CORD-19: The COVID-19 Open Research Dataset
Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang, Doug Burdick, Darrin Eide, Kathryn Funk, Yannis Katsis, Rodney Michael Kinney, Yunyao Li, Ziyang Liu, William Merrill, Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan, Zhihong Shen, Brandon Stilson, Alex D. Wade, Kuansan Wang, Nancy Xin Ru Wang, Christopher Wilhelm, Boya Xie, Douglas M. Raymond, Daniel S. Weld, Oren Etzioni, Sebastian Kohlmeier
Abstract
The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.- Anthology ID:
- 2020.nlpcovid19-acl.1
- Volume:
- Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020
- Month:
- July
- Year:
- 2020
- Address:
- Online
- Editors:
- Karin Verspoor, Kevin Bretonnel Cohen, Mark Dredze, Emilio Ferrara, Jonathan May, Robert Munro, Cecile Paris, Byron Wallace
- Venue:
- NLP-COVID19
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- Language:
- URL:
- https://aclanthology.org/2020.nlpcovid19-acl.1
- DOI:
- Bibkey:
- Cite (ACL):
- Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang, Doug Burdick, Darrin Eide, Kathryn Funk, Yannis Katsis, Rodney Michael Kinney, Yunyao Li, Ziyang Liu, William Merrill, Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan, Zhihong Shen, Brandon Stilson, et al.. 2020. CORD-19: The COVID-19 Open Research Dataset. In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020, Online. Association for Computational Linguistics.
- Cite (Informal):
- CORD-19: The COVID-19 Open Research Dataset (Wang et al., NLP-COVID19 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.nlpcovid19-acl.1.pdf
- Code
- allenai/cord19 + additional community code
- Data
- CORD-19, S2ORC, TREC-COVID
Export citation
@inproceedings{wang-etal-2020-cord, title = "{CORD-19}: The {COVID-19} Open Research Dataset", author = "Wang, Lucy Lu and Lo, Kyle and Chandrasekhar, Yoganand and Reas, Russell and Yang, Jiangjiang and Burdick, Doug and Eide, Darrin and Funk, Kathryn and Katsis, Yannis and Kinney, Rodney Michael and Li, Yunyao and Liu, Ziyang and Merrill, William and Mooney, Paul and Murdick, Dewey A. and Rishi, Devvret and Sheehan, Jerry and Shen, Zhihong and Stilson, Brandon and Wade, Alex D. and Wang, Kuansan and Wang, Nancy Xin Ru and Wilhelm, Christopher and Xie, Boya and Raymond, Douglas M. and Weld, Daniel S. and Etzioni, Oren and Kohlmeier, Sebastian", editor = "Verspoor, Karin and Cohen, Kevin Bretonnel and Dredze, Mark and Ferrara, Emilio and May, Jonathan and Munro, Robert and Paris, Cecile and Wallace, Byron", booktitle = "Proceedings of the 1st Workshop on {NLP} for {COVID-19} at {ACL} 2020", month = jul, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.nlpcovid19-acl.1", abstract = "The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="wang-etal-2020-cord"> <titleInfo> <title>CORD-19: The COVID-19 Open Research Dataset</title> </titleInfo> <name type="personal"> <namePart type="given">Lucy</namePart> <namePart type="given">Lu</namePart> <namePart type="family">Wang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kyle</namePart> <namePart type="family">Lo</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yoganand</namePart> <namePart type="family">Chandrasekhar</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Russell</namePart> <namePart type="family">Reas</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jiangjiang</namePart> <namePart type="family">Yang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Doug</namePart> <namePart type="family">Burdick</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Darrin</namePart> <namePart type="family">Eide</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kathryn</namePart> <namePart type="family">Funk</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yannis</namePart> <namePart type="family">Katsis</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rodney</namePart> <namePart type="given">Michael</namePart> <namePart type="family">Kinney</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yunyao</namePart> <namePart type="family">Li</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ziyang</namePart> <namePart type="family">Liu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">William</namePart> <namePart type="family">Merrill</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paul</namePart> <namePart type="family">Mooney</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Dewey</namePart> <namePart type="given">A</namePart> <namePart