@inproceedings{han-etal-2023-structure,
title = "A Structure-Aware Generative Adversarial Network for Bilingual Lexicon Induction",
author = "Han, Bocheng and
Tao, Qian and
Li, Lusi and
Xiong, Zhihao",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.721",
doi = "10.18653/v1/2023.findings-emnlp.721",
pages = "10763--10775",
abstract = "Bilingual lexicon induction (BLI) is the task of inducing word translations with a learned mapping function that aligns monolingual word embedding spaces in two different languages. However, most previous methods treat word embeddings as isolated entities and fail to jointly consider both the intra-space and inter-space topological relations between words. This limitation makes it challenging to align words from embedding spaces with distinct topological structures, especially when the assumption of isomorphism may not hold. To this end, we propose a novel approach called the Structure-Aware Generative Adversarial Network (SA-GAN) model to explicitly capture multiple topological structure information to achieve accurate BLI. Our model first incorporates two lightweight graph convolutional networks (GCNs) to leverage intra-space topological correlations between words for generating source and target embeddings. We then employ a GAN model to explore inter-space topological structures by learning a global mapping function that initially maps the source embeddings to the target embedding space. To further align the coarse-grained structures, we develop a pair-wised local mapping (PLM) strategy that enables word-specific transformations in an unsupervised manner. Extensive experiments conducted on public datasets, including languages with both distant and close etymological relationships, demonstrate the effectiveness of our proposed SA-GAN model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2023-structure">
<titleInfo>
<title>A Structure-Aware Generative Adversarial Network for Bilingual Lexicon Induction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bocheng</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lusi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihao</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Bilingual lexicon induction (BLI) is the task of inducing word translations with a learned mapping function that aligns monolingual word embedding spaces in two different languages. However, most previous methods treat word embeddings as isolated entities and fail to jointly consider both the intra-space and inter-space topological relations between words. This limitation makes it challenging to align words from embedding spaces with distinct topological structures, especially when the assumption of isomorphism may not hold. To this end, we propose a novel approach called the Structure-Aware Generative Adversarial Network (SA-GAN) model to explicitly capture multiple topological structure information to achieve accurate BLI. Our model first incorporates two lightweight graph convolutional networks (GCNs) to leverage intra-space topological correlations between words for generating source and target embeddings. We then employ a GAN model to explore inter-space topological structures by learning a global mapping function that initially maps the source embeddings to the target embedding space. To further align the coarse-grained structures, we develop a pair-wised local mapping (PLM) strategy that enables word-specific transformations in an unsupervised manner. Extensive experiments conducted on public datasets, including languages with both distant and close etymological relationships, demonstrate the effectiveness of our proposed SA-GAN model.</abstract>
<identifier type="citekey">han-etal-2023-structure</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.721</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.721</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>10763</start>
<end>10775</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Structure-Aware Generative Adversarial Network for Bilingual Lexicon Induction
%A Han, Bocheng
%A Tao, Qian
%A Li, Lusi
%A Xiong, Zhihao
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F han-etal-2023-structure
%X Bilingual lexicon induction (BLI) is the task of inducing word translations with a learned mapping function that aligns monolingual word embedding spaces in two different languages. However, most previous methods treat word embeddings as isolated entities and fail to jointly consider both the intra-space and inter-space topological relations between words. This limitation makes it challenging to align words from embedding spaces with distinct topological structures, especially when the assumption of isomorphism may not hold. To this end, we propose a novel approach called the Structure-Aware Generative Adversarial Network (SA-GAN) model to explicitly capture multiple topological structure information to achieve accurate BLI. Our model first incorporates two lightweight graph convolutional networks (GCNs) to leverage intra-space topological correlations between words for generating source and target embeddings. We then employ a GAN model to explore inter-space topological structures by learning a global mapping function that initially maps the source embeddings to the target embedding space. To further align the coarse-grained structures, we develop a pair-wised local mapping (PLM) strategy that enables word-specific transformations in an unsupervised manner. Extensive experiments conducted on public datasets, including languages with both distant and close etymological relationships, demonstrate the effectiveness of our proposed SA-GAN model.
%R 10.18653/v1/2023.findings-emnlp.721
%U https://aclanthology.org/2023.findings-emnlp.721
%U https://doi.org/10.18653/v1/2023.findings-emnlp.721
%P 10763-10775
Markdown (Informal)
[A Structure-Aware Generative Adversarial Network for Bilingual Lexicon Induction](https://aclanthology.org/2023.findings-emnlp.721) (Han et al., Findings 2023)
ACL