
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 4065–4078
November 12-16, 2024 ©2024 Association for Computational Linguistics

LOOK-M: Look-Once Optimization in KV Cache
for Efficient Multimodal Long-Context Inference

Zhongwei Wan1†*, Ziang Wu2†, Che Liu3, Jinfa Huang2, Zhihong Zhu2,
Peng Jin2, Longyue Wang4‡, Li Yuan2‡

1The Ohio State University 2Peking University
3Imperial College London 4Alibaba Group

wan.512@osu.edu, che.liu21@imperial.ac.uk
{jinfahuang, jp21, zhihongzhu, ziangwu}@stu.pku.edu.cn,

wanglongyue.wly@alibaba-inc.com, yuanli-ece@pku.edu.cn
Code: https://github.com/SUSTechBruce/LOOK-M.

Abstract

Long-context Multimodal Large Language
Models (MLLMs) demand substantial compu-
tational resources for inference as the growth
of their multimodal Key-Value (KV) cache,
in response to increasing input lengths, chal-
lenges memory and time efficiency. Unlike
single-modality LLMs that manage only tex-
tual contexts, the KV cache of long-context
MLLMs includes representations from multi-
ple images with temporal and spatial relation-
ships and related textual contexts. The pre-
dominance of image tokens means traditional
optimizations for LLMs’ KV caches are un-
suitable for multimodal long-context settings,
and no prior works have addressed this chal-
lenge. In this work, we introduce LOOK-M,
a pioneering, fine-tuning-free approach that ef-
ficiently reduces the multimodal KV cache size
while maintaining performance comparable to
a full cache. We observe that during prompt
prefilling phase, the model prioritizes more tex-
tual attention over image features, and based
on the multimodal interaction observation, a
new proposed text-prior method is explored
to compress the KV cache. Furthermore, to
mitigate the degradation of image contextual
information, we propose several compensatory
strategies using KV pairs merging. LOOK-M
demonstrates that with a significant reduction
in KV Cache memory usage, such as reducing
it by 80% in some cases, it not only achieves
up to 1.5x faster decoding but also maintains
or even enhances performance across a variety
of long context multimodal tasks.

1 Introduction

Large language models (LLMs) (Achiam et al.,
2023; Meta, 2024; Jiang et al., 2023; Wan et al.,
2023b) are progressively evolving into multimodal
large language models (MLLMs) (Yang et al.,

*Work was done at Tencent AI Lab.
†Equal contribution.
‡Corresponding authors.

Instruction: Your objective is the main goal. Evaluate your current environment

and your past decisions, and decide your immediate course of action.

Question: Your Main Goal: Put a warm slice of bread on the counter. Step

Details: <image1>Step#1: Turn around and walk to the counter top above the

dishwasher, just past the refrigerator. <image2>Step#2: Pick up the loaf of bread

to the right of the toaster. <image3>Step#3: Move over to your right so that you

are directly in front of the knife's on the counter. <image4>Step#4: Place the

bread on the counter to the left of the knife’s. <image5>Current Step:

GroundTruth：Pick up the knife closest to the fork on the right, located on the

counter.

Figure 1: A multimodal long-context sample contains mul-
tiple images from MileBench (Song et al., 2024) showing
comprehensive spatial relationships.

2023; Yin et al., 2023), making significant ad-
vances in the processing of extensive multimodal
contexts such as GPT-4V. Despite the impressive
capabilities of MLLMs, they still face significant
challenges when dealing with long multimodal con-
text inputs, such as temporal multi-image tasks
and semantic multi-image tasks (Song et al., 2024),
or multi-turn multimodal dialogues (Team et al.,
2023) in real-world applications. Specifically, mul-
timodal KV caches hinder the efficient processing
of long multimodal inputs. During inference, the
increased lengths of inputs linearly slow down the
decoding process due to the attention computations
across past multimodal KVs.

Furthermore, as depicted in Figure 1, in con-
trast to text-only LLMs’ KV cache eviction meth-
ods (Zhang et al., 2023; Wan et al., 2023b), long
multimodal inputs typically include multiple in-
terrelated images, along with definitions or back-
ground descriptions relevant to the task. Directly
applying traditional text-centric KV cache evic-
tion strategies (Zhang et al., 2023; Ge et al., 2023;
Ren and Zhu, 2024a; Li et al., 2024) to MLLMs
overlooks the potential interactions between multi-
modal representations (Team et al., 2023). Specif-
ically, Figure 2 shows the attention visualization
for multimodal long-context, the model exhibits

4065

https://github.com/SUSTechBruce/LOOK-M

𝐗𝑇

𝐗𝐼
𝐗𝑇

𝐗𝐼

attention weight(3 images) attention weight(5 images)

Figure 2: Visualization of attention in multimodal prompt
encoding phase, where XT represents a text sentence and XI

denotes a subsequent image, showcasing the interleaved input
of text and images in multimodal long-context scenarios.

greater attention to the textual components during
the multimodal prompt encoding process. This
observation demonstrates that the model tends to
understand global visual content through textual
knowledge, highlighting the necessity of preserv-
ing textual features and selectively pruning redun-
dant image tokens in the multimodal KV cache to
maintain the integrity of the multimodal context.

In this paper, we introduce LOOK-M, a pio-
neering and efficient framework that marks the first
effort to compress KV caches specifically for mul-
timodal long-context scenarios. The term Look-
Once in our method implies that pruning occurs
only once during multimodal long prompt encod-
ing, and the model effectively sees the full image
just once. LOOK-M utilizes a text-prior technique
that prioritizes the retention of textual KV pairs dur-
ing the prompt encoding phase, given the insight
from Figure 2. For visual representation, inspired
by attention-based eviction strategies (Zhang et al.,
2024c), our method prunes redundant visual KV
pairs that show sparse patterns in attention visu-
alizations, utilizing the metric of attention scores.
Furthermore, to preserve global contextual informa-
tion in the compressed cache, we develop several
merging strategies to merge the evicted KV tokens
into conserved ones, addressing potential halluci-
nations and contextual inconsistencies (Yang et al.,
2024a) during the decoding process.

Remarkably, LOOK-M does not require any
fine-tuning and can be applied in a plug-and-
play manner with a look-once KV cache com-
pression strategy. We evaluate our LOOK-M
with several strategies over four recent MLLM
backbones LLaVA-v1.5-7B/13B (Liu et al., 2023),
MobileVLM-v2 (Chu et al., 2024a) and InternVL-
v1.5 (Chen et al., 2023) across several multimodal
long-context tasks from MileBench (Song et al.,

2024): temporal multi-image tasks, semantic multi-
image tasks, needle in a haystack task, and image
retrieval tasks, respectively. Compared to baselines,
LOOK-M achieves minimal performance drop with
a fixed KV cache budget and improves the model
inference decoding latency by 1.3x to 1.5x and re-
duces KV Cache memory footprint by 80% to 95%
while still maintaining performance on long con-
text multimodal tasks, and even showing improved
performance across various tasks. Our analysis
validates that combining text-prior and proposed
merging strategies contributes to the multimodal
KV cache compression effectiveness of LOOK-M.

