Beutel and Marcet (2013). A representative

agent maximizes his utility (1) subject to the budget constraint (2) and the bounds (3). As in

Adam, Beutel and Marcet (2013), the agent observes prices with one period delay, so that the

Euler equation of the representative agent is

Pt = βφẼt−1

(
Pt+1) + βφẼt(Dt+1

)
, (19)

where Ẽt (·) is the expected value according to her PLM (10). Adam, Beutel and Marcet (2013)

state that they choose this information delay in order to avoid the simultaneity of prices, which

may give rise to multiple clearing prices and belief pairs.10

The agent updates her beliefs according to a CGL scheme similar to (17) with ξt = 0, ∀t.
Therefore

Pt = min
{
βφ
[
Pt−1e

2∗m̄Pt−1(Pt−1) +Dte
m̄Dt (Dt)

]
, λDt

}
,

is the equation that describes the evolution of prices given the beliefs.

How does the RA-CGL model relate to the HA-OLG described above? Taking into account the

market clearing condition (8), we can compute the asset price in the HA-OLG model as a function

10In the context of our model, not considering this informational delay generates explosive oscillating dynamics
(not shown). This is the reason why we follow this literature on RA-CGL.
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of the average belief

Pt = βφ
1

N

∞∑
s=0

fsEst (Pt+1 +Dt+1) +
1

N

∞∑
s=0

fsµit (20)

= βφĒt (Pt+1 +Dt+1) + µt = βφ

{
Pt

∞∑
s=0

fse
mPs,t(Pt) +Dt

∞∑
s=0

fse
mDs,t(Dt)

}
+ µt

≈ βφ

{
Pt exp

[ ∞∑
s=0

fsm
P
s,t(Pt)

]
+Dt exp

[ ∞∑
s=0

fsm
D
s,t(Dt)

]}
+ µt

= βφ
[
Pte

m̄Pt (Pt) +Dte
m̄Dt (Dt)

]
+ µt,

where µt = 1
N

∑∞
s=0 fsµst is the average Lagrange multiplier across age cohorts. Equation (20)

states that the market price is equal to the discounted average belief of next period payoff plus

a term reflecting the deviation of the average from the marginal asset holder’s belief. There are

two differences between (19) and (20). The first one is the informational delay. The second one

is the presence of µt, which is due to the fact that the price is not related to the beliefs of the

average agent but to those of the marginal agent. This is a key difference between the two models.

Going from the second to the third line we have also assumed that the growth rate of beliefs is

suffi ciently small. Notice that
[
m̄P
t , m̄

D
t

]
are a function of the current level of prices and dividends,

respectively, and are updated according to the CGL rule (17) with ξt 6= 0.

To summarize this comparison, the main differences between RA-CGL model and HA-OLG is

the fact that in the HA-OLG case the price depends on the beliefs of the marginal agent (µt 6= 0)

and that the aggregate CGL learning scheme includes a distortion term ξt 6= 0. In addition,

the existence of multiple equilibria in the RA-CGL case, absent in the HA-OLG, introduce an

extra informational assumption. As we see below, these differences have a major impact on the

performance of the two models.

Figure 7 displays the comparison between the data, the HA-OLG model and the RA-CGL.

We consider two alternative values for γ̄ : the baseline one of 0.013 and an alternative value of

0.018/3 = 0.006, based on the empirical studies of Milani (2007) and Malmendier and Nagel

(2013). The results show that in both cases the RA-CGL model produces a path for stock prices

which is very different from the one in the HA-OLG case and from the one observed in the data.

This suggests that the differences between the two models described above play a major role in

explaining the alternative dynamics. In fact, in both CGL cases the PD ratios “hit”against the

boundary λ, which does not happen in the HA-OLG model.11

The empirical performance of the RA-CGL is quite disappointing. The last two columns in

Table 1 show that RA-CGL generates smaller mean stock price growth rates and volatilities than

11If the boundary is removed prices explode.
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the HA-OLG model. However, even if the rest of the moments are relatively similar to those in

the data, the simulated price path is totally unrelated to the actual one and it is impossible to

recognize any historical cycle.

