
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 10231–10251
November 12-16, 2024 ©2024 Association for Computational Linguistics

MobileVLM: A Vision-Language Model for Better Intra- and Inter-UI
Understanding

Qinzhuo Wu1∗ , Weikai Xu21∗ , Wei Liu1† , Tao Tan3, Jianfeng Liu1,
Ang Li1, Jian Luan1, Bin Wang1 and Shuo Shang2†

1XiaoMi AI Lab
2University of Electronic Science and Technology of China

3Gaoling School of Artificial Intelligence, Renmin University of China
{wuqinzhuo, liuwei40, liujianfeng5, liang10, luanjian, wangbin11}@xiaomi.com

{xuwk266, tantao0308, jedi.shang}@gmail.com

Abstract

Recently, mobile AI agents based on VLMs
have gained increasing attention. These works
typically utilize VLM pre-trained on general-
domain data as a foundation, fine-tuning it on
instruction-based mobile datasets. However,
the proportion of mobile UI in general pre-
training data is very low. Moreover, the general
pre-training task does not particularly consider
the characteristics of mobile UI. Therefore,
directly applying such pre-trained models for
mobile UI instruction fine-tuning will not yield
the desired performance. In this paper, we pro-
pose MobileVLM for Chinese UI manipulation.
On top of the general pre-training model, two
additional pre-training stages are implemented
with four specific tasks to enhance both intra-
and inter-UI understanding. In addition, a large
Chinese mobile UI corpus, named Mobile3M,
is built from scratch to compensate for the lack
of relevant data. Besides 3 million static UI
pages, it also contains directed graph structures
formed by real-world UI transition actions.
Experimental results show MobileVLM ex-
cels on both in-house test sets and public
mobile benchmarks, outperforming existing
VLMs. Dataset and Code are available at
https://github.com/XiaoMi/mobilevlm.

1 Introduction

Mobile phones are widely used in daily life,
and AI agents on mobile platforms are gaining
industry and academic attention (Ding, 2024; Yang
et al., 2023). Due to the limitations of purely
text-based LLMs in understanding User Interface
(UI) elements and page structures (Hong et al.,
2023), recently released mobile AI agents are
mainly driven by Vision-Language Models (VLM)
(Baechler et al., 2024; You et al., 2024; Lee et al.,
2023). These works typically use VLM as a base
model and then fine-tune it on instruction-based

∗ Equal contribution.
† Corresponding authors.

General Data

Pre-training
Stage1 Intro-UI Task

Pre-training

Stage2 Inter-UI Task

Pre-training

Instruction-Based

Fine-tuning

Q: open the chrome app.

Intro-UI

Understanding

Inter-UI

Understanding

Intro-UI

Understanding

Inter-UI

Understanding

Figure 1: Previous training pipeline (red box) and ours
with two additional pre-training stages (green box).

mobile datasets for domain adaptation. As a result,
they excel in page navigation and can provide a
coarse summary of UI functionality.

However, these VLMs like GPT-4V (OpenAI,
2023), CogVLM (Wang et al., 2023), and Qwen-
VL (Bai et al., 2023a) typically utilize large-scale
general datasets, such as Laion-5B (Schuhmann
et al., 2022), Coyo (Byeon et al., 2022), for pre-
training. The proportion of mobile UI pages
in these datasets is very low, which results in
the overall image characteristics of the datasets
being quite different from those of mobile-specific
datasets.

Moreover, the general pre-training task does
not particularly consider the characteristics of
mobile UI for these VLMs. The general pre-
training task, such as image caption and visual
question answering, mainly focuses on the overall

10231

https://github.com/XiaoMi/mobilevlm

Dataset Language Platform
Tasks/ Avg Hierarchical Dataset

App Category
Episodes steps docs Structure

Rico (Deka et al., 2017) English Apps 72,219 1.0 VH Dot Google & Third-Party
RicoSCA (Li et al., 2020) English Apps 295,476 1.0 VH Dot Google & Third-Party
UIBert (Bai et al., 2021) English Apps 16,660 1.0 VH Dot Google & Third-Party
Ferret-UI (You et al., 2024) English Apps 320,000+ 1.0 VH Dot Google & iPhone
PixelHelp (Li et al., 2020) English Apps 187 4.2 VH Chain Google
MetaGUI (Sun et al., 2022) English Apps 1,125 4.3 XML Chain Google & Third-Party
Mind2Web (Deng et al., 2024b) English Web 2,350 7.3 HTML Chain n/a
MoTIF (Burns et al., 2021) English Apps 4,707 4.5 VH Chain Thrid-Party APPs
AITW (Rawles et al., 2023) English Apps+Web 715,142 6.5 ✕ Chain Google & System
AITZ (Zhang et al., 2024) English Apps 2504 7.5 ✕ Chain Google & System
Auto-UI (Zhan and Zhang, 2023) English Apps 687,081 8.3 ✕ Chain Google & System
Mobile3M Chinese Apps 3,098,786 6.5 XML Graph Thrid-Party APPs

Table 1: Comparison of Mobile3M and existing datasets. For size comparison, we list the number of apps/tasks
/episodes/dialogues and average task steps. Mobile3M collects data on real and usable third-party Chinese apps.

information of the image, while the mobile UI task
demands capturing more fine-grained details such
as layout and elements. As a result, these VLMs
lack intra-UI information. At the same time, these
tasks only focus on the content within an image
and ignore the relationship between images. Even
for some multi-round navigation tasks in Figure 2,
its interaction traces form a chain structure, which
still cannot fully cover the inter-UI relationships of
massive pages in a real app. Intuitively, all UI pages
of an app should form a graph structure. Therefore,
these VLMs also lack inter-UI information.

To address these issues, as shown in Figure 1, we
propose two additional mobile pre-training stages
and four specific mobile tasks to enhance both
intra- and inter-UI understanding. In stage 1, 3
UI tasks are implemented to enhance the model’s
granular understanding of intra-UI content. In stage
2, action prediction tasks are introduced to predict
actions connecting two pages, thereby enhancing
inter-UI understanding. Based on this training
framework, we propose MobileVLM, which uti-
lizes consistent mobile data from Mobile3M for
both pre-training and fine-tuning. This is a VLM
that can simultaneously understand fine-grained
element information within a UI page and the
transition relationships between UI pages.

To address the lack of mobile pre-training data,
we created Mobile3M, a large-scale dataset focus-
ing on third-party Chinese apps. Specifically, we
selected 49 popular apps and iteratively interacted
with each UI element, collecting interaction traces.
As shown in Figure 2, all interaction traces of each
app are combined into a directed graph, where each
node represents a UI page and each edge represents
a transition action. Eventually, Mobile3M contains
millions of UI pages, XML documents, and page
changes caused by user interactions.

Overall, our work has four major contributions
as follows:
• We propose MobileVLM, the first Chinese

mobile VLM, pre-trained and fine-tuned on mobile
data consistently.
• We propose Mobile3M, the first large-scale

Chinese mobile dataset with 3 million UI pages and
real-world interactions, organized into a directed
graph for each app.
• We define two extra pre-training stages and

four UI-based pre-training tasks, covering both
intra- and inter-UI understanding.
• Experimental results show that MobileVLM

outperforms existing SOTA VLMs on ScreenQA
(+14.34%) and our evaluation datasets (+34.18%).

2 Related Work

2.1 Mobile UI Dataset

Table 1 provides a comparison of multiple mobile
UI datasets. At the top of the table are several
“point” datasets. Each data instance in these
datasets contains only one page, along with differ-
ent fine-grained tasks and corresponding answers.
Rico (Deka et al., 2017) is a large-scale Android
UI dataset and has been widely used as a primary
data source for UI modeling research. UIBert (Bai
et al., 2021) release two new datasets extended
from Rico. Ferret-UI (You et al., 2024) uses
the UI detection model (Zhang et al., 2021b) to
annotate fine-grained elements in Android and
iPhone screens. However, these datasets only focus
on the elements and layout within a single page,
so it is difficult for them to capture the complete
process of users using the app.

To better reflect user behavior, several “chained”
mobile UI data sets have been released (Sun et al.,
2022; Deng et al., 2024b; Burns et al., 2021; Deng

10232

Q: Search for a new highlighter.

Q: What is the content of

this page?

A: Page shows news about

Christmas kittens saved from

fire in Jackson Twp.

(a) Dot

Q: There is a mobile phone

screenshot. Q: I will give you an end-to-end

task. Search for a new highlighter.

A: I need to find

the chrome app.

A: I will click

the button to

open the

chrome app.

(b) Chain

A: Input

new

highlight

er.

（A）

Q: What are the one-hop

neighbor nodes of Screenshot A?

A: Screenshot B, C, E are all one-hop

neighbors of A.

(c)Graph(Ours)

（B）

（C）

（D）

（E）

ID Details

0 click(Learn)

1 click(Edit)

10 click(Search)

24 click(junior high school)

25 click(Reset)

29 click(Cancel)

51 click(Withdraw)

97 click(New Vocabulary)

113 click(Back)

121 scroll([360, 108], [180, 585],right)

182 click(OK)

343 input([360, 921], [360, 395], plan)

1

29

113

10

343

25

24

0

97

51

182

121

Baicizhan0

Baicizhan0_0

Baicizhan0_10 Baicizhan0_10_343

Baicizhan0_1 Baicizhan0_1_25

Baicizhan0_1_24

Figure 2: (Left) Dot, chain, and graph tasks from Rico, Auto-UI, and Mobile3M. (Right) A directed graph example.

et al., 2024a), as shown at the bottom of Table
1. Each “chain” of data in these datasets consists
of a sequence of action-UI pages. The UI page
includes a screenshot and a structured document.
AITW (Rawles et al., 2023) is one of the largest UI
control datasets with 5 subsets and 715K episodes.
Auto-UI (Zhan and Zhang, 2023) further filters the
GoogleApps subset in the AITW dataset, leaving
152K episodes. However, these datasets only
provide pages and OCR text, missing structural
documents, which makes it difficult for the VLM
model to learn the ability to align image and text
modalities. As shown in Figure 2, compared with
chained datasets, Mobile3M’s graph structure can
better capture the relationship between different
pages in the app.