2 Related Work

Vision Token Compression For MLLMs.
Classical works in this category, including
MobileVLM (Chu et al., 2024b), LLaVA-
Prumerge (Shang et al., 2024), MADTP (Cao et al.,
2024), and FastV (Chen et al., 2024), focus on
reducing the number of image tokens, which con-
stitute the majority of total tokens. These meth-
ods enhance inference speed by eliminating redun-
dant image tokens. Specifically, MobileVLM (Chu
et al., 2024b) employs a lightweight projector ar-
chitecture featuring an average pooling layer to
significantly compress the number of visual to-
kens. LLaVA-Prumerge (Shang et al., 2024) and
MADTP (Cao et al., 2024) introduce adaptive ap-
proaches to visual token reduction, effectively de-
creasing their count while maintaining model per-
formance. FastV (Chen et al., 2024) introduces
a versatile plug-and-play method that optimizes
computational efficiency through adaptive atten-
tion patterns in early layers and visual token prun-
ing in later stages, achieving up to a 45% reduc-
tion in computational costs while preserving perfor-
mance. Unlike these methods, which focus solely
on optimizing ViT output tokens and require fine-
tuning, LOOK-M specifically targets multimodal
token compression within the KV cache without
necessitating additional fine-tuning.

KV Cache Compression For LLMs. KV cache
compression primarily encompasses three strate-
gies: Eviction, Quantization, and Trainable Com-
pression. In eviction, techniques like Mistral-
7B (Jiang et al., 2023) and StreamingLLM (Xiao
et al., 2023) only preserve key tokens for effi-
cient sequence generation, while approaches like
H2O(Zhang et al., 2024c) and SnapKV (Li et al.,

4066

Step#1:
Turn left

and….

Current
Step:

VIT

Proj

LLM Layer Prefill Merge LLM Layer’s KV Cache

··· ···

Text prior token

··· ···

Visual token

Visual Evicted token

Recent kept tokens

Pick up the mug that's in front of you at the coffee maker.

Visual important token

VIT

Proj

Generation

Merge

Figure 3: Pipeline of LOOK-M’s KV cache optimization strategy. ‘Prefill’ denotes prompt encoding.

2024) focus on maintaining a small, influential set
of tokens to enhance performance, though risk
losing context with evicted KVs. Quantization
strategies such as KIVI (Liu et al., 2024e) and
Gear (Kang et al., 2024) reduce cache memory
through advanced quantization techniques, balanc-
ing memory efficiency with precision. In train-
able Compression, methods like LESS (Dong et al.,
2024) and DMC (Nawrot et al., 2024) adapt LLMs
to compress KV caches by training on selected
datasets, although they face challenges in gener-
alization. However, our LOOK-M utilizes a plug-
and-play approach that does not require additional
training, ensuring wider applicability without the
necessity for tuning specific to multimodal datasets.
Therefore, different from these text-centric KV
cache compression methods, our LOOK-M specif-
ically targets long multimodal text scenarios and
seeks to leverage attention map interactions be-
tween text and images to guide KV cache pruning.

Token Merging. Unlike token pruning (Tang
et al., 2023; Kong et al., 2021; Song et al., 2022;
Yun et al., 2024) in encoder-based backbones like
ViT (Dosovitskiy et al., 2021) or Bert (Devlin et al.,
2019), which discards less significant tokens, token
merging (Bolya et al., 2022) consolidates tokens
into fewer, more meaningful units, preserving in-
formation integrity. Consequently, token merging
has become preferred over token pruning to re-
duce token count. Existing methods like TPS (Wei
et al., 2023), MG-ViT (Zhang et al., 2024b), and
PuMer (Cao et al., 2023) have explored token merg-
ing and pruning techniques, primarily in computer
vision tasks. In contrast, LOOK-M is a pioneering
effort to adapt token merging within the multimodal
KV cache in long-context scenarios, enhancing ef-

ficiency for auto-regressive tasks in MLLMs.

3 Methodology

In Section 3.1, we first review the basic imple-
mentation of generative inference utilizing a multi-
modal KV cache. Subsequently, as shown in Fig-
ure 3, we detail the principal components of the
LOOK-M model, which includes text-prior KV
pairs eviction strategy to facilitate precise pruning,
discussed in Section 3.2, and various strategies for
merging KV pairs, such as averaged, pivotal, and
weighted merging in Section 3.3.

3.1 Preliminary: Generative Inference with
Multimodal KV Cache

A typical generative inference process for MLLMs
involves encoding multimodal prompts and gener-
ating tokens.
Multimodal Prompt Encoding. During the
prompt encoding phase, a sequence of prompts
is used to construct a KV cache for each trans-
former layer in MLLMs. Consider the input
prompt tensor X ∈ RLprompt×D, represented as
X = {XT

1 ,X
I
1, . . . ,X

T
N ,XI

M}, where XT and
XI denote textual and visual embeddings, and M
and N represent the number of image and text rep-
resentations, respectively. Here, Lprompt indicates
the prompt length and D is the model’s hidden di-
mension. In most long multimodal context settings,
XT and XI are interleaved as inputs. For sim-
plicity, the indices for heads and layers have been
omitted. The key and value tensors are derived as
follows:

K = XWK ,V = XWV , (1)

With WK ,WV ∈ RD×D representing the weights

4067

for the key and value layers, respectively, K and V
are computed and subsequently stored in the KV
cache to aid in token generation.
Token Generation. During the Token Generation
phase, the KV cache is employed and updated to
sequentially generate tokens. At each time step
t, keys and values are computed only for the new
token xi, while those for x<i are retrieved from the
cache. Concatenation is denoted as [·]. Following
this, the cache is updated, and the output for the
newly generated token is given as:

K = [K,xtWK],V = [V,xtWV], (2)

xt,out = Softmax
(
qtK

⊤/
√
D
)
V,qt = xtWQ,

(3)
where WQ ∈ RD×D is the weight matrix of the
query layer, the linear growth of the multimodal
KV cache with each new token notably heightens
memory consumption and latency, especially with
longer prompts or during token generation, high-
lighting the need for cache compression.

