[go: up one dir, main page]

Proceedings of the IJCNLP 2017, Tutorial Abstracts

Sadao Kurohashi, Michael Strube (Editors)


Anthology ID:
I17-5
Month:
November
Year:
2017
Address:
Taipei, Taiwan
Venue:
IJCNLP
SIG:
Publisher:
Asian Federation of Natural Language Processing
URL:
https://aclanthology.org/I17-5
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/I17-5.pdf

pdf bib
Proceedings of the IJCNLP 2017, Tutorial Abstracts
Sadao Kurohashi | Michael Strube

pdf bib
Deep Learning in Lexical Analysis and Parsing
Wanxiang Che | Yue Zhang

Neural networks, also with a fancy name deep learning, just right can overcome the above “feature engineering” problem. In theory, they can use non-linear activation functions and multiple layers to automatically find useful features. The novel network structures, such as convolutional or recurrent, help to reduce the difficulty further. These deep learning models have been successfully used for lexical analysis and parsing. In this tutorial, we will give a review of each line of work, by contrasting them with traditional statistical methods, and organizing them in consistent orders.

pdf bib
Multilingual Vector Representations of Words, Sentences, and Documents
Gerard de Melo

Neural vector representations are now ubiquitous in all subfields of natural language processing and text mining. While methods such as word2vec and GloVe are well-known, this tutorial focuses on multilingual and cross-lingual vector representations, of words, but also of sentences and documents as well.

pdf bib
Open-Domain Neural Dialogue Systems
Yun-Nung Chen | Jianfeng Gao

In the past decade, spoken dialogue systems have been the most prominent component in today’s personal assistants. A lot of devices have incorporated dialogue system modules, which allow users to speak naturally in order to finish tasks more efficiently. The traditional conversational systems have rather complex and/or modular pipelines. The advance of deep learning technologies has recently risen the applications of neural models to dialogue modeling. Nevertheless, applying deep learning technologies for building robust and scalable dialogue systems is still a challenging task and an open research area as it requires deeper understanding of the classic pipelines as well as detailed knowledge on the benchmark of the models of the prior work and the recent state-of-the-art work. Therefore, this tutorial is designed to focus on an overview of the dialogue system development while describing most recent research for building task-oriented and chit-chat dialogue systems, and summarizing the challenges. We target the audience of students and practitioners who have some deep learning background, who want to get more familiar with conversational dialogue systems.

pdf bib
Neural Machine Translation: Basics, Practical Aspects and Recent Trends
Fabien Cromieres | Toshiaki Nakazawa | Raj Dabre

Machine Translation (MT) is a sub-field of NLP which has experienced a number of paradigm shifts since its inception. Up until 2014, Phrase Based Statistical Machine Translation (PBSMT) approaches used to be the state of the art. In late 2014, Neural Machine Translation (NMT) was introduced and was proven to outperform all PBSMT approaches by a significant margin. Since then, the NMT approaches have undergone several transformations which have pushed the state of the art even further. This tutorial is primarily aimed at researchers who are either interested in or are fairly new to the world of NMT and want to obtain a deep understanding of NMT fundamentals. Because it will also cover the latest developments in NMT, it should also be useful to attendees with some experience in NMT.

pdf bib
The Ultimate Presentation Makeup Tutorial: How to Polish your Posters, Slides and Presentations Skills
Gustavo Paetzold | Lucia Specia

There is no question that our research community have, and still has been producing an insurmountable amount of interesting strategies, models and tools to a wide array of problems and challenges in diverse areas of knowledge. But for as long as interesting work has existed, we’ve been plagued by a great unsolved mystery: how come there is so much interesting work being published in conferences, but not as many interesting and engaging posters and presentations being featured in them? In this tutorial, we present practical step-by-step makeup solutions for poster, slides and oral presentations in order to help researchers who feel like they are not able to convey the importance of their research to the community in conferences.

pdf bib
The Challenge of Composition in Distributional and Formal Semantics
Ran Tian | Koji Mineshima | Pascual Martínez-Gómez

This is tutorial proposal. Abstract is as follows: The principle of compositionality states that the meaning of a complete sentence must be explained in terms of the meanings of its subsentential parts; in other words, each syntactic operation should have a corresponding semantic operation. In recent years, it has been increasingly evident that distributional and formal semantics are complementary in addressing composition; while the distributional/vector-based approach can naturally measure semantic similarity (Mitchell and Lapata, 2010), the formal/symbolic approach has a long tradition within logic-based semantic frameworks (Montague, 1974) and can readily be connected to theorem provers or databases to perform complicated tasks. In this tutorial, we will cover recent efforts in extending word vectors to account for composition and reasoning, the various challenging phenomena observed in composition and addressed by formal semantics, and a hybrid approach that combines merits of the two. Outline and introduction to instructors are found in the submission. Ran Tian has taught a tutorial at the Annual Meeting of the Association for Natural Language Processing in Japan, 2015. The estimated audience size was about one hundred. Only a limited part of the contents in this tutorial is drawn from the previous one. Koji Mineshima has taught a one-week course at the 28th European Summer School in Logic, Language and Information (ESSLLI2016), together with Prof. Daisuke Bekki. Only a few contents are the same with this tutorial. Tutorials on “CCG Semantic Parsing” have been given in ACL2013, EMNLP2014, and AAAI2015. A coming tutorial on “Deep Learning for Semantic Composition” will be given in ACL2017. Contents in these tutorials are somehow related to but not overlapping with our proposal.