2.2 Mobile Vision-Language Models

Recently, several benchmarks (Rawles et al., 2023;
Wen et al., 2023; Shaw et al., 2023; Yan et al.,
2023) are proposed to evaluate page navigation and
mobile phone manipulation. MM-Navigator(Yan
et al., 2023) and AppAgent (Yang et al., 2023) are
both GPT-4V-based agents for the page navigation
task. CogAgent(Hong et al., 2023) finetunes
a vision-language model, CogVLM(Wang et al.,
2023), to complete page navigation tasks using
only screenshots as input. UI-VLM(Dorka et al.,
2024) benefits from the AutoUI dataset and utilizes
a sequence of past screenshots as input.

3 Mobile3M Dataset

In this paper, we propose Mobile3M, a large-scale
dataset focusing on Chinese apps. Mobile3M
contains a total of 20,138,332 actions, covering
3,098,786 screenshots and corresponding XML
documents. These data are organized into 49 large
directed graphs, each representing a mobile app,
with UI pages as nodes and actions as edges.

3.1 Background

UI Page: We selected 49 Chinese apps from the
App Store, ensuring that each app had at least 10
million downloads. The apps are installed and run
on the emulator, and we use Appium to collect UI
pages. The UI page includes a screenshot and an
XML document. The XML document describes
the structure and content of a UI page, including
elements like buttons and text boxes, as well as
layout information such as bounding boxes and
hierarchical trees. Figure 11 in the Appendix shows
an example of a screenshot and an XML document
for the app “QQMusic”. The XML document can
be parsed to produce a list of elements. As shown
in the task (c) of Figure 3, each element contains a
name and a bounding box.
• Element (name, bound):

(Cancel, [640,74][696,112]).
Action Space: The data collection algorithm

simulates the way people interact with smartphones.
We designed three basic actions: click, scroll, and
input.
• Click (name, bound):

click(Cancel, [640,74][696,112]).
• Scroll (bound, direction):

scroll([0,211][720,271],up).
• Input (name, bound, text):

input(Destination, [84,57][568,129], Beijing).
An element may be interactable with multiple

actions. As shown in Figure 3, the 38 elements
in this UI page can generate an action space
containing 55 actions.

3.2 Data Collection

Inspired by APPAgent (Yang et al., 2023), we use
the random walk algorithm to explore apps. The
algorithm iteratively interacts with every element
on each UI page and records the page transition

https://sj.qq.com/
https://appium.io/docs/en/latest/

10233

https://sj.qq.com/
https://appium.io/docs/en/latest/

(a) Element Grounding

(c) Element List Generation

(d) Action Space Generation

(b) Action Prediction

(1) UI Page 1 (2) UI Page 2

box2

box1

box3 box4 box5

box6

box4

box5

box6

box7

Q: Image: Page1 Could you tell me the coordinates

of "Group tour departing from Shanghai" ?

A: <box>[38,141][262,206]</box>
box1

A: <box>[254,631][613,729]</box>

Q: Image: Page1 Could you tell me the coordinates

of "Shanghai + Suzhou + Hangzhou + Wuzhen · 5

days and 4 nights" ?

Q: Image: Page2 Outline how the various parts

of the page are laid out ?

A: <ref>?</ref>[44,78][72,108]

<ref>Destination</ref>[84,57][568,129]

<ref>Cancel</ref>[640,74][696,112]

<ref>Thailand</ref>[40,225][88,258]

<ref>Singapore</ref>[132,225][204,258]

….

<ref>Hot Recommend</ref>[25,324][137,362]

box3

Q: Which part of this page1 leads to the second page2?

A: click(<ref> Shanghai </ref> [112,79][136,105])
box2

Q: Image: Page2 Describes all operable controls on page.

A: Clickable controls:

click(<ref>Destination</ref>[84,57][568,129])

click(<ref>Cancel</ref>[640,74][696,112])

click(<ref>Thailand</ref>[40,225][88,258])

click(<ref>Singapore</ref>[132,225][204,258])

….

click(<ref>Hot Recommend</ref>[25,324][137,362])

The input controls are:

input(<ref>Destination</ref>,[84,57][568,129],Beijing)

Scrollable controls: include

scroll(<box>[0,211][720,271]</box>,up)

scroll(<box>[0,211][720,271]</box>,down)

scroll(<box>[0,211][720,271]</box>,left)

scroll(<box>[0,211][720,271]</box>,right)

box6

box7

38 Elements

55 Actions

Figure 3: Four UI-based pre-training tasks. (a)(c)(d) for stage 1 pre-training, (b) for stage 2 pre-training.

states. The exploration results for each app can
be represented as a directed graph, in which each
edge represents an action and each node represents
a UI page. The “action trace” of a UI page is
defined as the shortest sequence of actions from
the app’s homepage to that page. The ID of each
action in the trace is combined to create a unique
identifier for the page called “page name”. In
Figure 2, the algorithm executes “click(Edit)” from
the “Baicizhan0” page to enter the Edit page. The
ID of this action is 1, so the name identifier of the
Edit page is assigned as Baicizhan0_1.

Since the UI pages from real-world apps may
change as the app evolves. During exploration, if
the head node stored several days before is simply
approximated to the current head node, UI changes
may be mistaken for the edge’s action, causing data
errors. Therefore, for each page, the algorithm
will save screenshots and XML documents of
each step in its entire “action trace”. Taking
“Baicizhan0_1_25” in Figure 2 as an example, this
node contains 3 UI pages, 3 XML documents, and
an “action trace” consisting of 2 actions.

We adopt the breadth-first method (BFS) to
explore apps. Compared with the depth-first
method (DFS), BFS better covers app functions
and shortens the action sequence when exploring
new nodes. As shown in Figure 2, the algo-
rithm will first explore “Baicizhan0_10” instead of
“Baicizhan0_1_25”. The task-oriented exploration
method (Yang et al., 2023) heavily relies on the
performance of VLM. However, current VLMs
can be costly and may perform poorly with third-
party apps. In addition, the task-oriented method
may cause some infrequently used pages and app
functions to be overlooked.

3.3 Method Optimization

The goal of building the Mobile3M dataset is
to explore all functions of the app, aiming to
discover new pages and actions as much as possible.
For an app with an average action space of 50,
four interactive actions will expand the app’s
exploration space to 6,250,000 pages, containing
many duplicates.

To improve exploration efficiency, we propose
a “unique page” mechanism. Every time a new
page is explored, we use BM25 (Robertson et al.,
2009) to retrieve the top 5 nodes in the current app
graph that are closest to the XML document of
the page. The algorithm compares the new page
with each of these five pages to determine if they
are similar pages. The threshold of the similar
coefficient is Element Diff<5 & Pixel Diff <30%.
Here, Element Diff is the number of different
elements between two UI pages and Pixel Diff is
the pixel difference between two screenshots. If no
similar page is found in the current graph, the new
page will be treated as a unique page and added
to the app graph. As shown in Figure 2, click the
“Back” button on “Baicizhan0_1_24”, and the gen-
erated “Baicizhan0_1_24_113” and “Baicizhan0”
are equivalent pages. We add a directed edge from
the previous page “Baicizhan0_1_24” to the similar
page “Baicizhan0” in the graph. The algorithm
will not treat the “Baicizhan0_1_24_113” as a new
explorable node.

The benefits of this mechanism are threefold:
1. This greatly reduces the exploration space
of each app. Taking “ctrip” as an example, our
exploration process produced 187,079 UI pages
with an average steps of 6.5. Without the “unique
page” mechanism, pages of this magnitude cannot

10234

Figure 4: The proportion of data for each category and
specific app in Mobile3M.

even cover all possibilities of 4-step exploration. 2.
This converts the tree structure exploration results
into a graph structure. Different pages can reach
“Baicizhan0_1” by clicking “Edit”, “OK”, and
scrolling. This helps the agent learn the functions
of different UI elements. 3. This helps prevent the
occurrence of cyclic action sequences. The “unique
page” mechanism can detect and prune them.

To balance the distribution of different actions in
the dataset, during random walks, we give priority
to the input action. We provide 10 related keywords
for each app. When executing the input action,
the algorithm can randomly select a keyword to
input. For scroll actions, the algorithm can choose a
direction to scroll from “up, down, left, and right”.

3.4 Dataset Statistics

Among the 49 selected apps, we ensure that each
main category in AppStore contains at least 2
apps. Figure 4 shows the data distribution of the
Mobile3M dataset. The most common application
categories in the dataset are “Travel”, “Living” and
“Shopping”. As shown in the figure, Mobile3M
covers multiple categories, and the amount of
data in each category is relatively balanced, which
ensures that the dataset is versatile and diverse.

4 Model

As shown in Table 3, in addition to the standard
fine-tuning architecture that includes general pre-
training and mobile instruction fine-tuning, we
extra included two-stage mobile data pre-training
and four mobile pre-training tasks.

