@inproceedings{giannakopoulos-etal-2017-unsupervised,
title = "Unsupervised Aspect Term Extraction with {B}-{LSTM} {\&} {CRF} using Automatically Labelled Datasets",
author = "Giannakopoulos, Athanasios and
Musat, Claudiu and
Hossmann, Andreea and
Baeriswyl, Michael",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
van der Goot, Erik",
booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5224",
doi = "10.18653/v1/W17-5224",
pages = "180--188",
abstract = "Aspect Term Extraction (ATE) identifies opinionated aspect terms in texts and is one of the tasks in the SemEval Aspect Based Sentiment Analysis (ABSA) contest. The small amount of available datasets for supervised ATE and the costly human annotation for aspect term labelling give rise to the need for unsupervised ATE. In this paper, we introduce an architecture that achieves top-ranking performance for supervised ATE. Moreover, it can be used efficiently as feature extractor and classifier for unsupervised ATE. Our second contribution is a method to automatically construct datasets for ATE. We train a classifier on our automatically labelled datasets and evaluate it on the human annotated SemEval ABSA test sets. Compared to a strong rule-based baseline, we obtain a dramatically higher F-score and attain precision values above 80{\%}. Our unsupervised method beats the supervised ABSA baseline from SemEval, while preserving high precision scores.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="giannakopoulos-etal-2017-unsupervised">
<titleInfo>
<title>Unsupervised Aspect Term Extraction with B-LSTM & CRF using Automatically Labelled Datasets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Athanasios</namePart>
<namePart type="family">Giannakopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudiu</namePart>
<namePart type="family">Musat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreea</namePart>
<namePart type="family">Hossmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Baeriswyl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Aspect Term Extraction (ATE) identifies opinionated aspect terms in texts and is one of the tasks in the SemEval Aspect Based Sentiment Analysis (ABSA) contest. The small amount of available datasets for supervised ATE and the costly human annotation for aspect term labelling give rise to the need for unsupervised ATE. In this paper, we introduce an architecture that achieves top-ranking performance for supervised ATE. Moreover, it can be used efficiently as feature extractor and classifier for unsupervised ATE. Our second contribution is a method to automatically construct datasets for ATE. We train a classifier on our automatically labelled datasets and evaluate it on the human annotated SemEval ABSA test sets. Compared to a strong rule-based baseline, we obtain a dramatically higher F-score and attain precision values above 80%. Our unsupervised method beats the supervised ABSA baseline from SemEval, while preserving high precision scores.</abstract>
<identifier type="citekey">giannakopoulos-etal-2017-unsupervised</identifier>
<identifier type="doi">10.18653/v1/W17-5224</identifier>
<location>
<url>https://aclanthology.org/W17-5224</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>180</start>
<end>188</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Aspect Term Extraction with B-LSTM & CRF using Automatically Labelled Datasets
%A Giannakopoulos, Athanasios
%A Musat, Claudiu
%A Hossmann, Andreea
%A Baeriswyl, Michael
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F giannakopoulos-etal-2017-unsupervised
%X Aspect Term Extraction (ATE) identifies opinionated aspect terms in texts and is one of the tasks in the SemEval Aspect Based Sentiment Analysis (ABSA) contest. The small amount of available datasets for supervised ATE and the costly human annotation for aspect term labelling give rise to the need for unsupervised ATE. In this paper, we introduce an architecture that achieves top-ranking performance for supervised ATE. Moreover, it can be used efficiently as feature extractor and classifier for unsupervised ATE. Our second contribution is a method to automatically construct datasets for ATE. We train a classifier on our automatically labelled datasets and evaluate it on the human annotated SemEval ABSA test sets. Compared to a strong rule-based baseline, we obtain a dramatically higher F-score and attain precision values above 80%. Our unsupervised method beats the supervised ABSA baseline from SemEval, while preserving high precision scores.
%R 10.18653/v1/W17-5224
%U https://aclanthology.org/W17-5224
%U https://doi.org/10.18653/v1/W17-5224
%P 180-188
Markdown (Informal)
[Unsupervised Aspect Term Extraction with B-LSTM & CRF using Automatically Labelled Datasets](https://aclanthology.org/W17-5224) (Giannakopoulos et al., WASSA 2017)
ACL