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Abstract—In order to mitigate the pessimism in parameter
estimation in real-time systems, mixed-criticality (MC) schedul-
ing has been proposed and studied. In light of the first MC
scheduling work focusing on multiple estimates on the worst-
case execution times (WCETs), a few following works also have
extended this approach to other dimensions, such as period,
relative deadlines, and processor speeds. Nonetheless, in most
existing work on MC scheduling, a flat-structured scheduling
approach is assumed, whereas compositional real-time systems
with hierarchical scheduling are of great interest, especially for
large-scale real-time systems. In this work, we aim to extend
the fundamental ideas and frameworks of MC scheduling to
another dimension, namely the budget estimation. To illustrate
this approach, we form up a specific scheduling problem in the
context of a single virtual processor characterized by the periodic
resource model and propose a virtual-deadline-based algorithm
to solve it. Furthermore, we have developed a polynomial-time
schedulability test and have proved a speed-up bound for the
proposed algorithm. We have also derived a range for setting the
resource period to ensure schedulability when the bandwidth and
task set are given. Moreover, we have conducted schedulability
studies and presented our simulation experiment results to
evaluate the proposed model and algorithm.

Index Terms—real-time systems, mixed-criticality scheduling,
hierarchical scheduling, periodic resource model

I. INTRODUCTION

Real-time systems design is often aiming for providing guar-
antees for meeting deadlines in all possible scenarios. As
a result, significant pessimism usually exists in real-time
scheduling analysis and design. The system parameters, e.g.,
the needed execution time for a piece of code, are provisioned
as upper bounds, which are often not tight, on the worst case.
Consequently, while the system design and certification need
to follow these pessimistic provisioned system parameters,
computing resources might be significantly underutilized in
practice due to the potentially huge gap between the general
scenario during runtime and the worst-case provision used for
analysis, design, and certification. One approach to mitigate
such pessimism is mixed-criticality (MC) scheduling [11, 63].
Under MC scheduling, tasks are grouped to two distinct crit-
icality levels—HI (stands for high criticality) and LO (stands
for low criticality), and each system parameter might have two
estimates—a more pessimistic one that provides an absolutely
safe bound on even the worst-case scenario, and a less pes-
simistic one that covers a dominant majority of scenarios in

practice (e.g., take the observed worst case in measurement-
based experiments). An MC scheduler is designed based on
the criticality levels and system parameter estimates, and needs
to guarantee that the deadlines of all tasks (i.e., both HI- and
LO-tasks) are met in “normal” scenarios in common practice
while the deadlines of all HI-tasks are still met even if any
pathological extreme cases do happen.

Although MC scheduling has received much attention in
the real-time systems research community, most existing work
has been directed to a flat-structured scheduling approach,
i.e., a single central scheduler is used to schedule all tasks
in the entire system. However, as computing systems, even
embedded ones, become increasingly complicated and highly
integrated, a single system may need to be designed, analyzed,
implemented, and certified as several isolated components,
with each component having the “illusion” of executing on
a dedicated virtual platform [23]. In a compositional real-
time system, the scheduling follows a hierarchical approach.
An upper-level scheduler distributes the computing capacity
of the physical computing platform to each component and
determines the characteristics of the virtual platform in each
component. Then, each component has a lower-level scheduler
to schedule the tasks in that component upon that virtual
platform.

In order to analyze and certify each component inde-
pendently, interfaces are needed to characterize the supply
provided by a virtual processor (VP), i.e., available processing
time units from the physical processor to support task execu-
tion. For example, the periodic resource model [58] is such
a fundamental interface, which characterizes a VP by a pair
of parameters (Π,Θ), with the interpretation that at least Θ
time units of processor time is guaranteed to the supported
task set every Π time units. Also, the quotient Θ/Π is called
the bandwidth of this VP.

As Θ indicates the minimum budget for any resource period,
it may be necessarily estimated with significant pessimism,
just like what happens to the worst-case execution time
(WCET) estimates. As a result, the resource may be greatly
wasted in the actual runtime.
A motivating scenario. As an example scenario where multi-
ple estimates of a single VP are indeed needed, let us consider
a compositional system where MC concepts can happen in
two hierarchies. Also, we use HIGH and LOW to denote the
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Fig. 1: Illustration of a motivating scenario..

criticalities at the server level and use HI and LO to denote the
criticalities within a component, i.e., on a VP.

As shown in Fig. 1, on the upper-level, two MC components
A and B (potentially together with other components omitted
for simplicity) are supported by two server tasks τA and τB ,
which are scheduled as two conventional MC tasks (HIGH-task
τA and LOW-task τB) on the shared physical platform. Then,
recent work on MC graceful degradation [8, 51] can apply
such that when the HIGH component A requires additional
budget (i.e., τA overruns smaller budget and requires larger
budget (e.g., from 3 to 5 units), potentially for accommodating
extreme behaviors of the HIGH-HI tasks within component A),
server task τB and therefore the LOW component B gets a
degraded budget (e.g., from 20 to 8 units) henceforth.