LLM LLM LLM

CrossAttn

ViT ViTViT

Learnable

Query

Embs

Learnable

Query

Embs

Learnable

Query

Embs

Stage1：Three-task Pre-training Stage2：Action Prediction Stage3: Fine-tuning

Mobile Screenshots Mobile ScreenshotsMobile Screenshots

CrossAttn CrossAttn

Figure 5: The three-stage pre-training and fine-tuning
framework based on Qwen-VL.

4.1 Pre-training
Stage 1: In the first stage of pre-training, our main
goal is to enhance the VLM’s understanding of
intra-UI pages. We build the following three tasks
to pre-train our model:

1. Element List Generation: This task requires
models to identify all interactive elements from the
page. It requires OCR and grounding abilities to
recognize texts and their bounding boxes. This task
provides the foundational elements for grounding
and interacting in subsequent tasks.

2. Element Grounding (Li et al., 2021): The
goal of this task is to enable the model to recognize
and ground elements in pages. Given an element
description, the model is required to determine its
bounding box. We sample five elements on each
page for grounding training.

3. Action Space Generation: This task requires
the model to generate all candidate actions from
the UI page. Based on the extracted elements,
the model needs to analyze the types of elements:
clickable, inputtable, and scrollable. This task is
crucial for the action prediction tasks in Stage 2.

Stage 2: 1. Action Prediction In stage 2 pre-
training, we use the action prediction task to en-
hance VLM’s ability to understand the relationship
between two pages. The expected output is the
action needed to navigate from the current page to
the next page.

This task aims to enhance the model’s ability to
predict page relationships and learn the expected
outcomes of corresponding actions, providing more
accurate action reasoning for downstream tasks. In
this task, the model’s focus shifts from the content
of intra-UIs to the complex graph structure across
inter-UIs within an app.

4.2 Fine-tuning
1. Page Navigation In Stage 3, page navigation no
longer provides two pages as in Stage 2. Instead,
it provides a single page along with corresponding

10235

Task Name/Benchmark Metric
Element List Extraction
Self Acc@IoU=0.1
ChineseOCRBench (Liu et al., 2023b) SQuAD F1*
Element Grounding
Self IoU=0.1
RefCOCO (Veit et al., 2016) IoU=0.1
Action Space Extraction
Self Acc@IoU=0.1
Action Prediction
MoTIF-Automation (Burns et al., 2021) Acc@IoU=0.1
Self SQuAD F1*@IoU=0.1
VQA
ScreenQA (Hsiao et al., 2022) SQuAD F1*
HumanVQA SQuAD F1*
Page Navigation
Auto-UI (Zhan and Zhang, 2023) Acc@IoU=0.1
Self-Navigation Acc@IoU=0.1

Table 2: Datasets and Metrics

Task #samples
Mobile Pre-training: Stage 1
Element List Generation 0.64 M
Element Grounding 3.09 M
Action Space Generation 0.64 M

Mobile Pre-training: Stage 2
Action Prediction 1.92 M

Mobile Fine-tuning: Stage 3
Auto-UI 0.96 M
Page Navigation 76 K
ScreenQA 69 K

Table 3: Tasks in three training stages.

instructions. The model needs to generate the
appropriate actions based on these instructions.

2. VQA The VQA tasks require VLMs to answer
the question based on a screenshot.

In stage 3 fine-tuning, we use Mobile3M to build
self page navigation task, along with Auto-UI for
the page navigation task and ScreenQA for the
VQA task. This stage primarily aims to convert
the model’s understanding of intra-UI elements and
relationships between inter-UI into practical end-to-
end task completion and page question-answering
domain.

4.3 Model Architecture

We adopt Qwen-VL-Chat (Bai et al., 2023b) as
our foundation model, which consists of a Large
Language Model: Qwen-7B (Bai et al., 2023a),
a Visual Encoder: ViT-bigG (Dosovitskiy et al.,
2020) with 1.9B parameters and a Position-aware
Vision-Language Adapter (Zhang et al., 2021a)
with 0.08B parameters. As shown in Figure 5, we
use a three-stage training method and freeze the
parameters of Qwen-7B in the first stage and ViT
in the third stage.

5 Experiment

5.1 Datasets and Benchmarks
We constructed our own benchmarks by selecting
data from Mobile3M, and additionally selected
five public Chinese benchmarks. Specifically, we
constructed the following two types of test datasets:
• UnseenAPP To verify the ability of the model

on unseen apps, we selected 7 apps out of the 49
apps as shown in Table 14 and did not use their
data for training.
• SeenAPP We randomly sampled 700 data for

each task from the remaining 42 apps, which the
model had seen during the training stage. There is
no overlap between the training and the test set.

We randomly selected 500 screenshots from
mobile3m and asked three annotators to construct
question-and-answer pairs for each screenshot,
named humanVQA benchmark.

As shown in Table 2, we choose 3 mobile
benchmarks, ScreenQA and Auto-UI for evaluating
stage 3 fine-tuning, and MoTIF to evaluate stage
2 pre-training. We chose two general benchmarks,
ChineseOCRBench and RefCOCO, to measure
general capability loss in stage 1 pre-training. More
details can be seen in Appendix A.2.

5.2 Evaluation Metrics
Following prior works, we used 3 objective metrics
and did not use additional human evaluation.

SQuAD F1* For OCR and VQA tasks, we use
an improved F1* score to measure the accuracy
of VLM responses. Following OCRBench, we
consider a response correct if the output contains
the golden answer. Only when this condition is
not met do we calculate the F1 score. F1* can be
calculated as follows:

F1∗ =

{
1, if Ans in GT
2 · Pre·Recall

Pre+Recall , otherwise
(1)

IoU Intersection over Union(Cheng et al., 2021)
is the most commonly used metric in the field of
object detection.

Action Accuracy We follow Auto-UI’s ap-
proach for evaluating action accuracy. Specifically,
for click action, we allow a 14% margin of error
relative to the screen size between the predicted
answers and the golden answers. For scroll action,
the predicted answer only needs to be on the same
axis and in the same direction as the golden answer.
For input, we only calculate the F1 score of the
input content.

10236

model (stage3)
Auto-UI Self-Navigation ScreenQA HumanVQA

Overall General Install GoogleApps Single WebShopping Acc IoU F1 F1
BC-single 68.7 - - - - - - - - -
BC-history 73.1 63.7 77.5 75.7 80.3 68.5 - - - -
ChatGPT-CoT* 7.72 5.93 4.38 10.47 9.39 8.42 - - - -
GPT-4V ZS+HTML* 50.54 41.66 42.64 49.82 72.83 45.73 - - - -
GPT-4V ZS+History* 52.96 43.01 46.14 49.18 78.29 48.18 - - - -
Qwen-VL Max 54.15 46.22 50.30 49.16 75.32 49.76 87.2 14.31 71.37 66.09
GPT-4o 55.02 47.06 49.12 52.30 80.28 46.42 88.6 4.33 67.85 47.82
InternVL +History 2.63 1.95 2.88 2.94 3.03 2.71 82.2 2.38 33.27 34.72
Qwen-VL +History 3.23 2.71 4.11 4.02 3.89 2.58 77.4 4.21 51.51 52.69
Fine-tuned Llama 2# 28.40 28.56 35.18 30.99 27.35 19.92 - - - -
Llama 2+plan+History# 62.86 53.77 69.1 61.19 73.51 56.74 - - - -
MobileAgent 66.92 55.8 74.98 63.95 76.27 63.61 87.4 7.76 63.76 47.38
Auto-UIseparate 74.07 65.94 77.62 76.45 81.39 69.72 - - - -
Auto-UIunified 74.27 68.24 76.89 71.37 84.58 70.26 - 11.32 - -
CoCo-LLaVA 70.37 58.93 72.41 70.81 83.73 65.98 - - - -
CogAgent 76.88 65.38 78.86 74.95 93.49 71.73 - - - -
CoCo-Agent 77.82 69.92 80.60 75.76 88.81 74.02 - - - -
MobileVLM w/o Stage1&2 72.26 66.16 78.19 71.97 75.88 71.10 92.8 29.65 82.59 49.70
MobileVLM w/o Stage2 73.05 70.15 79.41 74.12 76.26 41.49 98.2 35.89 85.71 76.09
MobileVLMseparate 77.05 70.27 78.86 76.86 87.06 71.42 - - - -
MobileVLMunified 74.94 69.58 79.87 74.72 81.24 71.70 98 48.49 85.71 76.82

Table 4: Main Result(%). Suboptimal results are marked with an underline. The BC results are from (Sun et al.,
2022), results with * are from (Ding, 2024), and results with # stem from (Zhan and Zhang, 2023). Considering the
testing costs, Qwen-VL-Max and GPT-4o were conducted on a random sample of 10% of Auto-UI.

5.3 Implementation Details

Experiment Settings We trained the model on
NVIDIA A100 GPUs (80G×8). For Auto-UI
finetune task, similar to its official method, we
used 10% of the GoogleApps data of AITW to save
80% of the training time. Our hyperparameters are
as follows: learning rate of 1e-5, batch size of 4,
6000 steps for stage 1 pre-training, and 7400 steps
for stage 2 pre-training. During the testing, all
baselines that were not fine-tuned were provided
with few-shot instructions. More details can be
seen in Appendix A. For stage 1 evaluation, we
employed two SOTA models: GroundingDINO
(Liu et al., 2023a) and Qwen-VL-Max. For Stage
2, we selected Seq2Act as the SOTA model on
the MoTIF. For Stage 3, MobileVLMseparate were
fine-tuned models based on separate subtasks of
Auto-UI. MobileVLMunified was the unified model
for all tasks in Stage 3. For specific information on
baselines, refer to Appendix A.1.