5 Conclusions

In order to coordinate a priori to a REE, individuals must be endowed with incredible amounts

of information not only about the structure of the economy and the exogenous shocks but also

about the higher-order beliefs of all other market participants. If individuals lack this information,

the law of iterated expectations is no longer valid and “beauty contest”dynamics may emerge as

individuals embark on speculative trading as in Harrison and Kreps (1978). In particular, empirical

research by Malmendier and Nagel (2009, 2013) suggests that expectations are not “externally

rational” in the sense of Adam and Marcet (2011); rather, they find evidence that people “learn

from experience,”giving more weight to recent events realized during their lives than to older ones.

We consider a Lucas-tree stochastic OLG setup and analyze the effects of “learning from expe-

rience.”The fact that different generations of individuals hold different beliefs leads to boom-and-

bust cycles of the stock price around the REE with statistical moments similar to those found in

the data. In particular the model produces a sequence of stock price cycles similar to the actual

ones in the US stock market for the period 1920-1990, although it fails to generate the “dot-com”

boom-and-bust in the late 1990s. We show that, despite the fact that individuals learn with de-

creasing gain, aggregate learning by the population as a whole can be approximated by a constant

gain. The social gain parameter is a nonlinear function of the survival rate and the individual gain

parameters, reflecting both the fact that historical data is lost when older generations are replaced

by young ones and the higher weight that each individual gives to more recent events.

Our approach provides discipline by tying the gain parameter to the survival rate and to

survey-based information on individual learning gains. The fact that the average learning can

be approximated by a constant gain scheme does not mean that a standard representative-agent

model with CGL produces similar results to the baseline model. In fact, we verify that it produces

completely different outcomes. The main reason is that in the RA-CGL model the economy is

driven by the average belief, whereas in the HA-OLG it is the belief of the marginal stock holder

that matters.
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Appendix A: Proof of Proposition 2

Proof. Let

m̄t =
1

N

∞∑
s=0

fsms,t =
f0m0,t

N
+

1

N

∞∑
s=1

fs [ms−1,t−1 + γs (xt −ms−1,t−1)] ,

given the fact that
1

N

∞∑
s=1

fsms−1,t−1 = φm̄t−1,

and that

γ̄ = (1− φ)
∞∑
s=1

φsγs =
1

N

bθc∑
s=1

fs +
1

N

∞∑
s=bθc+1

fs
θ

s
= (1− φ)

 bθc∑
s=1

φs + θ
∞∑

s=bθc+1

φs

s


= (1− φ)

 bθc∑
s=1

φs + θ
∞∑

s=bθc+1

∫
φs−1dφ

 = (1− φ)

 bθc∑
s=1

φs + θ

∫  ∞∑
s=bθc+1

φs−1

 dφ


= (1− φ)

 bθc∑
s=1

φs + θ

∫
φbθc

1− φdφ

 = (1− φ)

 bθc∑
s=1

φs − θ
bθc∑
s=1

φs

s
− θ log(1− φ)


= (1− φ)

 bθc∑
s=1

φs
(

1− θ

s

)
− θ log(1− φ)

 ,
we have

m̄t =
1

N

∞∑
s=0

fsms,t = (1− φ)m0 + φm̄t−1 + γ̄xt −
1

N

∞∑
s=1

fsγsms−1,t−1,

and we define

ξt ≡ (1− φ)m0 + (φ+ γ̄ − 1) m̄t−1 −
1

N

∞∑
s=1

fsγsms−1,t−1.

In order to found the bound (18), wecompute

‖ξt − (1− φ)m0 + (φ+ γ̄ − 1) m̄t−1‖ =

∥∥∥∥∥(1− φ)
∞∑
s=1

φsγsms−1,t−1)

∥∥∥∥∥
≤ (1− φ)

∞∑
s=1

φsγs ‖ms−1,t−1‖

≤
[

(1− φ)

∞∑
s=1

φsγs

]
Σ

= γ̄Σ.
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Appendix B: Simulation algorithm

We briefly sketch the algorithm used to find the equilibrium price of our heterogeneous-beliefs

economy. The idea is to simulate the evolution of dividends while keeping track of each agent’s

stock holdings and beliefs. To compute the equilibrium price given equations (7) and (8), we

employ a numerical routine to find a fixed-point for the price which is consistent with agents’

beliefs and constraints and which guarantees that the market clears.

