@inproceedings{dou-etal-2024-sailor,
title = "Sailor: Open Language Models for South-{E}ast {A}sia",
author = "Dou, Longxu and
Liu, Qian and
Zeng, Guangtao and
Guo, Jia and
Zhou, Jiahui and
Mao, Xin and
Jin, Ziqi and
Lu, Wei and
Lin, Min",
editor = "Hernandez Farias, Delia Irazu and
Hope, Tom and
Li, Manling",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-demo.45",
doi = "10.18653/v1/2024.emnlp-demo.45",
pages = "424--435",
abstract = "We present Sailor, a family of open language models ranging from 0.5B to 14B parameters, tailored for South-East Asian (SEA) languages. From Qwen1.5, Sailor models accept 200B to 400B tokens during continual pre-training, primarily covering the languages of English, Chinese, Vietnamese, Thai, Indonesian, Malay, and Lao. The training leverages several techniques, including BPE dropout for improving the model robustness, aggressive data cleaning and deduplication, and small proxy models to optimize the data mixture. Experimental results on four typical tasks indicate that Sailor models demonstrate strong performance across different benchmarks, including commonsense reasoning, question answering, reading comprehension and examination. We share our insights to spark a wider interest in developing large language models for multilingual use cases.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dou-etal-2024-sailor">
<titleInfo>
<title>Sailor: Open Language Models for South-East Asia</title>
</titleInfo>
<name type="personal">
<namePart type="given">Longxu</namePart>
<namePart type="family">Dou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guangtao</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jia</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiahui</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziqi</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Delia</namePart>
<namePart type="given">Irazu</namePart>
<namePart type="family">Hernandez Farias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Hope</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manling</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present Sailor, a family of open language models ranging from 0.5B to 14B parameters, tailored for South-East Asian (SEA) languages. From Qwen1.5, Sailor models accept 200B to 400B tokens during continual pre-training, primarily covering the languages of English, Chinese, Vietnamese, Thai, Indonesian, Malay, and Lao. The training leverages several techniques, including BPE dropout for improving the model robustness, aggressive data cleaning and deduplication, and small proxy models to optimize the data mixture. Experimental results on four typical tasks indicate that Sailor models demonstrate strong performance across different benchmarks, including commonsense reasoning, question answering, reading comprehension and examination. We share our insights to spark a wider interest in developing large language models for multilingual use cases.</abstract>
<identifier type="citekey">dou-etal-2024-sailor</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-demo.45</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-demo.45</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>424</start>
<end>435</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sailor: Open Language Models for South-East Asia
%A Dou, Longxu
%A Liu, Qian
%A Zeng, Guangtao
%A Guo, Jia
%A Zhou, Jiahui
%A Mao, Xin
%A Jin, Ziqi
%A Lu, Wei
%A Lin, Min
%Y Hernandez Farias, Delia Irazu
%Y Hope, Tom
%Y Li, Manling
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F dou-etal-2024-sailor
%X We present Sailor, a family of open language models ranging from 0.5B to 14B parameters, tailored for South-East Asian (SEA) languages. From Qwen1.5, Sailor models accept 200B to 400B tokens during continual pre-training, primarily covering the languages of English, Chinese, Vietnamese, Thai, Indonesian, Malay, and Lao. The training leverages several techniques, including BPE dropout for improving the model robustness, aggressive data cleaning and deduplication, and small proxy models to optimize the data mixture. Experimental results on four typical tasks indicate that Sailor models demonstrate strong performance across different benchmarks, including commonsense reasoning, question answering, reading comprehension and examination. We share our insights to spark a wider interest in developing large language models for multilingual use cases.
%R 10.18653/v1/2024.emnlp-demo.45
%U https://aclanthology.org/2024.emnlp-demo.45
%U https://doi.org/10.18653/v1/2024.emnlp-demo.45
%P 424-435
Markdown (Informal)
[Sailor: Open Language Models for South-East Asia](https://aclanthology.org/2024.emnlp-demo.45) (Dou et al., EMNLP 2024)
ACL
- Longxu Dou, Qian Liu, Guangtao Zeng, Jia Guo, Jiahui Zhou, Xin Mao, Ziqi Jin, Wei Lu, and Min Lin. 2024. Sailor: Open Language Models for South-East Asia. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 424–435, Miami, Florida, USA. Association for Computational Linguistics.