Data Processing While Mobile3M is a Chinese
dataset, Auto-UI and ScreenQA need to align with
it during the testing stage. Therefore, we trans-
lated their instructions and answers into Chinese.
Additionally, since all pages in the Mobile3M are
uniformly sized at 720x1280, we resized the pages
of Auto-UI and MoTIF to 720x1280. Our pre-
training task requires VLMs to detect objects based
on instructional descriptions, we removed test cases
from RefCOCO that contain multiple objects in a
single image to avoid ambiguity.

5.4 Main results

As shown in Table 4, MobileVLM achieved an
overall improvement of 2.78% and outperformed
the Auto-UI SOTA model in all tasks. This
indicates that the two-stage pre-training tasks
enhanced the model’s accuracy in estimating
expected actions in page navigation tasks.
Notably, MobileVLM achieved this despite the
translation information loss and the absence of
a prompt pipeline. MobileVLMseparate slightly
outperformed MobileVLMunified due to the
varying features of different tasks, which can
hinder simultaneous optimization. In Self-
Navigation, our model significantly outperformed
GPT-4o and Qwen-VL-Max (+9.4%, +34.18%),
attributed to the consistent use of mobile domain
data in both pre-training and fine-tuning. In
the ScreenQA task, MobileVLM improved by
14.34% over Qwen-VL-Max, demonstrating
superior intra-UI understanding and text extraction
capabilities. Without specific fine-tuning on the
HumanVQA task, MobileVLM still outperformed
Qwen-VL-Max by 10.73%, showing its excellent
generalization in mobile domain VQA tasks.

5.5 Ablation Study

Although we surpassed the baseline in Stage 3
tasks, this could be due to inherent differences
in the base models’ capabilities. To validate the
pre-training effect, we conducted two ablation
experiments: MobileVLM w/o Stage1&2, which is

10237

model(stage1)
Grounding Action Space Element List Grounding Action Space Element List RefCOCO OCRBench(CN)

IoU Acc Acc IoU Acc Acc IoU Acc
InternVL 1.27 0.01 14.71 1.68 0.12 17.90 23.62 37.79
Qwen-VL-Chat 2.92 0.09 17.32 2.68 0.04 19.92 32.37 35.44
GroundingDINO 16.74 - - 17.33 - - 56.7 -
Qwen-VL-Plus 15.25 1.03* 32.06 19.94 1.28* 35.77 39.51 38.22
Qwen-VL-Max 34.35 14.06* 43.79* 41.25 15.20* 44.91* 54.61* 47.32
GPT-4V 2.47 9.68* 22.49* 3.45 10.02* 23.02* - -
GPT-4o 13.57 12.62 33.58 15.26 16.73 34.29 51.36* 28.24
MobileVLM 78.95 54.79 72.43 38.33 26.99 47.73 17.21 30.34

Table 5: Stage1 Result(%). The left and middle sections show the SeenAPP and UnseenAPP from Mobile3M. The
right section includes RefCOCO and ChineseOCRBench. * indicates the test results from a 40% random sample.

model (stage2)
Action Prediction MoTIF

IoU Acc IoU Acc Acc IoU
InternVL 0.02 9.17 0.02 10.12 78.40 9.32
Qwen-VL-Chat 0.04 8.2 0.06 7.34 81.60 14.22
Qwen-VL Plus 4.23 8.92 5.06 9.33 - -
Qwen-VL Max 10.06 17.32 12.62 19.69 - -
GPT-4o 2.46 31.23 3.04 35.07 93.62 56.40
Seq2Act - - - - 99.20 66.40
MobileVLM 35.85 49.34 9.80 25.87 99.60 40.32

Table 6: Stage2 Result(%). The left part is SeenAPP.
The right part is UnseenAPP.

fine-tuned directly on Qwen-VL, and MobileVLM
w/o Stage2, which is further fine-tuned on the
Stage 1 model. As shown in Section 4 of Table
4, compared to MobileVLM w/o Stage1&2, Mo-
bileVLM achieved improvements of 4.79%, 5.2%,
18.84%, and 3.12% on Auto-UI, self-navigation,
and ScreenQA, respectively. This indicates that the
two-stage pre-training improved both the model’s
grounding and navigation capabilities. Compared
to MobileVLM w/o Stage2, MobileVLM improved
by 4% on Auto-UI and 12.6% in the IoU metric for
Self-Navigation (from 35.89% to 48.49%). This
highlights the importance of the Stage 2 action
prediction task in enhancing the model’s navigation
capability by strengthening its understanding of
inter-UI relationships. Additionally, we found that
Stage 2 pre-training had little impact on VQA
tasks, as these tasks rely more on the model’s
understanding of intra-UI elements.

5.6 Pre-training Results

Stage1 results MobileVLM continues with two-
stage pre-training based on Qwen-VL-Chat. As
shown in Table 5, compared to Qwen-VL-Chat,
MobileVLM achieved significant improvements
of 76.03%, 54.7%, and 55.11% on SeenAPP.
Moreover, compared to the best baseline Qwen-VL-
Max, MobileVLM improved by 44.6%, 40.73%,
and 28.64%. This indicates MobileVLM’s su-

perior ability to extract and ground elements.
MobileVLM improved by 35.65%, 26.95%, and
27.81% on UnseenAPP compared to Qwen-VL-
Chat, and it slightly outperformed Qwen-VL-Max
and GPT-4o in the element list and action space
accuracy metrics, only slightly lagging behind
Qwen-VL-Max in the IoU for the grounding task.
However, due to significant differences in element
distribution and layout between UnseenAPP and
SeenAPP, MobileVLM, despite surpassing the best
baseline, cannot fully transfer abilities learned in
SeenAPP to UnseenAPP. Since general training
data was not used in Stage 2, MobileVLM is
weaker on general benchmarks like RefCOCO and
ChineseOCRBench compared to current SOTA
models GroundingDINO and Qwen-VL-Max. For
a detailed analysis, refer to Appendix D.
Stage2 results As seen in the SeenAPP results in
Table 6, MobileVLM improved by 35.81% and
41.14% compared to Qwen-VL-Chat, and outper-
formed Qwen-VL-Max and GPT-4o by 25.79%
and 18.11%, respectively. This indicates that the
model can better understand the graph structure
relationships between pages in SeenAPP. Our
model shows a certain improvement compared
to Qwen-VL-Chat, but due to the significant
differences in the page graph structures between
UnseenAPP and SeenAPP, it is weaker than GPT-
4o in recognizing the positional relationships of
these apps’ pages. Nevertheless, we observed that
MobileVLM exceeded Qwen-VL-Chat by 26.1%
in the IoU metric and demonstrated excellent
generalization in the acc task on MoTIF (99.6%).

5.7 Language Environment Analysis.

In the main experiments, we translate the instruc-
tions into Chinese to align with the language we use
in the pre-training stage. However, Qwen-vl-chat’s
navigation capabilities may be influenced when the
environment changes back to English. Therefore,

10238

we supplement an experiment on the original Auto-
UI dataset to compare the performance loss caused
by the language environment. From Table 7, it

Model General Install Single Google apps Web
MobileVLM_cn 68.87 79.49 67.38 74.85 70.85
MobileVLM_en 69.58 79.87 81.24 74.72 71.70

Table 7: Performance Comparison of Different
Languages. CN means instructions are translated into
Chinese, while EN means not.

can be seen that most of the English results are
very close to the Chinese results, except for some
metrics. This shows that MobileVLM is a basic
model for performing complex mobile end-to-end
navigation tasks in a Chinese-English bilingual
environment.

5.8 Resource Consumption Analysis
The inference consumption of MobileVLM under
4-bit quantization is approximately 23GB of GPU
memory. Due to the need for memory to store
intermediate computation results and .eval during
inference, the memory requirement is generally
2-3 times that of the GPU memory. Therefore, if
running MobileVLM on the device side (directly on
a real phone to control apps), the model inference
would require at least an 8-core CPU, 46GB of
RAM, and 23GB of dedicated GPU memory.

We designed an additional experiment: over a
period of 4 minutes, with each 30-second interval
as a timestamp, we recorded the memory and GPU
consumption during model inference. See the table
8 below:

Timestamp (s) RAM (MB) GPU Memory (MB)
30 2009.87 18502.0
60 3923.33 20310.0
90 3940.03 20798.0
120 18438.99 21550.0
150 20312.5 23128.0
180 28906.25 23128.0
210 39471.97 23128.0
240 38438.99 23128.0

Table 8: Memory Usage Over Time

6 Discussion

6.1 Can MobileVLM be applied in real
applications?

There are three main challenges to addressing
the practical deployment issues of the model: 1.
Resource issues, 2. Inference speed, 3. Permission
issues. Below, we will discuss them in detail:

1. Resource Issues: As we know, current on-
device large models typically range from
700M to 4.5B parameters. For example,
Apple’s OpenELM has 2.7B parameters, and
Microsoft’s Phi-3-mini has 3.8B parameters.
Both models are specifically designed for
mobile terminals. Our model has 9.8B param-
eters, which presents a significant resource
requirement gap for on-device deployment.
However, the smaller parameter models men-
tioned also have performance demand gaps.

2. Inference Speed Issues: Real-world mobile us-
age scenarios require quick model responses.
For instance, common human-computer inter-
action validation requires completing clicks or
swipes within a specified time. Additionally,
when I need to view a scrolling advertisement,
I must click it just as the target ad page scrolls
from the background to the main interface.
Both scenarios demand that the model com-
pletes inference within the specified time.

