@inproceedings{xia-2018-jiangnan,
title = "Jiangnan at {S}em{E}val-2018 Task 11: Deep Neural Network with Attention Method for Machine Comprehension Task",
author = "Xia, Jiangnan",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1178",
doi = "10.18653/v1/S18-1178",
pages = "1063--1067",
abstract = "This paper describes our submission for the International Workshop on Semantic Evaluation (SemEval-2018) shared task 11{--} Machine Comprehension using Commonsense Knowledge (Ostermann et al., 2018b). We use a deep neural network model to choose the correct answer from the candidate answers pair when the document and question are given. The interactions between document, question and answers are modeled by attention mechanism and a variety of manual features are used to improve model performance. We also use CoVe (McCann et al., 2017) as an external source of knowledge which is not mentioned in the document. As a result, our system achieves 80.91{\%} accuracy on the test data, which is on the third place of the leaderboard.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xia-2018-jiangnan">
<titleInfo>
<title>Jiangnan at SemEval-2018 Task 11: Deep Neural Network with Attention Method for Machine Comprehension Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiangnan</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our submission for the International Workshop on Semantic Evaluation (SemEval-2018) shared task 11– Machine Comprehension using Commonsense Knowledge (Ostermann et al., 2018b). We use a deep neural network model to choose the correct answer from the candidate answers pair when the document and question are given. The interactions between document, question and answers are modeled by attention mechanism and a variety of manual features are used to improve model performance. We also use CoVe (McCann et al., 2017) as an external source of knowledge which is not mentioned in the document. As a result, our system achieves 80.91% accuracy on the test data, which is on the third place of the leaderboard.</abstract>
<identifier type="citekey">xia-2018-jiangnan</identifier>
<identifier type="doi">10.18653/v1/S18-1178</identifier>
<location>
<url>https://aclanthology.org/S18-1178</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1063</start>
<end>1067</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Jiangnan at SemEval-2018 Task 11: Deep Neural Network with Attention Method for Machine Comprehension Task
%A Xia, Jiangnan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F xia-2018-jiangnan
%X This paper describes our submission for the International Workshop on Semantic Evaluation (SemEval-2018) shared task 11– Machine Comprehension using Commonsense Knowledge (Ostermann et al., 2018b). We use a deep neural network model to choose the correct answer from the candidate answers pair when the document and question are given. The interactions between document, question and answers are modeled by attention mechanism and a variety of manual features are used to improve model performance. We also use CoVe (McCann et al., 2017) as an external source of knowledge which is not mentioned in the document. As a result, our system achieves 80.91% accuracy on the test data, which is on the third place of the leaderboard.
%R 10.18653/v1/S18-1178
%U https://aclanthology.org/S18-1178
%U https://doi.org/10.18653/v1/S18-1178
%P 1063-1067
Markdown (Informal)
[Jiangnan at SemEval-2018 Task 11: Deep Neural Network with Attention Method for Machine Comprehension Task](https://aclanthology.org/S18-1178) (Xia, SemEval 2018)
ACL