Focusing on the lower-level hierarchy and inside the LOW
component B, the local tasks may also be of different criti-
calities in a nested manner, denoted as LOW-HI and LOW-LO,
and the LOW-LO tasks should be sacrificed for the LOW-HI
tasks upon the budget degradation for component B. When
we analyze and certify the component B independently in an
isolated manner, which is exactly what compositional systems
aim to achieve), it results in the problem we address in this
paper, i.e., the MC scheduling problem with multiple VP
budget estimates.
Contributions. In this paper, we extend the work of mixed-
criticality scheduling to the resource supply estimates in the
context of compositional real-time systems. By provisioning
resource budget with multiple estimates, we show that fun-
damental ideas and framework of mixed-criticality scheduling
can be applied in another dimension of scheduling problems
that have not been considered before. To illustrate this ap-
proach, we form up a specific scheduling problem in the
context of a single virtual processor characterizing by the
periodic resource model and propose a virtual-deadline-based
algorithm to solve it. Our further technical contributions in
this paper include:
• a polynomial-time schedulability test for the proposed

algorithm is developed;
• a speed-up bound for the proposed algorithm is proved;
• a range for setting the resource period is derived to ensure

schedulability when bandwidth and task set are given;
• schedulability studies are conducted and simulation ex-

periment results are presented.

Organization. In the rest of this paper, we describe our system
model and review a few direct background results (Sec. II), de-
scribe our proposed scheduling algorithm (Sec. III), present a
sufficient schedulability test (Sec. IV), prove a speed-up bound
(Sec. V), derive a range for setting resource period (Sec. VI),
present our experiment evaluation (Sec. VII), discuss related
work (Sec. VIII), and conclude (Sec. IX).

II. SYSTEM MODEL AND BACKGROUND

In this paper, we consider the preemptive scheduling of a set
of tasks of two criticalities on a single VP. Also, we assume
time is discrete in this paper, i.e., all parameters representing
an amount of time units are assumed to be integers and any
scheduling event and decision must happen at an integer time
instant.
Resource model. In light of the periodic resource model [58],
we assume this single virtual processor provides certain avail-
able processing time units to the task set every Π time units,
and Π is called the resource period of this virtual processor.
The amount of available time units within every resource
period is called the budget of this virtual processor. In the
original periodic resource model, a single budget parameter
Θ is assumed, indicating the minimum amount of budget in
any resource period. In contrast, we apply two estimates to
the budget: a critical budget ΘC indicating an absolute lower
bound on the budget in any resource period (e.g., derived
by the most pessimistic analysis), and a nominal budget ΘN

indicating a less pessimistic lower bound on the budget in
any resource period (e.g., based on observations in empirical
experiments). That is, ΘC ≤ ΘN . Also, the critical bandwidth
and nominal bandwidth are defined by

wC =
ΘC

Π
and wN =

ΘN

Π
, respectively. (1)

Task model. On this virtual processor, a set of sporadic tasks
T is supposed to be scheduled. Each task τi ∈ T releases
a sequences of jobs with a minimum separation of Ti time
units, where Ti is called the period of τi. Any job of τi may
be executed for up to Ci time units to complete, i.e., Ci is the
WCET of τi. In this paper, we also assume that the deadlines
are implicit, i.e., every task τi has a relative deadline of Ti time
units indicating that every job of τi has an absolute deadline
at Ti time units after its release. Furthermore, the utilization of
task τi is defined by ui = Ci/Ti. Each task must be specified
as either a high-critical (HI) or low-critical (LO) task. We
also denote the set of HI-tasks and LO-tasks by THI and TLO,
respectively. That is, THI∪TLO = T and THI∩TLO = ∅. We also
denote the total utilization of all tasks, HI-task, and LO-tasks,
respectively, as follows:

U =
∑
τi∈T

ui, UHI =
∑
τi∈THI

ui, ULO =
∑

τi∈TLO

ui.

We also call a job of a HI-task a HI-job for short and call a
job of a LO-task a LO-job for short, respectively. Also, a job
is pending if it is released and has not completed.
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Fig. 2: Worst-case supply of a periodic resource.

Schedulability criteria. Note that, in this paper, two estimates
on the budget (ΘC and ΘN ) for every resource period Π
have been applied, while the actual budget during runtime is
unknown for the pre-runtime analysis. Therefore, the schedu-
lability of the system is defined as

• the deadlines of all (HI- and LO-) tasks must be met, if at
least ΘN available time units are provided as the budget
during every resource period;

• the deadlines of all HI-tasks must be met, if less than ΘN

(but still at least ΘC) available time units are provided
during some resource period.

Utilization-based v.s. demand-based analysis. Under EDF
scheduling with virtual deadlines, there are two approaches
to analyze conventional MC schedulability problems. One is a
utilization-based approach that yields polynomial-time schedu-
lability tests [5, 6]; the other is a demand-based approach that
yields pseudo-polynomial-time schedulability tests [33, 34]. In
this paper as an initial exploration of the proposed new MC
model, we focus on the utilization-based analysis and aims to
develop a polynomial-time schedulability test for the problem
of MC scheduling with multiple budget estimates.