3. Permission Issues: As introduced in the above
sections, VLM primarily relies on Appium
and ADB to control the mobile device. When
the model needs to be directly deployed on
the phone to control apps, the dependent
app, such as Siri, needs to have at least
system-level permissions. This means that
the app must have the current system’s system
signature. However, for most closed-source
mobile operating systems, granting system-
level signatures to third-party apps is almost
impossible.

7 Conclusion

We propose MobileVLM, a specialized Chinese
vision-language model for mobile UI manipulation.
It surpasses both open-source mobile VLMs and
larger closed-source general models on multiple
mobile public benchmarks. Meanwhile, we build
the first large-scale Chinese mobile dataset, Mo-
bile3M, which includes multiple pre-training and
fine-tuning tasks specific to mobile scenarios. We
hope this work will promote the development
of vision-language models in the mobile domain
and provide a reference for future Mobile-agent
research.

10239

Limitations

Our training data includes 49 commonly used apps,
but this may still not fully cover all scenarios
of daily life, due to the vastness of the Android
app market. In future work, we will continue to
expand the number of apps. Additionally, because
some apps have extra paid content, such as VIP,
our model may not have fully learned all their
functionalities. Our data may also have some
temporal limitations, as random app updates can
cause changes in page and action traces.

Ethics Statement

Our training data does indeed contain some per-
sonal information of the authors, but we commit
to anonymizing all private data before making it
public. Additionally, the personal information in
the data before anonymization has been autho-
rized by the respective individuals for use during
the training stage. In the process of generating
manually annotated data through crowdsourcing,
we employed seven employees from a crowd-
sourcing company without discrimination. During
the annotation process, they were provided with
corresponding mobile screenshots and structured
texts, and we paid them labor compensation of no
less than 120 CNY per hour.

Acknowledgements

We thank the Xiaomi SmartPhone Department
of Xiaomi Technology Corporation for their em-
ulator support for this project. This work was
supported by the NSFC (U2001212, 62032001, and
61932004).

References
Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir

Zubach, Hassan Mansoor, Vincent Etter, Victor
Cărbune, Jason Lin, Jindong Chen, and Abhanshu
Sharma. 2024. Screenai: A vision-language model
for ui and infographics understanding. arXiv preprint
arXiv:2402.04615.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, et al.
2021. Uibert: Learning generic multimodal
representations for ui understanding. arXiv preprint
arXiv:2107.13731.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023a. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023b. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha
Kumar, Kate Saenko, and Bryan A Plummer. 2021.
Mobile app tasks with iterative feedback (motif):
Addressing task feasibility in interactive visual
environments. arXiv preprint arXiv:2104.08560.

Minwoo Byeon, Beomhee Park, Haecheon Kim,
Sungjun Lee, Woonhyuk Baek, and Saehoon Kim.
2022. Coyo-700m: Image-text pair dataset. https:
//github.com/kakaobrain/coyo-dataset.

Yuhan Chen, Lumei Su, Lihua Chen, and Zhiwei Lin.
2024. Lcvo: An efficient pretraining-free framework
for visual question answering grounding. arXiv
preprint arXiv:2401.15842.

Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C
Berg, and Alexander Kirillov. 2021. Boundary iou:
Improving object-centric image segmentation evalu-
ation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
15334–15342.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. 2017. Rico: A
mobile app dataset for building data-driven design
applications. In Proceedings of the 30th annual
ACM symposium on user interface software and
technology, pages 845–854.

Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao
Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang,
Rui Yan, et al. 2024a. Mobile-bench: An evaluation
benchmark for llm-based mobile agents. arXiv
preprint arXiv:2407.00993.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024b.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36.

Tinghe Ding. 2024. Mobileagent: enhancing mobile
control via human-machine interaction and sop
integration. arXiv preprint arXiv:2401.04124.

Nicolai Dorka, Janusz Marecki, and Ammar Anwar.
2024. Training a vision language model as smart-
phone assistant. arXiv preprint arXiv:2404.08755.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

10240

https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. 2023. Cogagent: A
visual language model for gui agents. arXiv preprint
arXiv:2312.08914.

Yu-Chung Hsiao, Fedir Zubach, Maria Wang, et al.
2022. Screenqa: Large-scale question-answer
pairs over mobile app screenshots. arXiv preprint
arXiv:2209.08199.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper
Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander
Kolesnikov, et al. 2020. The open images dataset v4:
Unified image classification, object detection, and
visual relationship detection at scale. International
journal of computer vision, 128(7):1956–1981.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang
Hu, Fangyu Liu, Julian Martin Eisenschlos, Urvashi
Khandelwal, Peter Shaw, Ming-Wei Chang, and
Kristina Toutanova. 2023. Pix2struct: Screenshot
parsing as pretraining for visual language under-
standing. In International Conference on Machine
Learning, pages 18893–18912. PMLR.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and
Jason Baldridge. 2020. Mapping natural language
instructions to mobile ui action sequences. arXiv
preprint arXiv:2005.03776.

Yang Li, Gang Li, Xin Zhou, Mostafa Dehghani,
and Alexey Gritsenko. 2021. Vut: Versatile ui
transformer for multi-modal multi-task user interface
modeling. arXiv preprint arXiv:2112.05692.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. 2023a. Grounding dino: Marrying
dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499.

Yuliang Liu, Zhang Li, Hongliang Li, Wenwen Yu,
Mingxin Huang, Dezhi Peng, Mingyu Liu, Mingrui
Chen, Chunyuan Li, Lianwen Jin, et al. 2023b. On
the hidden mystery of ocr in large multimodal models.
arXiv preprint arXiv:2305.07895.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. 2023. Android in the
wild: A large-scale dataset for android device control.
arXiv preprint arXiv:2307.10088.

Stephen Robertson, Hugo Zaragoza, et al. 2009.
The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends® in Information
Retrieval, 3(4):333–389.

Christoph Schuhmann, Romain Beaumont, Richard
Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis,
Mitchell Wortsman, et al. 2022. Laion-5b: An

open large-scale dataset for training next generation
image-text models. Advances in Neural Information
Processing Systems, 35:25278–25294.

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng,
Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun.
2019. Objects365: A large-scale, high-quality
dataset for object detection. In Proceedings of the
IEEE/CVF international conference on computer
vision, pages 8430–8439.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan
Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina Toutanova.
2023. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. arXiv
preprint arXiv:2306.00245.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai,
Zichen Zhu, and Kai Yu. 2022. Meta-gui: towards
multi-modal conversational agents on mobile gui.
arXiv preprint arXiv:2205.11029.

Andreas Veit, Tomas Matera, Lukas Neumann, Jiri
Matas, and Serge Belongie. 2016. Coco-text: Dataset
and benchmark for text detection and recognition in
natural images. arXiv preprint arXiv:1601.07140.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, et al. 2023. Cogvlm:
Visual expert for pretrained language models. arXiv
preprint arXiv:2311.03079.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. 2023. Empowering
llm to use smartphone for intelligent task automation.
arXiv preprint arXiv:2308.15272.

Yifan Xu, Mengdan Zhang, Chaoyou Fu, Peixian Chen,
Xiaoshan Yang, Ke Li, and Changsheng Xu. 2024.
Multi-modal queried object detection in the wild.
Advances in Neural Information Processing Systems,
36.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, et al. 2023. Gpt-
4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint
arXiv:2311.07562.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen,
Zebiao Huang, Bin Fu, and Gang Yu. 2023.
Appagent: Multimodal agents as smartphone users.
arXiv preprint arXiv:2312.13771.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers,
Amanda Swearngin, Jeffrey Nichols, Yinfei Yang,
and Zhe Gan. 2024. Ferret-ui: Grounded mobile ui
understanding with multimodal llms. arXiv preprint
arXiv:2404.05719.

Zhuosheng Zhan and Aston Zhang. 2023. You only
look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436.

10241

https://arxiv.org/abs/2303.08774

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao,
Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.
2024. Android in the zoo: Chain-of-action-thought
for gui agents. arXiv preprint arXiv:2403.02713.

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao,
Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng
Li. 2021a. Tip-adapter: Training-free clip-adapter
for better vision-language modeling. arXiv preprint
arXiv:2111.03930.

Xiaoyi Zhang, Lilian De Greef, Amanda Swearngin,
Samuel White, Kyle Murray, Lisa Yu, Qi Shan,
Jeffrey Nichols, Jason Wu, Chris Fleizach, et al.
2021b. Screen recognition: Creating accessibility
metadata for mobile applications from pixels. In
Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, pages 1–15.

10242

A Experiment Settings

A.1 Baselines
Our baseline models are as follows:

• Specialized UI Agent. We adopted the Behavioral Cloning (BC) agent. BC is a Transformer-
based architecture that takes a task instruction, the current screen, and a stacked history of screen
observations and actions as input. The task instruction and OCR-detected texts are encoded by a
pre-trained BERT. The icons are represented by the embeddings for each of the bounding box points.
The screen history is modeled by the x, y positions of the touch and lift actions. All the embedded
representations are fused to predict the action by a decoder. There are two BC variants, BC-single
and BC-history, depending on whether the model takes as input the screen-action history.