3.2 Text-Prior KV Pairs Eviction

The key idea of KV pair eviction during the prompt
prefilling phase is to dynamically update the KV
cache using cumulative attention scores. This pro-
cess strategically excludes the least essential KV
pairs to maintain a compact cache size, thereby
ensuring that only the most valuable tokens are pre-
served for efficient inference. However, contrary
to the traditional accumulation-based approach
(Zhang et al., 2024c) that will indiscriminately
treat all tokens, our method prioritizes the reten-
tion of text-based KV pairs and performs eviction
of image-based KV pairs, guided by the patterns
observed in the attention visualizations shown in
Figure 2, and then integrating them within a recent
window with size M . Let T denotes the indices
of textual tokens, Tp denotes text-prior value, the
attention score As is formulated as follows:

As =

Lprompt∑

i=0

Ap[i, :], Ap = Attn
(
QpK

⊤
p

)
, (4)

As[T] = As[T] + Tp, Tp = Max(As), (5)

where Ap denotes the attention weight of prompt
encoding, Qp,Kp ∈ RLprompt×D. We set Tp as the
maximum value of As to prioritize text tokens for
preservation. After calculating the current cumula-
tive attention scores, we preserve the most recent

window of size M . Subsequently, from the remain-
ing KV cache, the top N important tokens with the
highest scores are selected to finalize the eviction.
The process is defined as follows:

Kc = [K[I, :],K[−M :, :]], (6)

Vc = [V[I, :],V[−M :, :]], (7)

and I = TopN (As[: −M], N) , (8)

where TopN (·, N) selects the indices of top N im-
portant tokens in AttnScore, I denotes the indices
of the Top N tokens. (Kc,Vc) is the conserved
KV cache after eviction. Therefore, the compressed
multimodal KV cache size is S = N +M .

3.3 KV Pairs Merging Strategies
To mitigate the loss of context information follow-
ing the eviction of multimodal KV pairs, we ex-
plore various merging strategies during the prompt
encoding phase. Given the eviction set Ke =
K−Kc, we deploy a many-to-one nearest-neighbor
matching algorithm (Dang et al., 2021) to derive
the similarity matrix S between Ke and Kc. Con-
sidering the alignment properties of KV-pairs in
MLLMs, we only compute the similarity matrix
on the key’s tokens and share the similarity matrix
and weighted merging weights with the value’s to-
kens. More specifically, Ie and Ic represent the
indices, and Le and Lc signify the token lengths
in Ke and Kc, respectively. Within the matrix S,
each element si,j captures the interaction required
for matching tokens, where i ∈ Ie and j ∈ Ic.
The process starts by identifying the nearest to-
ken kclosest within Kc for each token ki from the
evicted set. The respective formulas are as follows:

kclosest
Kc→Ke

= Argmax
j∈Ic

(si,j) , si,j =
k⊤
i kj

∥ki∥ ∥kj∥
,

(9)
We utilize cosine similarity where | · | denotes the
norm, and matrix S ∈ RLe×Lc

.. Subsequently, we
introduce three novel merging strategies for inte-
grating evicted and conserved KV tokens, namely
averaged merging, pivotal merging, and weighted
merging.

Averaged Merging We begin by exploring a
straightforward averaged merging strategy. After
computing the similarity matrix S and obtaining
the maximum value from each row to identify the
kclosest
Kc→Ke

, we observe that each kc may have a cor-
responding maximum similarity set ksim from Ke,

4068

Evicted TokenConserved Token

(a) Similarity Matrix

✔

✔

✔

✔

✔

✔

Max

1 2 3
4

5

6

7

8

9

Ke 4 5 6 7 8 9Kc 1 2 3

1

2

4

5

6

9

3 7 8

Mean+ +

(b) Averaged Merging

1

4 1

+
6 1

++ + Mean

2

5 2

+
9 2

++ +

...

(c) Pivotal Merging (d) Weighted Merging

1 4 6 Mean+ +×
✔ ✔

×

2 5 9+ +× ×

3 7 8+ +× ×

✔ ✔

✔ ✔

✔ Max Similarity Value

+

+

+

+

Figure 4: A simple similarity matrix example and Four merging strategies of LOOK-M: Averaged Merging, Pivotal Merging,
and Weighted Merging.

since the relationship between the evicted tokens
Ke and the conserved tokens Kc is one-to-many.
As demonstrated in Figure 4 (b), given the results
from the similarity matrix, the maximum similarity
set for token 1 includes tokens 4 and 6. We em-
ploy the most direct method of averaging for the
merging:

kc =
1

Lsim + 1
(kc +

Lsim∑

i=0

ksim[i]), ksim ∈ Ke,

(10)
where Lsim denotes the number of Ke tokens.

Pivotal Merging Unlike averaged merging, the
pivotal merging approach emphasizes the weight
proportion for the conserved tokens Kc during the
merging process. As illustrated in Figure 4 (c), we
initially perform an average fusion between each ke

and its corresponding kclosest
Kc→Ke

. The merged tokens
are designated as ’pivotal tokens’. Subsequently,
we average merge each kc with its corresponding
pivotal token, as formulated below:

kc =
1

Lsim + 1
{kc +

1

2

Lsim∑

i=0

(ksim[i] + kclosest)},

(11)

Weighted Merging Contrast to the static weight
allocation strategies used in averaged and pivotal
merging, we propose a similarity-based weighted
merging method that dynamically allocates weights
based on the information in the similarity matrix.
Specifically, for each kc and its corresponding max-
imum similarity set ksim, weights for the elements
in ksim are dynamically assigned according to the
entries in the similarity matrix S, as illustrated
in Figure 4 (d). Consequently, the formula for
weighted merging is as follows:

kc =
1

Lsim + 1
{kc+

Lsim∑

i=0

(ksim[i]·S[x][y])}, (12)

where x, y represent specific coordinates of each
element in ksim relative to corresponding ksim.

4 Experiments Setting

4.1 Datasets and Metrics
MileBench is recognized as the first comprehen-
sive benchmark developed to evaluate Multimodal
Long-Length Models (MLLMs) across dimensions
of multi-image and extended context, designed to
cover a broad spectrum of general scenarios. In
this section, we scrutinize the effectiveness of our
diverse KV Cache compression strategies across all
subtasks of MileBench. The benchmark organizes
these into four primary task classifications, denoted
as T, S, N, and I, each encompassing a series of
specialized sub-tasks:
T: Temporal Multi-image Tasks, which include
four distinct tasks from T-1 to T-4.
S: Semantic Multi-image Tasks, comprising five
sub-tasks, spanning from S-1 to S-5.
N: Needle in a Haystack Tasks, featuring two spe-
cific sub-tasks, N-1 and N-2.
I: Image Retrieval Tasks, which consists of a single,
focused sub-task.

The sub-tasks within MileBench are further di-
vided across various datasets, and we employ eval-
uation metrics such as Accuracy and ROUGE-L to
assess performance. The scores for each sub-task
are calculated from the average values of these met-
rics across the datasets included in that sub-task.
For specific details regarding the datasets and their
associated metrics, please refer to the Appendix A,
Table 5.

4.2 Baselines
To compare the benefits of LOOK-M, we employ
the latest KV cache eviction methods as baselines:
H2O (Zhang et al., 2024c), which relies on cumu-
lative attention scores; SnapKV (Li et al., 2024),
using a pooling strategy; and RoCo (Ren and Zhu,

4069

Table 1: Performance metrics of various KV Cache Strategy on LLaVA-v1.5-7B/13B on MileBench’s tasks with
recent ratio α1 = 0.1 and important ratio α2 = 0.1. A-Merge, W-Merge, P-Merge denote averaged merging,
weighted merging and pivotal merging, respectively. TR represents text-prior KV pairs eviction.