type="family">Murdick</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Devvret</namePart> <namePart type="family">Rishi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jerry</namePart> <namePart type="family">Sheehan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhihong</namePart> <namePart type="family">Shen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Brandon</namePart> <namePart type="family">Stilson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alex</namePart> <namePart type="given">D</namePart> <namePart type="family">Wade</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kuansan</namePart> <namePart type="family">Wang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nancy</namePart> <namePart type="given">Xin</namePart> <namePart type="given">Ru</namePart> <namePart type="family">Wang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christopher</namePart> <namePart type="family">Wilhelm</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Boya</namePart> <namePart type="family">Xie</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Douglas</namePart> <namePart type="given">M</namePart> <namePart type="family">Raymond</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Daniel</namePart> <namePart type="given">S</namePart> <namePart type="family">Weld</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Oren</namePart> <namePart type="family">Etzioni</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sebastian</namePart> <namePart type="family">Kohlmeier</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-07</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020</title> </titleInfo> <name type="personal"> <namePart type="given">Karin</namePart> <namePart type="family">Verspoor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kevin</namePart> <namePart type="given">Bretonnel</namePart> <namePart type="family">Cohen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Dredze</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Emilio</namePart> <namePart type="family">Ferrara</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jonathan</namePart> <namePart type="family">May</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Robert</namePart> <namePart type="family">Munro</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Cecile</namePart> <namePart type="family">Paris</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Byron</namePart> <namePart type="family">Wallace</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Online</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.</abstract> <identifier type="citekey">wang-etal-2020-cord</identifier> <location> <url>https://aclanthology.org/2020.nlpcovid19-acl.1</url> </location> <part> <date>2020-07</date> </part> </mods> </modsCollection>
%0 Conference Proceedings %T CORD-19: The COVID-19 Open Research Dataset %A Wang, Lucy Lu %A Lo, Kyle %A Chandrasekhar, Yoganand %A Reas, Russell %A Yang, Jiangjiang %A Burdick, Doug %A Eide, Darrin %A Funk, Kathryn %A Katsis, Yannis %A Kinney, Rodney Michael %A Li, Yunyao %A Liu, Ziyang %A Merrill, William %A Mooney, Paul %A Murdick, Dewey A. %A Rishi, Devvret %A Sheehan, Jerry %A Shen, Zhihong %A Stilson, Brandon %A Wade, Alex D. %A Wang, Kuansan %A Wang, Nancy Xin Ru %A Wilhelm, Christopher %A Xie, Boya %A Raymond, Douglas M. %A Weld, Daniel S. %A Etzioni, Oren %A Kohlmeier, Sebastian %Y Verspoor, Karin %Y Cohen, Kevin Bretonnel %Y Dredze, Mark %Y Ferrara, Emilio %Y May, Jonathan %Y Munro, Robert %Y Paris, Cecile %Y Wallace, Byron %S Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020 %D 2020 %8 July %I Association for Computational Linguistics %C Online %F wang-etal-2020-cord %X The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19. %U https://aclanthology.org/2020.nlpcovid19-acl.1
Markdown (Informal)
[CORD-19: The COVID-19 Open Research Dataset](https://aclanthology.org/2020.nlpcovid19-acl.1) (Wang et al., NLP-COVID19 2020)
- CORD-19: The COVID-19 Open Research Dataset (Wang et al., NLP-COVID19 2020)
ACL
- Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang, Doug Burdick, Darrin Eide, Kathryn Funk, Yannis Katsis, Rodney Michael Kinney, Yunyao Li, Ziyang Liu, William Merrill, Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan, Zhihong Shen, Brandon Stilson, et al.. 2020. CORD-19: The COVID-19 Open Research Dataset. In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020, Online. Association for Computational Linguistics.