%0 Conference Proceedings %T Huawei’s Submissions to the WMT20 Biomedical Translation Task %A Peng, Wei %A Liu, Jianfeng %A Wang, Minghan %A Li, Liangyou %A Meng, Xupeng %A Yang, Hao %A Liu, Qun %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Graham, Yvette %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %S Proceedings of the Fifth Conference on Machine Translation %D 2020 %8 November %I Association for Computational Linguistics %C Online %F peng-etal-2020-huaweis %X This paper describes Huawei’s submissions to the WMT20 biomedical translation shared task. Apart from experimenting with finetuning on domain-specific bitexts, we explore effects of in-domain dictionaries on enhancing cross-domain neural machine translation performance. We utilize a transfer learning strategy through pre-trained machine translation models and extensive scope of engineering endeavors. Four of our ten submissions achieve state-of-the-art performance according to the official automatic evaluation results, namely translation directions on English\textless-\textgreaterFrench, English-\textgreaterGerman and English-\textgreaterItalian. %U https://aclanthology.org/2020.wmt-1.93 %P 857-861