[go: up one dir, main page]

On Negative Interference in Multilingual Models: Findings and A Meta-Learning Treatment

Zirui Wang, Zachary C. Lipton, Yulia Tsvetkov


Abstract
Modern multilingual models are trained on concatenated text from multiple languages in hopes of conferring benefits to each (positive transfer), with the most pronounced benefits accruing to low-resource languages. However, recent work has shown that this approach can degrade performance on high-resource languages, a phenomenon known as negative interference. In this paper, we present the first systematic study of negative interference. We show that, contrary to previous belief, negative interference also impacts low-resource languages. While parameters are maximally shared to learn language-universal structures, we demonstrate that language-specific parameters do exist in multilingual models and they are a potential cause of negative interference. Motivated by these observations, we also present a meta-learning algorithm that obtains better cross-lingual transferability and alleviates negative interference, by adding language-specific layers as meta-parameters and training them in a manner that explicitly improves shared layers’ generalization on all languages. Overall, our results show that negative interference is more common than previously known, suggesting new directions for improving multilingual representations.
Anthology ID:
2020.emnlp-main.359
Volume:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Month:
November
Year:
2020
Address:
Online
Editors:
Bonnie Webber, Trevor Cohn, Yulan He, Yang Liu
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4438–4450
Language:
URL:
https://aclanthology.org/2020.emnlp-main.359
DOI:
10.18653/v1/2020.emnlp-main.359
Bibkey:
Cite (ACL):
Zirui Wang, Zachary C. Lipton, and Yulia Tsvetkov. 2020. On Negative Interference in Multilingual Models: Findings and A Meta-Learning Treatment. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4438–4450, Online. Association for Computational Linguistics.
Cite (Informal):
On Negative Interference in Multilingual Models: Findings and A Meta-Learning Treatment (Wang et al., EMNLP 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.emnlp-main.359.pdf
Video:
 https://slideslive.com/38938905
Code
 iedwardwangi/MetaAdapter
Data
TyDiQA-GoldP