Method T-1 T-2 T-3 T-4 S-1 S-2 S-3 S-4 S-5 NH IR

LLaVA-v1.5-7B

Full Cache 40.0 46.0 32.2 37.8 56.9 33.3 12.6 23.4 60.5 4.7 4.3

H2O (Zhang et al., 2023) 40.2 46.0 31.8 38.5 55.0 33.8 12.6 22.8 60.0 1.4 3.7
SnapKV (Li et al., 2024) 40.0 46.0 31.5 40.6 54.6 33.5 13.0 21.9 60.0 1.4 3.7
RoCo (Ren and Zhu, 2024a) 40.2 46.0 31.8 38.5 55.0 33.8 12.6 22.8 60.0 1.4 3.7

LOOK-M (A-Merge) 40.3 46.1 32.2 39.1 54.9 34.0 12.9 21.4 60.5 1.6 3.7
LOOK-M (W-Merge) 40.3 46.1 31.8 39.1 55.0 34.0 13.2 22.4 60.5 1.4 3.7
LOOK-M (P-Merge) 40.2 46.1 32.5 39.8 55.1 33.8 12.9 22.5 60.5 1.7 3.5
LOOK-M (TP + A-Merge) 40.2 46.1 31.8 39.2 56.1 33.7 12.9 22.6 60.0 4.9 3.7
LOOK-M (TP + W-Merge) 40.2 46.1 32.0 39.0 56.5 33.8 12.9 23.1 60.0 5.1 3.5
LOOK-M (TP + P-Merge) 40.3 46.1 32.5 39.9 57.0 34.0 12.8 23.9 60.5 5.3 3.8

LLaVA-v1.5-13B

Full Cache 39.8 46.2 30.8 48.1 64.8 48.5 13.6 28.4 60.0 12.0 1.0

H2O (Zhang et al., 2023) 39.5 45.9 30.4 47.9 64.1 48.7 13.9 25.1 59.7 3.6 0.0
SnapKV (Li et al., 2024) 39.6 46.0 30.6 47.8 64.2 48.2 13.4 22.9 59.8 4.2 1.0
RoCo (Ren and Zhu, 2024a) 39.7 45.9 30.5 48.0 64.3 48.3 13.8 24.9 59.7 3.5 0.0

LOOK-M (A-Merge) 39.7 46.1 30.7 48.0 64.6 48.0 13.3 22.1 59.8 4.6 1.0
LOOK-M (W-Merge) 39.6 46.1 30.6 47.9 64.5 48.4 13.4 23.4 59.9 4.7 1.0
LOOK-M (P-Merge) 39.7 46.0 30.6 48.0 64.6 48.1 13.3 25.7 59.8 5.1 1.0
LOOK-M (TP + A-Merge) 39.7 46.2 30.7 48.0 65.4 48.3 13.7 26.6 60.0 11.2 1.0
LOOK-M (TP + W-Merge) 39.8 46.1 30.7 48.1 64.8 48.2 13.9 26.9 60.0 11.4 1.0
LOOK-M (TP + P-Merge) 39.8 46.2 30.8 48.1 65.2 48.5 14.1 26.6 60.0 11.7 1.0

2024b), based on mean attention scores. Notably,
these methods are exclusively text-based KV cache
compression methods. We utilize their default con-
figurations and adapt them for fair comparison in
multimodal long-context scenarios.

4.3 Implementation Details

We conducted experiments on NVIDIA A100
(80GB) and RTX 3090 (24GB) GPUs, employing
nine variants of our method to compress the KV
Cache of LLaVA-v1.5-7B/13B on ten tasks from
MileBench. For all methods, the number of recent
tokens size M is α1 × input_length. In addition
to the recent tokens, we also retain a number of im-
portant token sizes N equal to α2× input_length,
ensuring that at the start of the decoding phase,
the memory overhead is (α1 + α2) proportion that
of the original decoding phase, where α1 and α2

are recent and important ratios. Additionally, our
testing process aligns with MileBench’s, using the
default batch size settings for each dataset.

5 Experiment Results

In this section, we present experimental results
demonstrating the effectiveness of our LOOK-M
strategy for KV cache optimization on the LLaVA-

v1.5-7B and 13B (Liu et al., 2023), InternVL-
v1.5-7B (Chen et al., 2023), and MobileVLM_V2-
3B (Chu et al., 2024b) models. These models were
tested across various subtasks of the MileBench
dataset (Song et al., 2024), highlighting the advan-
tages of our approach in multimodal long-context
scenarios. We also examine the impact of KV
cache compression on different model architec-
tures, establishing its efficacy across diverse struc-
tures. Additionally, we explore how varying KV
cache budgets and compression ratios (α1 and α2)
affect model performance. Finally, we assess the
computational efficiency of our method by mea-
suring the time and computational load during the
decoding phase of compressed models.

5.1 Main Results on MileBench

We evaluate the LOOK-M model on the LLaVA-
v1.5 7B and 13B using MileBench, as shown in
Table 1. To ensure a fair comparison, we set the
recent token ratio α1 and the important token ra-
tio α2 both at 10%. The results demonstrate that
LOOK-M not only manages multimodal KV cache
compression effectively with minimal accuracy im-
pact but also surpasses Full Cache when integrating
text-prior and merging strategies, significantly en-

4070

hancing reasoning accuracy by pruning irrelevant
tokens from visual representations. Notably, TP +
P-Merge outperforms text-based KV cache eviction
baselines such as H2O, SnapKV, and RoCo, indicat-
ing that considering attention disparities between
text and vision leads to better retention of key infor-
mation. Moreover, this approach achieves superior
outcomes compared to other merging strategies,
highlighting the benefits of allocating more weight
to conserved tokens in preserving critical informa-
tion under multimodal KV cache compression.

Since the TP + P-Merge strategy achieves the
best performance, we use it as the default merging
strategy in the following experiments.

Table 2: Performance on InternVL-v1.5-7B.

Method T-2 S-4 NH IR

Full Cache 19.2 19.1 11.1 0.0

H2O 20.0 19.6 3.9 0.5
SnapKV 19.9 19.4 4.1 0.2
RoCo 20.0 19.6 3.9 0.5

LOOK-M 22.0 22.9 10.9 0.5

Table 3: Performance on MobileVLM_V2-3B.

Method T-2 S-4 NH IR

Full Cache 46.2 33.0 10.6 4.7

H2O 46.4 28.2 4.2 4.5
SnapKV 46.4 27.2 4.4 4.7
RoCo 46.6 28.9 4.2 4.7

LOOK-M 47.0 32.8 10.3 4.8

5.2 Performance on Different Architectures
To validate the effectiveness of the LOOK-M
method across various architectures, we tested its
performance not only on the LLaVA architecture
but also on mobileVLM and InternVL. We selected
several representative multimodal long-context sub-
tasks from MileBench, including T2 (Temporal
Multi-image), S-4 (Semantic Multi-image), NH
(Needle in a Haystack), and I (Image Retrieval).
From the results presented in Tables 2 and 3,
LOOK-M consistently outperformed traditional
eviction-based methods, including H2O, SnapKV,
and RoCo. Notably, in both architectures, LOOK-
M demonstrated significant advantages over other
baselines in Needle in a Haystack, the multimodal
long-context retrieval task. This confirms that
LOOK-M’s pivotal merging strategy effectively
preserves key multimodal representations while

compressing the KV cache for accurate information
retrieval, with minimal information loss compared
to Full Cache.

