@inproceedings{walsh-etal-2022-berts,
title = "A {BERT}{'}s Eye View: Identification of {I}rish Multiword Expressions Using Pre-trained Language Models",
author = "Walsh, Abigail and
Lynn, Teresa and
Foster, Jennifer",
editor = "Bhatia, Archna and
Cook, Paul and
Taslimipoor, Shiva and
Garcia, Marcos and
Ramisch, Carlos",
booktitle = "Proceedings of the 18th Workshop on Multiword Expressions @LREC2022",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.mwe-1.13",
pages = "89--99",
abstract = "This paper reports on the investigation of using pre-trained language models for the identification of Irish verbal multiword expressions (vMWEs), comparing the results with the systems submitted for the PARSEME shared task edition 1.2. We compare the use of a monolingual BERT model for Irish (gaBERT) with multilingual BERT (mBERT), fine-tuned to perform MWE identification, presenting a series of experiments to explore the impact of hyperparameter tuning and dataset optimisation steps on these models. We compare the results of our optimised systems to those achieved by other systems submitted to the shared task, and present some best practices for minority languages addressing this task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="walsh-etal-2022-berts">
<titleInfo>
<title>A BERT’s Eye View: Identification of Irish Multiword Expressions Using Pre-trained Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abigail</namePart>
<namePart type="family">Walsh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teresa</namePart>
<namePart type="family">Lynn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jennifer</namePart>
<namePart type="family">Foster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Workshop on Multiword Expressions @LREC2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Archna</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Cook</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiva</namePart>
<namePart type="family">Taslimipoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Garcia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper reports on the investigation of using pre-trained language models for the identification of Irish verbal multiword expressions (vMWEs), comparing the results with the systems submitted for the PARSEME shared task edition 1.2. We compare the use of a monolingual BERT model for Irish (gaBERT) with multilingual BERT (mBERT), fine-tuned to perform MWE identification, presenting a series of experiments to explore the impact of hyperparameter tuning and dataset optimisation steps on these models. We compare the results of our optimised systems to those achieved by other systems submitted to the shared task, and present some best practices for minority languages addressing this task.</abstract>
<identifier type="citekey">walsh-etal-2022-berts</identifier>
<location>
<url>https://aclanthology.org/2022.mwe-1.13</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>89</start>
<end>99</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A BERT’s Eye View: Identification of Irish Multiword Expressions Using Pre-trained Language Models
%A Walsh, Abigail
%A Lynn, Teresa
%A Foster, Jennifer
%Y Bhatia, Archna
%Y Cook, Paul
%Y Taslimipoor, Shiva
%Y Garcia, Marcos
%Y Ramisch, Carlos
%S Proceedings of the 18th Workshop on Multiword Expressions @LREC2022
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F walsh-etal-2022-berts
%X This paper reports on the investigation of using pre-trained language models for the identification of Irish verbal multiword expressions (vMWEs), comparing the results with the systems submitted for the PARSEME shared task edition 1.2. We compare the use of a monolingual BERT model for Irish (gaBERT) with multilingual BERT (mBERT), fine-tuned to perform MWE identification, presenting a series of experiments to explore the impact of hyperparameter tuning and dataset optimisation steps on these models. We compare the results of our optimised systems to those achieved by other systems submitted to the shared task, and present some best practices for minority languages addressing this task.
%U https://aclanthology.org/2022.mwe-1.13
%P 89-99
Markdown (Informal)
[A BERT’s Eye View: Identification of Irish Multiword Expressions Using Pre-trained Language Models](https://aclanthology.org/2022.mwe-1.13) (Walsh et al., MWE 2022)
ACL