@inproceedings{gain-etal-2021-iitp,
title = "{IITP} at {WAT} 2021: System description for {E}nglish-{H}indi Multimodal Translation Task",
author = "Gain, Baban and
Bandyopadhyay, Dibyanayan and
Ekbal, Asif",
editor = "Nakazawa, Toshiaki and
Nakayama, Hideki and
Goto, Isao and
Mino, Hideya and
Ding, Chenchen and
Dabre, Raj and
Kunchukuttan, Anoop and
Higashiyama, Shohei and
Manabe, Hiroshi and
Pa, Win Pa and
Parida, Shantipriya and
Bojar, Ond{\v{r}}ej and
Chu, Chenhui and
Eriguchi, Akiko and
Abe, Kaori and
Oda, Yusuke and
Sudoh, Katsuhito and
Kurohashi, Sadao and
Bhattacharyya, Pushpak",
booktitle = "Proceedings of the 8th Workshop on Asian Translation (WAT2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wat-1.18",
doi = "10.18653/v1/2021.wat-1.18",
pages = "161--165",
abstract = "Neural Machine Translation (NMT) is a predominant machine translation technology nowadays because of its end-to-end trainable flexibility. However, NMT still struggles to translate properly in low-resource settings specifically on distant language pairs. One way to overcome this is to use the information from other modalities if available. The idea is that despite differences in languages, both the source and target language speakers see the same thing and the visual representation of both the source and target is the same, which can positively assist the system. Multimodal information can help the NMT system to improve the translation by removing ambiguity on some phrases or words. We participate in the 8th Workshop on Asian Translation (WAT - 2021) for English-Hindi multimodal translation task and achieve 42.47 and 37.50 BLEU points for Evaluation and Challenge subset, respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gain-etal-2021-iitp">
<titleInfo>
<title>IITP at WAT 2021: System description for English-Hindi Multimodal Translation Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Baban</namePart>
<namePart type="family">Gain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dibyanayan</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Asian Translation (WAT2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hideki</namePart>
<namePart type="family">Nakayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isao</namePart>
<namePart type="family">Goto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hideya</namePart>
<namePart type="family">Mino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenchen</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raj</namePart>
<namePart type="family">Dabre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anoop</namePart>
<namePart type="family">Kunchukuttan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shohei</namePart>
<namePart type="family">Higashiyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroshi</namePart>
<namePart type="family">Manabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Win</namePart>
<namePart type="given">Pa</namePart>
<namePart type="family">Pa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shantipriya</namePart>
<namePart type="family">Parida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenhui</namePart>
<namePart type="family">Chu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akiko</namePart>
<namePart type="family">Eriguchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaori</namePart>
<namePart type="family">Abe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Oda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katsuhito</namePart>
<namePart type="family">Sudoh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural Machine Translation (NMT) is a predominant machine translation technology nowadays because of its end-to-end trainable flexibility. However, NMT still struggles to translate properly in low-resource settings specifically on distant language pairs. One way to overcome this is to use the information from other modalities if available. The idea is that despite differences in languages, both the source and target language speakers see the same thing and the visual representation of both the source and target is the same, which can positively assist the system. Multimodal information can help the NMT system to improve the translation by removing ambiguity on some phrases or words. We participate in the 8th Workshop on Asian Translation (WAT - 2021) for English-Hindi multimodal translation task and achieve 42.47 and 37.50 BLEU points for Evaluation and Challenge subset, respectively.</abstract>
<identifier type="citekey">gain-etal-2021-iitp</identifier>
<identifier type="doi">10.18653/v1/2021.wat-1.18</identifier>
<location>
<url>https://aclanthology.org/2021.wat-1.18</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>161</start>
<end>165</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IITP at WAT 2021: System description for English-Hindi Multimodal Translation Task
%A Gain, Baban
%A Bandyopadhyay, Dibyanayan
%A Ekbal, Asif
%Y Nakazawa, Toshiaki
%Y Nakayama, Hideki
%Y Goto, Isao
%Y Mino, Hideya
%Y Ding, Chenchen
%Y Dabre, Raj
%Y Kunchukuttan, Anoop
%Y Higashiyama, Shohei
%Y Manabe, Hiroshi
%Y Pa, Win Pa
%Y Parida, Shantipriya
%Y Bojar, Ondřej
%Y Chu, Chenhui
%Y Eriguchi, Akiko
%Y Abe, Kaori
%Y Oda, Yusuke
%Y Sudoh, Katsuhito
%Y Kurohashi, Sadao
%Y Bhattacharyya, Pushpak
%S Proceedings of the 8th Workshop on Asian Translation (WAT2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F gain-etal-2021-iitp
%X Neural Machine Translation (NMT) is a predominant machine translation technology nowadays because of its end-to-end trainable flexibility. However, NMT still struggles to translate properly in low-resource settings specifically on distant language pairs. One way to overcome this is to use the information from other modalities if available. The idea is that despite differences in languages, both the source and target language speakers see the same thing and the visual representation of both the source and target is the same, which can positively assist the system. Multimodal information can help the NMT system to improve the translation by removing ambiguity on some phrases or words. We participate in the 8th Workshop on Asian Translation (WAT - 2021) for English-Hindi multimodal translation task and achieve 42.47 and 37.50 BLEU points for Evaluation and Challenge subset, respectively.
%R 10.18653/v1/2021.wat-1.18
%U https://aclanthology.org/2021.wat-1.18
%U https://doi.org/10.18653/v1/2021.wat-1.18
%P 161-165
Markdown (Informal)
[IITP at WAT 2021: System description for English-Hindi Multimodal Translation Task](https://aclanthology.org/2021.wat-1.18) (Gain et al., WAT 2021)
ACL