5.3 Influence of Various Cache Budgets

In this section, we assess the efficiency of the
LOOK-M strategy under varying KV cache bud-
gets by conducting standardized tests on the
LLaVA-v1.5-7B model and four subtasks: CLEVR-
Change, Spot-the-Diff, TextNiH, and MMCoQA.
As depicted in Figure 5, LOOK-M approaches
Full Cache performance even with an extreme KV
cache compression of 5%, especially using the text-
prior pivotal merging strategy. Particularly in the
TextNiH and MMCoQA tasks, it consistently out-
performs the baselines regardless of compression
rate. These results demonstrate that, despite the
redundancy of tokens within the multimodal long-
context KV cache, traditional algorithms’ maximal
compression often results in considerable loss of
information. Conversely, LOOK-M effectively pre-
serves critical information with a minimal KV bud-
get, with its merging strategy significantly reducing
context loss.

5.4 Hyperparameter Analysis on α1 and α2

To evaluate the impact of varying the recent token
ratio (α1) and important token ratio (α2) on model
performance, we conducted tests across four dif-
ferent datasets using the LLaVA-v1.5-7B model.
As shown in Figure 6, LOOK-M consistently out-
performed other baselines under different settings
of α1 : α2 ratios, particularly showing signifi-
cant advantages in the StateChange and MMCoQA
datasets at every ratio. Furthermore, we observed
that for LOOK-M, a higher important token ratio
α2 correlates with improved performance, suggest-
ing that when less context information is discarded,
the merging strategy is more effective.

5.5 Efficiency Analysis

In this section, we analyze the efficiency of our pro-
posed LOOK-M method, as illustrated in Table 4.
We compare the decoding speed and memory usage
of model inference with and without our LOOK-M
method. To ensure the robustness of our results,
the tests for decoding latency and GPU memory
usage were specifically conducted on 20 randomly
selected data entries from the MileBench dataset.
Additionally, the speed tests were performed using
RTX 3090 × 1.

4071

Figure 5: Influence of Various Cache Budgets on Performance.

Figure 6: Impact of Different Compression Ratio Proportion.

Table 4: Model Speed and KV Cache GPU Memory
Usage.

Method Budget Decoding Latency GPU Memory

Full Cache 100% 28.55 ms/token 1.52 GiB
LOOK-M 50% 24.76 ms/token 0.77GiB
LOOK-M 35% 22.89 ms/token 0.48GiB
LOOK-M 20% 20.98 ms/token 0.32 GiB
LOOK-M 5% 18.22 ms/token 0.13 GiB

As we can observe from Table 4, the decoding
latency of our compressed model is significantly
lower than that of the model retaining the full cache,
with the advantage becoming more pronounced in
the generation of long texts. This highlights the ef-
ficiency of our method in tasks involving long text
generation. Additionally, we analyzed the speed
and GPU memory usage of the KV Cache under
two budget scenarios: 20% and 5%, based on the
mean values from the inference process of 20 ran-
domly sampled data points (as illustrated in Table
4, Our findings indicate that the average GPU mem-
ory consumption is nearly proportional to the cache
budget. At a 20% KV Cache budget, memory us-
age during the decode stage is reduced by approx-
imately 80% compared to a Full Cache scenario.
Furthermore, an increase in the compression ratio
significantly reduces decoding latency, thus enhanc-

ing the decode stage’s efficiency and demonstrating
the effectiveness of our compression method.

6 Conclusion

In this work, we propose Look-Once Optimization
in KV for Efficient Multimodal long-context in-
ference (LOOK-M), the first framework is specifi-
cally designed to manage multimodal KV caches in
multimodal large language models (MLLMs) effi-
ciently. LOOK-M integrates a novel KV cache evic-
tion strategy with innovative merging techniques,
such as averaged, weighted, and pivotal merging,
to maintain essential contextual information with-
out the need for fine-tuning. Our findings reveal
that the framework not only preserves the quality
of generation in multimodal long-text scenarios but
also ensures robust performance under significant
KV cache compression. Observations indicate that
LOOK-M prioritizes text over visual inputs during
prompt prefilling, leading to the development of a
text-prior method that further optimizes KV cache
compression. Looking ahead, we plan to expand
LOOK-M’s capabilities by incorporating additional
compression techniques like quantization, distilla-
tion, and efficient attention mechanisms to enhance
both efficiency and efficacy.

4072

7 Limitation

The constraints of our work lie in the fact that we
have used plain multimodal large language models
(MLLMs) without incorporating advanced com-
pression techniques such as quantization, distilla-
tion, and efficient attention mechanisms (Lin et al.,
2024b,a; Liu et al., 2024d; Zhang et al., 2024a). In
our future research, we plan to explore methods to
achieve the most extreme level of KV cache com-
pression. In addition, to further demonstrate the
generalization performance of our method, we will
conduct evaluations on more diverse long-context
datasets (Wang et al., 2024; Yang et al., 2024b).
Additionally, by optimizing the multimodal KV
cache, our technique allows MLLMs to run on
resource-limited devices like smartphones and lap-
tops while maintaining inference accuracy. This
capability supports diverse applications, including
healthcare (Wan et al., 2024b,a, 2022; Liu et al.,
2024a,c,b; Zheng et al., 2024), math (Cobbe et al.,
2021; Xiong et al., 2022), optimization (Liang et al.,
2020a,b), and recommendation (Wan et al., 2023a),
and aids in developing MLLMs for various tech-
nological environments. However, improper appli-
cation of this compression method, particularly at
high compression ratios, may reduce performance
and affect functionality.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman.
2022. Token merging: Your vit but faster. arXiv
preprint arXiv:2210.09461.

Jianjian Cao, Peng Ye, Shengze Li, Chong Yu, Yansong
Tang, Jiwen Lu, and Tao Chen. 2024. Madtp: Mul-
timodal alignment-guided dynamic token pruning
for accelerating vision-language transformer. ArXiv,
abs/2403.02991.

Qingqing Cao, Bhargavi Paranjape, and Hannaneh Ha-
jishirzi. 2023. Pumer: Pruning and merging to-
kens for efficient vision language models. ArXiv,
abs/2305.17530.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Jun-
yang Lin, Chang Zhou, and Baobao Chang. 2024.
An image is worth 1/2 tokens after layer 2: Plug-and-
play inference acceleration for large vision-language
models. ArXiv, abs/2403.06764.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Zhong Muyan, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu,
Yu Qiao, and Jifeng Dai. 2023. Internvl: Scaling up
vision foundation models and aligning for generic
visual-linguistic tasks. ArXiv, abs/2312.14238.