• Fine-tuned LLMs. We follow Auto-UI, adopt Llama 2 as the baseline, and fine-tune it with LoRA.
We feed the model with the user instruction and the screen descriptions in HTML syntax (the same
as adopted for in-context learning LLMs). The model is expected to predict the action in the same
output format as in-context learning LLMs. As fine-tuning an LLM is expensive, we randomly
sample 1% training data to help the LLM adapt to our tasks. GroundingDINO was pre-trained
and fine-tuned specifically on the COCO grounding datasets (Chen et al., 2024; Shao et al., 2019;
Kuznetsova et al., 2020; Xu et al., 2024). Seq2Act (Li et al., 2020) is the state-of-the-art (SOTA)
model on the MOTIF dataset.

• In-context Learning VLMs. We used Qwen-VL Max, Qwen-VL Plus, GPT-4o, and GPT-4v as
closed-source models and provided them with few-shot examples. For specific information, refer to
the next subection. Qwen-VL-Max was pre-trained specifically for Chinese OCR tasks.

A.2 Benchmarks
ScreenQA and MoTIF are VQA and no-instruction multi-step navigation benchmarks from Rico while
Auto-UI is a dataset of multi-step tasks with instructions from AITW. Since we did not mix other general
data during the multi-stage pre-training, we chose two general benchmarks to measure capabilities loss.
ChineseOCRBench is a Chinese subset of OCRBench (Liu et al., 2023b) which consists of ESTVQA(Ch)
and ReCTS(ch). RefCOCO (Veit et al., 2016) is the most widely used object detection dataset in computer
visual domain.

A.3 Few-shot Prompt
For the Grounding Task, we use this few-shot prompt to guide the VLMs in answering the questions:

Here are three examples and a question. You need to help me find the location of the text I’m looking
for in the image and output its bounding box. Please note that the coordinates are relative to the
top-left corner of the image. Here are the three examples:

1. Question: In the image {image1}, where is “city” located?
Answer: <ref>city</ref><box>(24,391),(136,432)</box>

2. Question: In the image {image2}, where is “singsing” located?
Answer: <ref>singing</ref><box>(494,187),(546,223)</box>

3. Question: In the image {image3}, where is “puss words” located?
Answer: <ref>puss words</ref><box>(483,274),(637,329)</box>

Now I will formally ask the question. Please note that you only need to provide the bounding box
coordinates for the corresponding text.

For the Navigation Task, we use this few-shot prompt to guide the VLMs in answering the questions:

https://huggingface.co/datasets/SWHL/ChineseOCRBench

10243

https://huggingface.co/datasets/SWHL/ChineseOCRBench

Here are two examples and a question. You need to tell me which control to interact with to navigate
from the first image to the second image. There are three actions: click, input, and scroll. Here are
the two examples:

1. Question: Image one: /home/corpus/test _515/few_shot/navigation/QQmusic0_29_29/
QQmusic0_29-screen.png, Image two: /home/corpus/test_515/few_shot/navig
ation/QQmusic0_29_29/QQmusic0_29_29-screen.png, how to navigate from the first
image to the second image?
Answer: click(<ref>GOPRO</ref><box>[200 ,1132][240,1160]</box>)

2. Question: Image one: /home/corpus/test _515/few_shot/navigation/ctrip0_1_36_313_36
17_1988_3587_3018_13545/ctrip0_1_36_313_36 17_1988_3587_3018-screen.png, Im-
age two: /home/corpus/test_515/few_shot/navi gation/ctrip0_1_36_313_3617_1988_3587
_3018_13545/ctrip0_1_36_313_3617_1988 _3587_3018_13545-screen.png, how to
navigate from the first image to the second image?
Answer: click(<ref>Thursday</ref><box>[563,163][603,185]</box>)

Now I will formally ask the question. Please note that you need to strictly follow the example format,
and you can only perform one action.

For the OCR Task, we use this few-shot prompt to guide the LLMs in answering the questions:

1. Question: Image: /home/corpus/test_515/few_shot/ocr/ctrip0_1_36_313_3617_1988_8
364_4440_1566/ctrip0_1_36_313_3617_1988_836
4_4440_1566-screen.png Explain how the elements on the current page support its
content and functionality.
Answer: <ref>Calendar</ref><box>[152,144][244,185]</box>
<ref>Price Trend</ref><box>[421,144][575,185]</box>
<ref>Calendar</ref><box>[154,205][242,211]</box>
<ref>Direct Flights Only OFF</ref><box>[474,228][696,282]</box>
<ref>May 2024</ref><box>[32,885][222,939]</box>
<ref>April 2024</ref><box>[32,357][222,411]</box>
<ref>The selected date is the departure date. The price shown is for a single adult, and frequent
price changes are subject to actual payment price.</ref><box>[0,1122][720,1184]</box>

2. Question: Image: /home/corpus/test_515/few_shot/ocr/baicizhan0_1_24_113_159_165
_156_206/baicizhan0_1_24_113_159_165_
156_206-screen.png Summarize the layout and interaction methods of each part of the
page.
Answer: <ref>All Word Books</ref><box>[0,66][720,115]</box>
<ref>Popular</ref><box>[15,132][123,236]</box>
<ref>University</ref><box>[123,132][231,236]</box>
<ref>High School</ref><box>[231,132][339,236]</box>
<ref>Middle School</ref><box>[339,132][447,236]</box>
<ref>Primary School</ref><box>[447,132][555,236]</box>
<ref>Study Abroad</ref><box>[555,132][663,236]</box>
<ref>Others</ref><box>[663,132][720,236]</box>
<ref>Popular</ref><box>[38,266][114,322]</box>
<ref>College Entrance Exam Vocabulary</ref><box>[214,374][377,419]</box>
<ref>Fully includes the basic and high-scoring vocabulary for the college entrance exam,
suitable for students nationwide</ref><box>[214,434][682,514]</box>
<ref>Total 4135 Words</ref><box>[214,524][324,558]</box>

10244

Task: Please help me book a hotel in Shanghai, for tomorrow's stay.

Action: click(hotel, [68,319][112,349])

Figure 6: We collect App operation across 50
real world apps. Figure 7

<ref>Added</ref><box>[613,524][682,558]</box>
<ref>Middle School Exam Vocabulary</ref><box>[214,604][377,649]</box>
<ref>Fully includes the must-know, frequently tested, and difficult vocabulary for the middle school
exam, suitable for students nationwide</ref><box>[214,664][682,744]</box>
<ref>Total 2124 Words</ref><box>[214,754][324,788]</box>
<ref>Added</ref><box>[613,754][682,788]</box>
<ref>Complete Vocabulary for CET-4</ref><box>[214,834][439,879]</box>
<ref>Fully includes the latest vocabulary for CET-4, suitable for all students preparing for the
exam</ref><box>[214,894][682,974]</box>
<ref>Total 4440 Words</ref><box>[214,984][324,1018]</box>
<ref>Added</ref><box>[613,984][682,1018]</box>
<ref>High Frequency Words for CET-4</ref><box>[214,1064][377,1109]</box>
<ref>Selected high-frequency words from CET-4 real exams, helping you quickly conquer CET-
4</ref><box>[214,1124][682,1184]</box>

B Dataset Details

B.1 Background

Environment: Considering the efficiency and concurrency of data collection, we configured more than
50 simulators on an arm64 architecture server cluster. These emulators are all deployed on the Cuttlefish
framework and are directly accessed and supervised through the web page on Google Cloud Engine.
Specifically, each emulator has the same configuration: Android 14 operating system, ARMv8 CPU
architecture, 4.75-inch screen with 720x1280 resolution, and 320 DPI. Additionally, during initialization,
they are allocated a 6-core CPU and 24GB of memory to ensure the smoothness of random walks on more
complex applications.

B.2 MAU of selected APPs

To demonstrate that the selected apps, although few in number, cover the majority of daily use cases for
Chinese users, we can use two key metrics: download volume and Monthly Active Users (MAU). For
example, we will use data from the travel and music categories collected from the Tencent App Store.

From the table 10 and 9, we can see that although the number of apps we selected is relatively small,
they account for over 70% of the usage. Additionally, Mobile3M includes a wide range of app categories

https://source.android.google.cn/docs/devices/cuttlefish

10245

https://source.android.google.cn/docs/devices/cuttlefish

Figure 8: Unique Page Numbers per App Figure 9: All Page Numbers per App

Figure 10: Category Stats

that are sufficient to cover users’ daily life scenarios. The table below shows the number of active users in
October 2023 in millions. The bolded sections are the apps we have chosen. The Monthly Active Users
(MAU) data further supports the representativeness of these selected apps.

B.3 Graph Structure
As shown in Figure 2, datasets such as AITW and Rico have extensively collected mobile screen pages, but
they have not captured the relationships between these pages. From the perspective of page relationships,
they are all point structures. Subsequent works based on these datasets, such as Auto-UI and MoTiF, have
constructed action execution traces based on high-level language instructions. These traces are chain
structures and maintain basic page relationships. However, in practice, all pages of an app should form
a graph structure. Many pages are linked from the app’s home page and can interconnect, forming a
directed cyclic graph. We used breadth-first search combined with pruning and node merging to construct
a page graph for each app. Below, we will show the page graph structure of QQ Music in Figure 12.

