@inproceedings{coavoux-crabbe-2017-multilingual,
title = "Multilingual Lexicalized Constituency Parsing with Word-Level Auxiliary Tasks",
author = "Coavoux, Maximin and
Crabb{\'e}, Beno{\^\i}t",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2053",
pages = "331--336",
abstract = "We introduce a constituency parser based on a bi-LSTM encoder adapted from recent work (Cross and Huang, 2016b; Kiperwasser and Goldberg, 2016), which can incorporate a lower level character biLSTM (Ballesteros et al., 2015; Plank et al., 2016). We model two important interfaces of constituency parsing with auxiliary tasks supervised at the word level: (i) part-of-speech (POS) and morphological tagging, (ii) functional label prediction. On the SPMRL dataset, our parser obtains above state-of-the-art results on constituency parsing without requiring either predicted POS or morphological tags, and outputs labelled dependency trees.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="coavoux-crabbe-2017-multilingual">
<titleInfo>
<title>Multilingual Lexicalized Constituency Parsing with Word-Level Auxiliary Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maximin</namePart>
<namePart type="family">Coavoux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benoît</namePart>
<namePart type="family">Crabbé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a constituency parser based on a bi-LSTM encoder adapted from recent work (Cross and Huang, 2016b; Kiperwasser and Goldberg, 2016), which can incorporate a lower level character biLSTM (Ballesteros et al., 2015; Plank et al., 2016). We model two important interfaces of constituency parsing with auxiliary tasks supervised at the word level: (i) part-of-speech (POS) and morphological tagging, (ii) functional label prediction. On the SPMRL dataset, our parser obtains above state-of-the-art results on constituency parsing without requiring either predicted POS or morphological tags, and outputs labelled dependency trees.</abstract>
<identifier type="citekey">coavoux-crabbe-2017-multilingual</identifier>
<location>
<url>https://aclanthology.org/E17-2053</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>331</start>
<end>336</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Lexicalized Constituency Parsing with Word-Level Auxiliary Tasks
%A Coavoux, Maximin
%A Crabbé, Benoît
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F coavoux-crabbe-2017-multilingual
%X We introduce a constituency parser based on a bi-LSTM encoder adapted from recent work (Cross and Huang, 2016b; Kiperwasser and Goldberg, 2016), which can incorporate a lower level character biLSTM (Ballesteros et al., 2015; Plank et al., 2016). We model two important interfaces of constituency parsing with auxiliary tasks supervised at the word level: (i) part-of-speech (POS) and morphological tagging, (ii) functional label prediction. On the SPMRL dataset, our parser obtains above state-of-the-art results on constituency parsing without requiring either predicted POS or morphological tags, and outputs labelled dependency trees.
%U https://aclanthology.org/E17-2053
%P 331-336
Markdown (Informal)
[Multilingual Lexicalized Constituency Parsing with Word-Level Auxiliary Tasks](https://aclanthology.org/E17-2053) (Coavoux & Crabbé, EACL 2017)
ACL