Xiangxiang Chu, Limeng Qiao, Xinyu Zhang, Shuang
Xu, Fei Wei, Yang Yang, Xiaofei Sun, Yiming Hu,
Xinyang Lin, Bo Zhang, and Chunhua Shen. 2024a.
Mobilevlm v2: Faster and stronger baseline for vision
language model. ArXiv, abs/2402.03766.

Xiangxiang Chu, Limeng Qiao, Xinyu Zhang, Shuang
Xu, Fei Wei, Yang Yang, Xiaofei Sun, Yiming Hu,
Xinyang Lin, Bo Zhang, et al. 2024b. Mobilevlm
v2: Faster and stronger baseline for vision language
model. arXiv preprint arXiv:2402.03766.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Zhiyuan Dang, Cheng Deng, Xu Yang, Kun Wei, and
Heng Huang. 2021. Nearest neighbor matching for
deep clustering. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 13693–13702.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang
Wang, Yuejie Chi, and Beidi Chen. 2024. Get
more with less: Synthesizing recurrence with kv
cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In ICLR. OpenReview.net.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you
what to discard: Adaptive kv cache compression for
llms. ArXiv, abs/2310.01801.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa
Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao.
2024. Gear: An efficient kv cache compression

4073

https://api.semanticscholar.org/CorpusID:268248344
https://api.semanticscholar.org/CorpusID:268248344
https://api.semanticscholar.org/CorpusID:268248344
https://api.semanticscholar.org/CorpusID:258959382
https://api.semanticscholar.org/CorpusID:258959382
https://api.semanticscholar.org/CorpusID:268358224
https://api.semanticscholar.org/CorpusID:268358224
https://api.semanticscholar.org/CorpusID:268358224
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:267500104
https://api.semanticscholar.org/CorpusID:267500104
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:263609075
https://api.semanticscholar.org/CorpusID:263609075
https://api.semanticscholar.org/CorpusID:263609075

recipefor near-lossless generative inference of llm.
arXiv preprint arXiv:2403.05527.

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng,
Wei Niu, Mengshu Sun, Bin Ren, Minghai Qin, Hao
Tang, and Yanzhi Wang. 2021. Spvit: Enabling faster
vision transformers via latency-aware soft token prun-
ing. In European Conference on Computer Vision.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr F. Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
Llm knows what you are looking for before genera-
tion. ArXiv, abs/2404.14469.

Zhenyu Liang, Yunfan Li, and Zhongwei Wan. 2020a.
Large scale many-objective optimization driven by
distributional adversarial networks. arXiv preprint
arXiv:2003.07013.

Zhenyu Liang, Yunfan Li, and Zhongwei Wan. 2020b.
Many-objective estimation of distribution optimiza-
tion algorithm based on wgan-gp. arXiv preprint
arXiv:2003.08295.

Haokun Lin, Haoli Bai, Zhili Liu, Lu Hou, Muyi Sun,
Linqi Song, Ying Wei, and Zhenan Sun. 2024a.
Mope-clip: Structured pruning for efficient vision-
language models with module-wise pruning error
metric. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
27370–27380.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Ying-
tao Zhang, Linzhan Mou, Linqi Song, Zhenan Sun,
and Ying Wei. 2024b. Rotation and permutation for
advanced outlier management and efficient quantiza-
tion of llms. arXiv preprint arXiv:2406.01721.

Che Liu, Zhongwei Wan, Sibo Cheng, Mi Zhang, and
Rossella Arcucci. 2024a. Etp: Learning transfer-
able ecg representations via ecg-text pre-training.
In ICASSP 2024-2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 8230–8234. IEEE.

Che Liu, Zhongwei Wan, Cheng Ouyang, Anand Shah,
Wenjia Bai, and Rossella Arcucci. 2024b. Zero-shot
ecg classification with multimodal learning and test-
time clinical knowledge enhancement. arXiv preprint
arXiv:2403.06659.

Che Liu, Zhongwei Wan, Yuqi Wang, Hui Shen, Haozhe
Wang, Kangyu Zheng, Mi Zhang, and Rossella Ar-
cucci. 2024c. Benchmarking and boosting radiology
report generation for 3d high-resolution medical im-
ages. arXiv e-prints, pages arXiv–2406.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. ArXiv,
abs/2304.08485.

Ruikang Liu, Haoli Bai, Haokun Lin, Yuening Li, Han
Gao, Zhengzhuo Xu, Lu Hou, Jun Yao, and Chun
Yuan. 2024d. Intactkv: Improving large language
model quantization by keeping pivot tokens intact.
arXiv preprint arXiv:2403.01241.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. 2024e. Kivi: A tuning-free asymmet-
ric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750.

AI Meta. 2024. Introducing meta llama 3: The most
capable openly available llm to date. Meta AI.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski,
David Tarjan, and Edoardo M Ponti. 2024. Dynamic
memory compression: Retrofitting llms for acceler-
ated inference. arXiv preprint arXiv:2403.09636.

Siyu Ren and Kenny Q. Zhu. 2024a. On the efficacy of
eviction policy for key-value constrained generative
language model inference. ArXiv, abs/2402.06262.

Siyu Ren and Kenny Q. Zhu. 2024b. On the efficacy of
eviction policy for key-value constrained generative
language model inference. CoRR, abs/2402.06262.

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee,
and Yan Yan. 2024. Llava-prumerge: Adaptive to-
ken reduction for efficient large multimodal models.
ArXiv, abs/2403.15388.

Dingjie Song, Shunian Chen, Guiming Hardy Chen,
Fei Yu, Xiang Wan, and Benyou Wang. 2024.
Milebench: Benchmarking mllms in long context.
ArXiv, abs/2404.18532.

Zhuoran Song, Yihong Xu, Zhezhi He, Li Jiang,
Naifeng Jing, and Xiaoyao Liang. 2022. Cp-vit:
Cascade vision transformer pruning via progressive
sparsity prediction. ArXiv, abs/2203.04570.

Quan Tang, Bowen Zhang, Jiajun Liu, Fagui Liu, and
Yifan Liu. 2023. Dynamic token pruning in plain
vision transformers for semantic segmentation. 2023
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 777–786.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Zhongwei Wan, Che Liu, Xin Wang, Chaofan Tao,
Hui Shen, Zhenwu Peng, Jie Fu, Rossella Arcucci,
Huaxiu Yao, and Mi Zhang. 2024a. Electrocardio-
gram instruction tuning for report generation. arXiv
preprint arXiv:2403.04945.

Zhongwei Wan, Che Liu, Mi Zhang, Jie Fu, Benyou
Wang, Sibo Cheng, Lei Ma, César Quilodrán-Casas,
and Rossella Arcucci. 2024b. Med-unic: Unifying
cross-lingual medical vision-language pre-training by
diminishing bias. Advances in Neural Information
Processing Systems, 36.