Here we describe a single Monte Carlo simulation of the model:

1. Generate an exogenous series for dividends Dt following (4) and assuming that D0 = 1. Set

P0 = PREE
0 , where PREE

t is given by (9).

2. Initialize the prior beliefs,
(
mP
s,0,m

D
s,0

)
= (µ, µ), for all cohorts, s = 0, ..., S.

3. Main loop. At each point in time t = 1, ..., T :

(a) Compute the dividend beliefs across cohorts

mD
s,t = mD

s−1,t−1 + γs
[
log(Dt/Dt−1)−mD

s−1,t−1

]
, s = 1, ..., S.

(b) Compute the price Pt as a fixed-point given equations (7) and (8). The initial guess

P guess
t = Pt−1. Employ the following subroutine:

i. Given the guess, compute the price beliefs across cohorts

mP
s,t = mP

s−1,t−1 + γs
[
log(P guess

t /Pt−1)−mP
s−1,t−1

]
, s = 1, ..., S.

ii. Compute the reservation price across cohorts

Ps,t = βφ
[
em

P
s,tP guess

t + em
D
s,tDt

]
.

iii. Sort the reservation prices Ps,t in decreasing order. Index the prices by j, where

j = 0 corresponds to the highest Ps,t.

iv. Proceeding from the highest reservation price, find the reservation price of the

marginal cohort P ∗t = Pn,t. The marginal cohort n is such that

n−1∑
j=0

fjS̄t < N, and
n∑
j=0

fjS̄t ≥ N
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where S̄t = λ Dt
P guesst

is the amount allocated to each agent given the leverage con-

straint (3) and fj is the size of the cohort corresponding to index j.

v. The error in the guess is ζt = P guess
t − P ∗t .

vi. Repeat (i) to (v) until |ζt| is less than the error tolerance level.

(c) Given the price, compute the price beliefs across cohorts

mP
s,t = mP

s−1,t−1 + γs
[
log(Pt/Pt−1)−mP

s−1,t−1

]
, s = 1, ..., S.

4. Repeat the main loop (3) for periods t = 1, ..., T .
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Appendix C: Tables and Figures

Table 1. Moments of prices and dividends 1920-2014

Data REE HA-OLG RA-CGL

baseline changing λ baseline γ = 0.006

log(Pt/Pt−1)

mean (%) 3.06 1.82 2.94 3.92 1.58 1.16

st. dev. (%) 53.76 14.07 34.04 35.71 9.42 5.92

log(Dt/Dt−1)

mean (%) 1.82 1.82 1.82 1.82 1.82 1.82

st. dev. (%) 14.07 14.07 14.07 14.07 14.07 14.07

Pt/Dt

mean 30.71 26.25 22.83 31.47 26.21 24.69

st. dev. 15.92 0 5.28 21.00 10.82 12.90

Note: REE stands for “rational expectations equilibrium.”

HA-OLG stands for “heterogeneous-agents overlapping generations.”

RA-CGL stands for “representative-agent constant-gain learning.”
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Figure 1: Distribution of reservation prices and asset demand across cohorts
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Figure 2: Evolution of the price-dividend ratio 1920-1990
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Figure 3: Expectations of price growth: darker color indicates older cohort
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Figure 4: Evolution of the price-dividend ratio 1990-2014
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Figure 5: One-period-ahead mean and root mean squared forecasting errors for prices and dividends
in the learning from experience model and the REE
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Figure 6: Price and dividend growth beliefs in the heterogeneous agents model (HA-OLG) and in
the representative-agent CGL approximation (RA-CGL).
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Figure 7: Evolution of the price-dividend ratio 1920-2014
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