@inproceedings{zhao-etal-2018-unsupervised,
title = "Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation",
author = "Zhao, Tiancheng and
Lee, Kyusong and
Eskenazi, Maxine",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1101",
doi = "10.18653/v1/P18-1101",
pages = "1098--1107",
abstract = "The encoder-decoder dialog model is one of the most prominent methods used to build dialog systems in complex domains. Yet it is limited because it cannot output interpretable actions as in traditional systems, which hinders humans from understanding its generation process. We present an unsupervised discrete sentence representation learning method that can integrate with any existing encoder-decoder dialog models for interpretable response generation. Building upon variational autoencoders (VAEs), we present two novel models, DI-VAE and DI-VST that improve VAEs and can discover interpretable semantics via either auto encoding or context predicting. Our methods have been validated on real-world dialog datasets to discover semantic representations and enhance encoder-decoder models with interpretable generation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2018-unsupervised">
<titleInfo>
<title>Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tiancheng</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyusong</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxine</namePart>
<namePart type="family">Eskenazi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The encoder-decoder dialog model is one of the most prominent methods used to build dialog systems in complex domains. Yet it is limited because it cannot output interpretable actions as in traditional systems, which hinders humans from understanding its generation process. We present an unsupervised discrete sentence representation learning method that can integrate with any existing encoder-decoder dialog models for interpretable response generation. Building upon variational autoencoders (VAEs), we present two novel models, DI-VAE and DI-VST that improve VAEs and can discover interpretable semantics via either auto encoding or context predicting. Our methods have been validated on real-world dialog datasets to discover semantic representations and enhance encoder-decoder models with interpretable generation.</abstract>
<identifier type="citekey">zhao-etal-2018-unsupervised</identifier>
<identifier type="doi">10.18653/v1/P18-1101</identifier>
<location>
<url>https://aclanthology.org/P18-1101</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1098</start>
<end>1107</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation
%A Zhao, Tiancheng
%A Lee, Kyusong
%A Eskenazi, Maxine
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F zhao-etal-2018-unsupervised
%X The encoder-decoder dialog model is one of the most prominent methods used to build dialog systems in complex domains. Yet it is limited because it cannot output interpretable actions as in traditional systems, which hinders humans from understanding its generation process. We present an unsupervised discrete sentence representation learning method that can integrate with any existing encoder-decoder dialog models for interpretable response generation. Building upon variational autoencoders (VAEs), we present two novel models, DI-VAE and DI-VST that improve VAEs and can discover interpretable semantics via either auto encoding or context predicting. Our methods have been validated on real-world dialog datasets to discover semantic representations and enhance encoder-decoder models with interpretable generation.
%R 10.18653/v1/P18-1101
%U https://aclanthology.org/P18-1101
%U https://doi.org/10.18653/v1/P18-1101
%P 1098-1107
Markdown (Informal)
[Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation](https://aclanthology.org/P18-1101) (Zhao et al., ACL 2018)
ACL