Zhongwei Wan, Xin Liu, Benyou Wang, Jiezhong Qiu,
Boyu Li, Ting Guo, Guangyong Chen, and Yang

4074

https://api.semanticscholar.org/CorpusID:245537400
https://api.semanticscholar.org/CorpusID:245537400
https://api.semanticscholar.org/CorpusID:245537400
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:258179774
https://api.semanticscholar.org/CorpusID:267617273
https://api.semanticscholar.org/CorpusID:267617273
https://api.semanticscholar.org/CorpusID:267617273
https://api.semanticscholar.org/CorpusID:268667281
https://api.semanticscholar.org/CorpusID:268667281
https://api.semanticscholar.org/CorpusID:269449774
https://api.semanticscholar.org/CorpusID:247319015
https://api.semanticscholar.org/CorpusID:247319015
https://api.semanticscholar.org/CorpusID:247319015
https://api.semanticscholar.org/CorpusID:260379178
https://api.semanticscholar.org/CorpusID:260379178

Wang. 2023a. Spatio-temporal contrastive learning-
enhanced gnns for session-based recommendation.
ACM Transactions on Information Systems, 42(2):1–
26.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam,
Yu Zheng, Zhongnan Qu, Shen Yan, Yi Zhu, Quanlu
Zhang, Mosharaf Chowdhury, et al. 2023b. Efficient
large language models: A survey. arXiv preprint
arXiv:2312.03863, 1.

Zhongwei Wan, Yichun Yin, Wei Zhang, Jiaxin Shi,
Lifeng Shang, Guangyong Chen, Xin Jiang, and Qun
Liu. 2022. G-map: general memory-augmented pre-
trained language model for domain tasks. arXiv
preprint arXiv:2212.03613.

Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin,
Wenyuan Wang, Tunyu Zhang, Akshay Nambi,
Tanuja Ganu, and Hao Wang. 2024. Multimodal
needle in a haystack: Benchmarking long-context ca-
pability of multimodal large language models. arXiv
preprint arXiv:2406.11230.

Siyuan Wei, Tianzhu Ye, Shen Zhang, Yao Tang, and
Jiajun Liang. 2023. Joint token pruning and squeez-
ing towards more aggressive compression of vision
transformers. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 2092–2101.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient stream-
ing language models with attention sinks. ArXiv,
abs/2309.17453.

Jing Xiong, Zhongwei Wan, Xiping Hu, Min Yang,
and Chengming Li. 2022. Self-consistent reason-
ing for solving math word problems. arXiv preprint
arXiv:2210.15373.

June Yong Yang, Byeongwook Kim, Jeongin Bae,
Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung
Kwon, and Dongsoo Lee. 2024a. No token
left behind: Reliable kv cache compression via
importance-aware mixed precision quantization.
ArXiv, abs/2402.18096.

Shuai Yang, Yuying Ge, Yang Li, Yukang Chen, Yixiao
Ge, Ying Shan, and Yingcong Chen. 2024b. Seed-
story: Multimodal long story generation with large
language model. arXiv preprint arXiv:2407.08683.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang,
Chung-Ching Lin, Zicheng Liu, and Lijuan Wang.
2023. The dawn of lmms: Preliminary explorations
with gpt-4v(ision). ArXiv, abs/2309.17421.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing
Sun, Tong Xu, and Enhong Chen. 2023. A sur-
vey on multimodal large language models. ArXiv,
abs/2306.13549.

Jungmin Yun, Mihyeon Kim, and Youngbin Kim. 2024.
Focus on the core: Efficient attention via pruned to-
ken compression for document classification. In Con-
ference on Empirical Methods in Natural Language
Processing.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao,
Lu Hou, and Carlo Vittorio Cannistraci. 2024a. Plug-
and-play: An efficient post-training pruning method
for large language models. In The Twelfth Interna-
tional Conference on Learning Representations.

Yu Zhang, Yepeng Liu, Duoqian Miao, Qi Zhang, Yi-
wei Shi, and Liang Hu. 2024b. Mg-vit: A multi-
granularity method for compact and efficient vision
transformers. Advances in Neural Information Pro-
cessing Systems, 36.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2024c.
H2o: Heavy-hitter oracle for efficient generative in-
ference of large language models. Advances in Neu-
ral Information Processing Systems, 36.

Zhenyu (Allen) Zhang, Ying Sheng, Tianyi Zhou, Tian-
long Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett,
Zhangyang Wang, and Beidi Chen. 2023. H2o:
Heavy-hitter oracle for efficient generative inference
of large language models. ArXiv, abs/2306.14048.

Kangyu Zheng, Yingzhou Lu, Zaixi Zhang, Zhongwei
Wan, Yao Ma, Marinka Zitnik, and Tianfan Fu. 2024.
Structure-based drug design benchmark: Do 3d meth-
ods really dominate? arXiv e-prints, pages arXiv–
2406.

4075

https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:268041747
https://api.semanticscholar.org/CorpusID:268041747
https://api.semanticscholar.org/CorpusID:268041747
https://api.semanticscholar.org/CorpusID:263310951
https://api.semanticscholar.org/CorpusID:263310951
https://api.semanticscholar.org/CorpusID:259243718
https://api.semanticscholar.org/CorpusID:259243718
https://api.semanticscholar.org/CorpusID:266167105
https://api.semanticscholar.org/CorpusID:266167105
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947

A Appendix

A.1 Details of MileBench

MileBench (Song et al., 2024) dataset is the
first benchmark specifically designed to test the
Multimodal Long-context capabilities of MLLMs.
Milebench primarily includes 6,440 multimodal
long-text samples, which are composed of 21 exist-
ing or self-constructed datasets, with an average of
15.2 images and 422.3 words per sample. It com-
posed of two primary subsets: Realistic Evaluation
and Diagnostic Evaluation.
Realistic Evaluation component challenges
MLLMs to manage tasks within multimodal
long-context situations, underscoring the models’
ability to understand and reason through prolonged
multimodal contexts.
Diagnostic Evaluation requires MLLMs to extract
information from the given context, accentuating
the models’ skills in long-distance information re-
trieval and the removal of distractors.

The comprehensive classification of Milebench
is presented in Table 5.

A.2 Performance under extreme compression
ratio

We evaluate the performance of various KV Cache
compression strategies at compression ratios ex-
ceeding 80%, as detailed in the main text. Notably,
Table 6 reveals that at an extreme compression
ratio of 99%, our method, LOOK-M, exhibits a
significant advantage over competing methods. It
consistently maintains performance across the vast
majority of sub-tasks, closely matching the results
achieved using a Full Cache. This outcome not
only underscores the robustness of our method at
high compression ratios but also its superior ability
to sustain performance relative to other approaches.

A.3 Full test results for InternVL-v1.5-7B and
MobileVLM-v2-3B

Due to the page limit restrictions in the version
submitted to OpenReview, we only included a
portion of the experimental results in the main
text. As a supplement, we now provide the com-
plete experimental results for InternVL-v1.5-7B
and MobileVLM-v2-3B. As mentioned in Sec-
tion 5.1 of the main text, our default method for
LOOK-M is based on Text-Prior KV Pairs Eviction
and Pivotal Merging (TP+P-Merge). In the Table
7, LOOK-M demonstrates superior performance
across most datasets compared to the baselines,

with only a few results showing comparable out-
comes. This underscores that our method is both
plug-and-play and effective across multiple archi-
tectures.