B.4 Category Details
Figure 7 shows a two-layered ring chart. The inner ring represents the data proportion by category, while
the outer ring indicates the specific quantity proportion of each app. From this figure, it can be seen that,
except for a few apps, most categories have a uniform distribution. For detailed quantity statistics, refer to

10246

Table 9: Travel Applications Statistics

Application Downloads (millions) Ratio
Ctrip 38000 48.17%
Qunar 35000 44.36%
Tongcheng 2600 3.30%
Fantawild 165.5 0.21%
Fliggy 8008 10.15%
Mafengwo 2318 2.93%
Aowei 95 0.12%
Tuniu 8082 10.25%
CYTS 62.3 0.08%
Disney 282.2 0.36%
Spring Tour 78.6 0.10%

Table 10: Music Applications Statistics

Application Downloads (millions) Ratio
QQ Music 274000 35.24%
Kugou 292000 37.56%
Qishui 257.9 0.03%
Kuwo 122000 15.69%
Tomato Changting 142.4 0.02%
Huisen 43 0.01%
Bodian 211.1 0.03%
Migu 27000 3.47%
Qianqian Queting 7872.2 1.01%
Apple Music 23.9 0.01%
Free 6.6 0.01%

Table 11: Travel Applications Statistics

Application MAU (millions) Ratio
Ctrip 6964.7 51.96%
Qunar 2761 20.60%
Fliggy 1868.3 13.94%
Tongcheng 574 4.28%
Mafengwo 459 3.42%
Huazhu Club 351 2.62%
Zhixing 120 0.90%
Booking 85 0.63%
Ctrip Business 116 0.87%
State Grid Business 104 0.78%

Table 12: Music Applications Statistics

Application MAU (millions) Ratio
QQ Music 1869.7 32.09%
Kugou 1850.1 31.75%
Kuwo 929 15.94%
Qishui 327.1 5.61%
Himalaya 680.7 11.68%
Qingting 60.5 1.04%
Maoer 51.9 0.89%
Xiaoyuzhou 39 0.67%
Lizhi 19.8 0.34%

Figure 12.

C Experiment results

C.1 Stage1-CheckPoints Result

Figure 13 and Figure 14 show the test results of the model at different training steps, with the black
triangle indicating the best result among the training steps. Due to time constraints, as of writing this
paper, we have only completed the current set of training steps, but training is still ongoing. We will
continue to update the results in future versions. From the figures, it can be observed that the improvement
in the ActionSpace Generation task is slow. This is primarily due to the high difficulty of this pre-training
task, as the model needs to simultaneously recognize text, determine its location, and identify its widget
type. We still consider this task essential because, without additional HTML input, identifying the
interaction type of the current widget is a prerequisite for performing the correct action. Additionally,
upon inspection, the anomalies in the training results were found to be due to uneven distribution of the
training data. For detailed data analysis, please refer to Appendix B. The abundance of similar types of
travel data caused the model to overfit to Ctrip-type apps.

C.2 Stage2-CheckPoints Result

As shown in Figure 15, the optimal training performance was achieved before 7400 steps, with
subsequent training indicating a trend of overfitting. Therefore, we paused the training and selected the
CheckPoint3300 version for instruction fine-tuning. Additionally, from the trend of the test curves, it is
evident that the Qwen-VL initially lacks Page Navigation capabilities, but it learns quickly.

D Case Study

In this section, we discuss several examples that demonstrate how the inclusion of Mobile3M data, without
mixing in the original training corpus during the training phase, can affect the model’s performance on
general tasks.

10247

XML Source
<android.widget.FrameLayout index="2" package="com.tencent.qqmusic"
class="android.widget.FrameLayout" text="" checkable="false"
checked="false" clickable="true" enabled="true" focusable="false"
focused="false" long-clickable="false" password="false" scrollable="false"
selected="false" bounds="[468,728][670,1013]" displayed="true">
<androidx.recyclerview.widget.RecyclerView index="0"
package="com.tencent.qqmusic"
class="androidx.recyclerview.widget.RecyclerView" text="" resource-
id="com.tencent.qqmusic:id/eff" checkable="false" checked="false"
clickable="false" enabled="true" focusable="true" focused="false" long-
clickable="false" password="false" scrollable="true" selected="false"
bounds="[468,728][670,1013]" displayed="true">
<android.view.ViewGroup index="0" package="com.tencent.qqmusic"
class="android.view.ViewGroup" text="" content-desc="小猪佩奇1-4季正版
原声故事音频. . 收听量, 3.8亿" resource-id="com.tencent.qqmusic:id/tf"
checkable="false" checked="false" clickable="true" enabled="true"
focusable="true" focused="false" long-clickable="false" password="false"
scrollable="false" selected="false" bounds="[468,728][670,1013]"
displayed="true">
</android.view.ViewGroup>
<android.view.View index="0" package="com.tencent.qqmusic"
class="android.view.View" text="" resource-id="com.tencent.qqmusic:id/elk"
checkable="false" checked="false" clickable="true" enabled="true"
focusable="true" focused="false" long-clickable="true" password="false"
scrollable="false" selected="false" bounds="[468,946][670,1013]"
displayed="true" />
</android.widget.LinearLayout>
</android.widget.ViewFlipper>

Figure 11: The left part of the figure shows the page, while the right part displays the corresponding XML source
file for the image. Due to space constraints, we have excerpted a portion of it.

Category APP Unique Nodes All Nodes Action Steps All Nodes(%)

Living anjuke 57,286 190,102 1,334,428 6.13%

Living wuba 38,667 147,009 903,586 4.74%

Living smarthome 12,595 42,961 304,816 1.39%

Travel ctrip 63,449 187,079 1,217,304 6.04%

Travel Qunar 42,462 161,005 1,211,015 5.20%

Shopping vipshop 72,468 168,531 1,036,086 5.44%

Shopping xiaomiShop 21,666 99,770 755,718 3.22%

Shopping duapp 18,925 38,926 223,379 1.26%

Transport didi 12,786 84,865 637,400 2.74%

Transport cainiao 20,593 73,132 480,223 2.36%

Transport gaodeMap 13,674 59,142 319,377 1.91%

Transport BaiduMap 13,552 54,322 280,498 1.75%

Browser UCMobile 40,618 88,220 615,049 2.85%

Browser baiduBrowser 36,016 70,282 401,348 2.27%

Browser QQBrowser 18,500 44,006 218,828 1.42%

Browser tencentnews 23,408 38,241 224,804 1.23%

System taptap 24,759 105,461 624,941 3.40%

System qqpimsecure 8,997 42,691 379,926 1.38%

System ludashi 2,773 32,474 219,804 1.05%

System qqdownloader 10,517 28,502 151,824 0.92%

System calculator 4,265 15,819 97,005 0.51%

System
supercaculato

r
690 1,369 5,444 0.04%

Music ximalaya 34,995 103,395 577,032 3.34%

Music kugou 40,043 94,271 504,368 3.04%

Music QQmusic 5,545 17,539 64,211 0.57%

Category APP Unique Nodes All Nodes Action Steps All Nodes (%)

Reader seekbooks 15,902 70,266 563,882 2.27%

Reader QQReader 22,588 63,458 472,509 2.05%

Reader zhuishushenqi 14,737 63,210 392,903 2.04%

Reader pdfreader 495 1,507 5,211 0.05%

Social xiaohongshu 45,324 85,362 525,519 2.75%

Social zhihu 21,766 57,261 373,756 1.85%

Social QQ 7,051 20,600 141,969 0.66%

Education zuoyebang 19,884 70,661 507,146 2.28%

Education Xiaoyuan 10,727 56,806 393,395 1.83%

Education Youdao 8,756 35,121 206,035 1.13%

Education Baicizhan 4,196 16,383 88,500 0.53%

Office wpsOffice 11,156 73,739 486,661 2.38%

Office Netmail 5,544 32,308 260,682 1.04%

Office tonghuashun 6,410 30,722 163,297 0.99%

Office QQmail 712 1,590 4,597 0.05%

Video bili 46,080 91,891 471,940 2.97%

Video qqlive 12,497 22,601 99,677 0.73%

Video kuaishou 7,126 12,115 59,373 0.39%

Picture androidesk 28,432 59,228 418,773 1.91%

Picture mtxx 19,718 55,324 419,055 1.79%

Health
medicinehelpe

r
15,046 83,832 547,880 2.71%

Health keep 7,730 22,500 117,124 0.73%

Weather pureweather 25,252 79,283 610,695 2.56%

Weather cloudweather 1,956 3,904 19,339 0.13%

15 49 998,334 3,098,786 20,138,332 100%

Figure 12: The data distribution in Mobile3M.

D.1 Illusrtration for Training Consistency

The consistency here mainly includes two aspects: (1) Both our pre-training data and fine-tuning domain
data are sourced from the mobile domain. (2) The tasks during both the pre-training and fine-tuning stages
are specifically designed for the mobile domain. Below, we will use examples to illustrate this issue.

D.2 Grounding Task

Comparing Figure 16 and Figure 17, it can be observed that Qwen-VL performs well on the original
object detection tasks. However, after undergoing Stage 1 training, the LLM experienced a decline in
performance on these tasks. However, comparing Figures 19 and 19, it can be seen that the model trained
with Stage 1 shows improvement on the Mobile3M Grounding task compared to the original Qwen-VL.

10248

Figure 13: SeenData Metrics Over Training Checkpoints.

Figure 14: UnseenData Metrics Over Training Checkpoints.

Figure 15: Stage2 Metrics Over Training Checkpoints.

