@inproceedings{kumar-etal-2024-quis,
title = "{`}Quis custodiet ipsos custodes?{'} Who will watch the watchmen? On Detecting {AI}-generated peer-reviews",
author = "Kumar, Sandeep and
Sahu, Mohit and
Gacche, Vardhan and
Ghosal, Tirthankar and
Ekbal, Asif",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1262",
pages = "22663--22679",
abstract = "The integrity of the peer-review process is vital for maintaining scientific rigor and trust within the academic community. With the steady increase in the usage of large language models (LLMs) like ChatGPT in academic writing, there is a growing concern that AI-generated texts could compromise the scientific publishing including peer-reviews. Previous works have focused on generic AI-generated text detection or have presented an approach for estimating the fraction of peer-reviews that can be AI-generated. Our focus here is to solve a real-world problem by assisting the editor or chair in determining whether a review is written by ChatGPT or not. To address this, we introduce the Term Frequency (TF) model, which posits that AI often repeats tokens, and the Review Regeneration (RR) model which is based on the idea that ChatGPT generates similar outputs upon re-prompting. We stress test these detectors against token attack and paraphrasing. Finally we propose an effective defensive strategy to reduce the effect of paraphrasing on our models. Our findings suggest both our proposed methods perform better than other AI text detectors. Our RR model is more robust, although our TF model performs better than the RR model without any attacks. We make our code, dataset, model public.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-etal-2024-quis">
<titleInfo>
<title>‘Quis custodiet ipsos custodes?’ Who will watch the watchmen? On Detecting AI-generated peer-reviews</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sandeep</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Sahu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vardhan</namePart>
<namePart type="family">Gacche</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tirthankar</namePart>
<namePart type="family">Ghosal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The integrity of the peer-review process is vital for maintaining scientific rigor and trust within the academic community. With the steady increase in the usage of large language models (LLMs) like ChatGPT in academic writing, there is a growing concern that AI-generated texts could compromise the scientific publishing including peer-reviews. Previous works have focused on generic AI-generated text detection or have presented an approach for estimating the fraction of peer-reviews that can be AI-generated. Our focus here is to solve a real-world problem by assisting the editor or chair in determining whether a review is written by ChatGPT or not. To address this, we introduce the Term Frequency (TF) model, which posits that AI often repeats tokens, and the Review Regeneration (RR) model which is based on the idea that ChatGPT generates similar outputs upon re-prompting. We stress test these detectors against token attack and paraphrasing. Finally we propose an effective defensive strategy to reduce the effect of paraphrasing on our models. Our findings suggest both our proposed methods perform better than other AI text detectors. Our RR model is more robust, although our TF model performs better than the RR model without any attacks. We make our code, dataset, model public.</abstract>
<identifier type="citekey">kumar-etal-2024-quis</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1262</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>22663</start>
<end>22679</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ‘Quis custodiet ipsos custodes?’ Who will watch the watchmen? On Detecting AI-generated peer-reviews
%A Kumar, Sandeep
%A Sahu, Mohit
%A Gacche, Vardhan
%A Ghosal, Tirthankar
%A Ekbal, Asif
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F kumar-etal-2024-quis
%X The integrity of the peer-review process is vital for maintaining scientific rigor and trust within the academic community. With the steady increase in the usage of large language models (LLMs) like ChatGPT in academic writing, there is a growing concern that AI-generated texts could compromise the scientific publishing including peer-reviews. Previous works have focused on generic AI-generated text detection or have presented an approach for estimating the fraction of peer-reviews that can be AI-generated. Our focus here is to solve a real-world problem by assisting the editor or chair in determining whether a review is written by ChatGPT or not. To address this, we introduce the Term Frequency (TF) model, which posits that AI often repeats tokens, and the Review Regeneration (RR) model which is based on the idea that ChatGPT generates similar outputs upon re-prompting. We stress test these detectors against token attack and paraphrasing. Finally we propose an effective defensive strategy to reduce the effect of paraphrasing on our models. Our findings suggest both our proposed methods perform better than other AI text detectors. Our RR model is more robust, although our TF model performs better than the RR model without any attacks. We make our code, dataset, model public.
%U https://aclanthology.org/2024.emnlp-main.1262
%P 22663-22679
Markdown (Informal)
[‘Quis custodiet ipsos custodes?’ Who will watch the watchmen? On Detecting AI-generated peer-reviews](https://aclanthology.org/2024.emnlp-main.1262) (Kumar et al., EMNLP 2024)
ACL