A.4 Comparison of experimental results with
and without text-prior on LLaVA-v1.5-7B

We have already analyzed in the main experiments
that the text prior is effective under the scenario
of a 20% KV cache budget. At the same time, we
also explored the effectiveness of Text-Prior KV
Pairs Eviction under different KV cache budget
conditions, and the results are shown in Table 8.
The performance with Text-Prior KV Pairs Evic-
tion is significantly better than without Text-Prior
KV Pairs Eviction across most ratios and datasets,
especially at low compression rates such as 5%.
This clearly demonstrates the effectiveness of the
Text-Prior KV Pairs Eviction algorithm.

A.5 Specific environment for speed and
memory test

To ensure that the speed and GPU memory tests in
Section 5.5 are reproducible, we outline the hard-
ware environment, sample selection, speed caculat-
ing method and the method for calculating GPU
memory usage as follows:
Hardware Information The CPU used for testing
is an i5-13400F, and the GPU is an RTX 3090.
Speed Test Samples We used the first 20 entries
from the ALFRED subset of the Milebench dataset
for inference.
Speed Calculation Method The speed measured
is the decoding rate of the model starting from the
decoding phase. It is calculated by dividing the
duration of the decoding phase by the total number
of tokens generated.
Memory Calculation Method The memory usage
calculated is the average memory size occupied by
KVCache. The formula used is:

Memory Usage =

(
input_len × 2 + output_len

2

)

× 2× 32× 32× 128× 2

10243
GiB

where input_len is the sequence length after prun-
ing in the prefilling phase, and output_len is the
length of the tokens generated by the model.

4076

Table 5: Detailed Taxonomy of MileBench. (Song et al., 2024)

Category Task Dataset Metric

Realistic Evaluation

Action Understanding and Action Localization Accuracy
Prediction (T-1) Action Prediction Accuracy

Action Sequence Accuracy

Object and Scene Object Existence Accuracy
Understanding (T-2) Object Interaction Accuracy

Temporal Moving Attribute Accuracy
Multi-image Object Shuffle Accuracy

Visual Navigation and Egocentric Navigation Accuracy
Spatial Localization (T-3) Moving Direction Accuracy

Counterfactual Reasoning Counterfactual Inference Accuracy
and State Change (T-4) State Change Accuracy

Character Order Accuracy
Scene Transition Accuracy

Knowledge Grounded QA (S-1) Webpage QA Accuracy
Textbook QA Accuracy

Complex Multimodal QA Accuracy
Long Text with Images QA Accuracy

Text-Rich Images QA (S-2) Slide QA Accuracy
Semantic OCR QA Accuracy
Multi-image Document QA Accuracy

Visual Relation Inference (S-3) Visual Change Captioning ROUGE-L
Visual Relationship Expressing ROUGE-L

Dialogue (S-4) Multimodal Dialogue Accuracy
Conversational Embodied Dialogue ROUGE-L

Space Understanding (S-5) Space Understanding Accuracy

Diagnostic Evaluation

Needle In Text Needle (N-1) Text Needle In A Haystack Accuracy

A Haystack Image Needle (N-2) Image Needle In A Haystack Accuracy

Image Retrieval Image Retrieval (I-1) Image Retrieval Accuracy

Table 6: Comparative Performance of Different Strategies at Maximum Compression Rate(99%) on LLaVA-v1.5-7B

Method T-1 T-2 T-3 T-4 S-1 S-2 S-3 S-4 S-5 NH IR

Full Cache 40.0 46.0 32.2 37.8 56.9 33.3 12.6 23.4 60.5 4.7 4.3

H2O 36.5 46.0 25.0 31.5 36.4 23.0 9.4 9.4 51.5 0.0 3.3
SnapKV 38.8 45.1 26.5 34.1 38.4 26.0 0.0 9.6 58.0 0.0 3.5
RoCo 36.5 46.1 25.2 32.5 36.4 23.0 9.4 9.2 52.5 0.0 3.1

LOOK-M 40.3 46.1 32.5 40.0 57.0 33.7 12.8 24.0 60.0 5.3 3.7

4077

Table 7: Performance of various methods on MobileVLM and InternVL under 20% Cache Budget.

Method T-1 T-2 T-3 T-4 S-1 S-2 S-3 S-4 S-5 NH IR

MobileVLM

Full Cache 37.5 46.2 26.2 38.0 33.0 26.5 11.8 33.0 65.5 10.6 4.7
H2O 37.0 46.4 26.8 38.0 30.4 25.2 11.6 28.2 64.5 4.2 4.7
SnapKV 37.5 46.4 27.0 38.1 31.4 26.5 11.6 27.2 65.5 4.4 4.7
RoCo 37.3 46.6 26.8 38.0 30.8 25.8 11.6 28.9 65.5 4.2 4.7
LOOK-M (Ours) 37.5 46.6 27.8 38.0 32.2 26.2 11.8 32.8 65.5 10.3 4.8

InternVL

Full Cache 10.7 19.2 13.8 19.1 16.8 9.7 14.4 19.1 5.0 11.1 0.0
H2O 10.3 20.0 15.5 17.8 20.8 11.9 14.6 19.6 5.0 3.9 0.5
SnapKV 11.0 19.9 16.5 18.0 19.8 11.7 14.6 19.0 4.1 4.1 0.2
RoCo 10.7 20.0 15.3 18.0 21.1 11.9 14.5 19.5 5.0 3.9 0.5
LOOK-M (Ours) 11.3 22.0 17.0 18.1 20.1 12.5 14.5 22.9 5.5 10.9 0.5

Table 8: Performance Comparison with and without Text-Prior KV Pairs Eviction under Various Cache Budgets

Cache Budget Eviction T-1 T-2 T-3 T-4 S-1 S-2 S-3 S-4 S-5 NH IR

60% w/o 40.2 46.1 32.5 39.8 55.2 34.0 12.8 23.0 61.0 1.7 3.8
w 40.3 46.1 32.5 39.9 57.0 33.7 12.8 24.0 60.0 5.2 3.5

20% w/o 40.2 46.1 32.5 39.8 55.1 33.8 12.9 22.5 60.5 1.7 3.5
w 40.3 46.1 32.5 39.9 57.0 34.0 12.8 23.9 60.5 5.3 3.8

5% w/o 40.0 45.5 32.2 39.3 55.2 33.7 12.7 23.1 60.5 1.7 3.5
w 40.2 46.1 32.2 39.8 57.0 33.7 12.8 24.4 60.5 5.0 3.7

1% w/o 40.0 45.5 31.8 39.3 55.4 33.5 12.7 23.2 60.0 1.7 3.5
w 40.3 46.1 32.5 40.0 57.0 33.7 12.8 24.0 60.0 5.3 3.7

4078