10249

model(stage1) Grounding Action Space OCR Grounding Action Space OCR coco2017 OCRBench(CN)
IoU IoU Acc Acc IoU IoU Acc ocr IoU Acc

ckpt200 39.79 9.71 36.22 37.88 23.08 0.19 23.22 31.93 - -
ckpt400 44.37 18.22 42.49 48.98 25.54 0.13 26.40 39.92 - -
ckpt600 55.89 20.58 43.34 61.74 35.23 0.24 24.91 41.92 - -
ckpt800 55.17 27.63 40.24 69.76 27.58 0.17 17.28 38.93 - -
ckpt1000 65.69 25.24 46.82 65.21 37.98 0.36 25.36 50.13 - -
ckpt-2600 72.32 28.37 49.06 70.02 38.92 0.52 24.98 45.40 22.76 19.06
ckpt-3800 75.85 36.79 53.17 70.72 39.53 0.46 25.66 48.03 18.34 24.87
ckpt-4800 79.04 40.05 54.41 71.81 39.59 1.22 26.65 49.79 19.42 26.39
ckpt-5000 77.90 38.50 54.02 71.49 40.28 1.38 25.86 49.23 18.88 27.31
ckpt-5400 75.57 40.29 53.84 72.68 35.90 1.23 24.37 47.07 17.68 28.57
ckpt-6000 77.90 40.88 54.07 71.68 40.28 1.0 24.77 46.81 18.64 29.86
ckpt-6400 80.37 41.56 53.72 72.57 38.62 1.18 25.96 45.86 17.19 30.04
ckpt-7000 78.95 42.63 54.79 72.43 38.33 1.36 26.99 47.73 17.21 30.34

Table 13: Stage1 Training Result(%).

APP Category Pre-training APP Test APP
Travel Ctrip, Amap, Didi Qunar
Weather PureWeather CloudsWeather
Shopping VIPShop, Xiaomi Mall DuApp
Reading QQ Reader PDF Reader
Email NetEase Mail QQ Mail
Dictionary Youdao Baicizhan
Books SeekBooks Zssq
Music Kugou Music QQ Music
Others Others -

Table 14: Pre-training and Test Category

model (stage2) Navigation Navigation MoTIF
IoU Acc IoU IoU Acc IoU

ckpt200 — 11.07 — 8.02 —
ckpt400 — 9.37 — 5.08 —
ckpt600 — 17.36 — 6.41 —
ckpt800 — 24.2 — 14.3 —
ckpt1000 30.1 38.7 7.93 18.36 —
ckpt1200 36 46.1 8.36 17.86 —
ckpt1700 33.66 46.45 10.10 25.12 —
ckpt1900 31.32 40.94 10.39 22.88 —
ckpt3300 38.57 48.29 9.97 27.61 —
ckpt5000 36.51 47.50 9.50 25.62 —
ckpt5200 35.85 49.34 9.80 25.87 —
ckpt6000 37.23 48.03 11.26 26.11 —
ckpt6700 36.75 48.55 9.49 22.13 —
ckpt7400 36.39 47.76 11.50 25.87 —

Table 15: Stage2 Training Result(%).

In the selected examples, Qwen had significant errors, but Stage 1 provided a corrective effect across a
broader range of examples. Considering that the data is suitable for training specialized models in the
Mobile domain, the performance loss in the general domain is acceptable.

D.3 Pre-training Task Test Case

1. Language Command Grounding Qwen-VL-Max and Qwen-VL-Plus have an input limit of 6k tokens.
After encoding, a 720×1280 image occupies approximately 2100+ tokens. This means that in most tests,
the number of few-shot examples is limited to a single image, resulting in highly unstable outputs. GPT-4o
does not have this issue, as it supports a maximum input of 32k tokens, allowing up to 10 images to be
processed simultaneously.

2. Element List Generation As shown in Figure 20, in this task, we aim for the model to recognize
all the text on the current page, as this is the foundation for interacting with these texts. It is important
to note that not all text is interactive, as some may simply be TextView elements or text within images
(where the image itself is not clickable).

3. Action Space Generation As shown in Figure 21, based on the Element List, we expect the model to
further distinguish the type of each widget. Since scroll elements are not visible themselves, we manually
generated four alternative actions for them: up, down, left, and right. Our action space does not support
diagonal scrolling, as this often implies a drag action in practical operations. Therefore, the model actually
only needs to distinguish between input fields and buttons. We also expect it to ground these buttons
accurately.

10250

Table 16: Comparison of Training Frameworks

Previous Training Framework Mobile3M Training Framework
Pre-training stage1 Grounding tasks on refCOCO. Element Grounding tasks on Mo-

bile3M.
Data Example “Where is the girl petting the dog?” “Where is the input control containing

Hangzhou in the screenshot?”
Pre-training stage2 VQA tasks on ChartQA. Action Prediction tasks on Mo-

bile3M.
Data Example “What is the result of the addition

calculation in the table?”
“What action should I take to go from
image one to image two?”

Fine-tuning Instruction navigation tasks on Auto-
UI.

Instruction navigation tasks on Mo-
bile3M.

Data Example “How should I open the alarm clock?” “How should I open the alarm clock?”

Figure 16: Qwen-VL’ result
on COCO Grounding Task.

Figure 17: Stage1 Pre-
training model’s result on
COCO Grounding Task.

Figure 18: Qwen-VL’ result
on Mobile3M Grounding
Task.

Figure 19: Stage1 Pre-
training model’s result on
Mobile3M Grounding Task.

Elements

1. 酒店 [68,319][112,349]

2. 机票 [202,319][246,349]

3. 火车票 [325,319][391,349]

4. 旅游 [470,319][514,349]

5. 攻略/景点 [577,319][674,349]

6. 民宿/客栈 [41,429][138,459]

7. 机票+酒店 [174,429][274,459]

8. 汽车/船票 [309,429][406,459]

9. 门票/活动 [443,429][540,459]

10. 美食/购物 [577,429][674,459]

11. 酒店套餐 [46,541][134,571]

12. 接送机/包车 [164,541][283,571]

13. 租车 [336,541][380,571]

14. 签证/换外币 [432,541][551,571]

15. 借钱/分期 [577,541][674,571]

16. 机酒实时特价 [52,811][160,836]

17. 新加坡特价 [36,856][146,886]

18. 抽3180免单 [209,811][303,836]

19. 普吉岛度假 [193,856][303,886]

20. 三亚 [410,810][450,838]

21. 奢华酒店榜 [380,856][490,886]

22. 综合热点 [553,811][625,836]

23. 婺源油菜花 [537,856][647,886]

24. 马累·旅游度假 [48,79][236,120]

25. 搜索 [477,67][589,133]

26. 马累 [40,161][96,199]

27. 普吉岛 [144,161][228,199]

28. 巴厘岛 [276,161][360,199]

29. 上海 [408,161][464,199]

30. 新加坡 [512,161][596,199]

31. 直播 [676,161][720,199]

32. 首页 [50,1150][94,1180]

33. NEW [224,1090][279,1118]

34. 社区 [194,1150][238,1180]

35. 10 [368,1090][404,1118]

36. 消息 [338,1150][382,1180]

37. 行程 [482,1150][526,1180]

38. 我的 [626,1150][670,1180]

Figure 20: Element List.

Action Space

1. click(酒店 [68,319][112,349])

2. click(机票 [202,319][246,349])

3. click(火车票 [325,319][391,349])

4. click(旅游 [470,319][514,349])

5. click(攻略/景点 [577,319][674,349])

6. click(民宿/客栈 [41,429][138,459])

7. click(机票+酒店 [174,429][274,459])

8. click(汽车/船票 [309,429][406,459])

9. click(门票/活动 [443,429][540,459])

10. click(美食/购物 [577,429][674,459])

11. click(酒店套餐 [46,541][134,571])

12. click(接送机/包车 [164,541][283,571])

13. click(租车 [336,541][380,571])

14. click(签证/换外币 [432,541][551,571])

15. click(借钱/分期 [577,541][674,571])

16. click(机酒实时特价 [52,811][160,836])

17. click(新加坡特价 [36,856][146,886])

18. click(抽3180免单 [209,811][303,836])

19. click(普吉岛度假 [193,856][303,886])

20. click(三亚 [410,810][450,838])

21. click(奢华酒店榜 [380,856][490,886])

22. click(综合热点 [553,811][625,836])

23. click(婺源油菜花 [537,856][647,886])

24. click(马累·旅游度假 [48,79][236,120]

25. click(搜索 [477,67][589,133])

26. click(马累 [40,161][96,199])

27. click(普吉岛 [144,161][228,199])

28. click(巴厘岛 [276,161][360,199])

29. click(上海 [408,161][464,199])

30. click(新加坡 [512,161][596,199])

31. click(直播 [676,161][720,199])

32. click(首页 [50,1150][94,1180])

33. click(NEW [224,1090][279,1118]

34. click(社区 [194,1150][238,1180])

35. click(10 [368,1090][404,1118])

36. click(消息 [338,1150][382,1180])

37. click(行程 [482,1150][526,1180])

38. click(我的 [626,1150][670,1180])

39. scroll([0,224][720,580],up)

40. scroll([0,224][720,580],down)

41. scroll([0,224][720,580],left)

42. scroll([0,224][720,580],right)

43. scroll([0,918][720,1086],up)

44. scroll([0,918][720,1086],down)

45. scroll([0,918][720,1086],left)

46. scroll([0,918][720,1086],right)

47. scroll([0,148][720,224],up)

48. scroll([0,148][720,224],down)

49. scroll([0,148][720,224],left)

50. scroll([0,148][720,224],right)

Figure 21: Samples of pre-train data for Action Space
Extraction.

D.4 Fine-tuning Task Case Study
The limitation of the MobileVLM-unified model in the Auto-UI single task: Multi-step mixed training
tasks cause the model to make more errors in determining the end of a task. Below are the different
responses from MobileVLM-unified and MobileVLM-separate when completing the same task:

10251