In the rest of this section, we review algorithm EDF-VD
and the periodic resource model in more detail.

A. Algorithm EDF-VD

The scheduling algorithm EDF-VD was first proposed for
scheduling implicit-deadline mixed-criticality tasks with multi-
ple execution time estimates on a dedicated uniprocessor [5, 6],
i.e., no budget nor resource period needs to be considered. That
is, the original targeted problem by EDF-VD is a completely
different scheduling problem from the system model we just
introduced earlier in this section. Nonetheless, we will briefly
review how EDF-VD works for its originally targeted problem
next, in order to illustrate the concept of virtual deadlines that
will be adopted to resolve the problem we address in this
paper.

Under EDF-VD, each HI-job is assigned a virtual deadline
earlier than its actual deadline. Specifically, a scaling factor
0 < x ≤ 1.0 is applied to all HI-tasks so that each HI-task τi

has a relative virtual deadline T ′i = x · Ti. On the other hand,
every LO-job is assigned a virtual deadline equal to its actual
deadline.

During runtime, EDF-VD starts with scheduling all jobs
with respect to their virtual deadlines — the earlier the virtual
deadline, the higher the priority. If all HI-jobs complete their
execution by their less pessimistic execution time estimate, all
virtual deadlines and therefore all actual deadlines are guaran-
teed to be met. If any HI-job executes over its less pessimistic
execution time estimate without signaling completion, all LO-
jobs are dropped by EDF-VD immediately, and afterward, all
HI-jobs are scheduled by EDF with respect to their actual
deadlines.

The setting of the scaling factor x and utilization-based
schedulability tests have been investigated in [5, 6], but we
omit the details here due to the differences in the system
model.

B. Periodic Resource Model

In the periodic resource model [58], a VP is characterized by
two parameters (Π,Θ), which indicate that this VP supplies Θ
units of processor time every Π time units, where 0 < Θ ≤ Π.

Note that, a VP corresponding to a dedicated physical
processor that is always available is a special case in the
periodic resource model where Θ = Π.

The supply bound function (SBF) of the VP, denoted sbf(t),
indicates the minimum processor time this VP can supply
during any time interval of length t. Shin and Lee [58] have
shown that sbf(t) can be calculated by

sbf(t) =

{
0 if t′ < 0⌊
t′

Π

⌋
·Θ + ε if t′ ≥ 0

where
t′ = t− (Π−Θ),

ε = max

(
t′ −Π

⌊
t′

Π

⌋
− (Π−Θ), 0

)
.

This definition reflects the worst-case scenario illustrated in
Fig. 2.

In [58], a linear supply bound function, which is a lower-
bound on the corresponding supply bound function, is also
defined by

lsbf(t) =
Θ

Π
(t− 2(Π−Θ)).

That is, ∀t, lsbf(t) ≤ sbf(t). Fig. 3 illustrates the functions
sbf(t) and lsbf(t). On the other hand, under EDF scheduling,
the demand bound function of a task τi is calculated by

dbf(t, τi) =

⌊
t

Ti

⌋
· Ci,

and the demand bound function for a task set T is

dbf(t, T ) =
∑
τi∈T

dbf(t, τi).
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Linear demand bound functions, which are an upper-bound on
the corresponding demand bound functions, are also defined
by

ldbf(t, τi) = ui · t, and

ldbf(t, T ) =

(∑
τi∈T

ui

)
· t.

That is, ∀t and T , dbf(t, T ) ≤ ldbf(t, T ). Thus, ldbf(t, T ) ≤
lsbf(t) implies dbf(t, T ) ≤ sbf(t). The following lemma and
theorem have been shown in [58], and Theorem 1 below in
fact provides a utilization-based schedulability test.

Lemma 1. (Lemma 5 in [58]) Task set T is schedulable by
EDF on a VP (Π,Θ) if ldbf(Tmin, T ) ≤ lsbf(Tmin) where
Tmin = minτi∈T Ti.

Theorem 1. (Theorem 7 in [58]) Task set T is schedulable by
EDF on a VP (Π,Θ) if

U ≤ Θ

Π

(
1− 2(Π−Θ)

Tmin

)
,

where U =
∑
τi∈T ui and Tmin = minτi∈T {Ti}.

III. ALGORITHM EDF-VDVP

In this section, we present our scheduling algorithm EDF-
VDVP.1 For notational simplicity, we denote

γN =
2(Π−ΘN )

Tmin
, (2)

γC =
2(Π−ΘC)

Tmin
HI

, (3)

where

Tmin = min
τi∈T
{Ti}, and Tmin

HI = min
τi∈THI

{Ti}.

Intuitively, γN and γC measure the proportional “gap”
between the total utilization bound for applying Theorem 1 and
the bandwidth in nominal and critical modes, respectively. It

1“EDF-VDVP” stands for “EDF with virtual deadlines and varying
processor supply.”
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Fig. 4: An illustration for the mode-switch time instant t∗.

is clearly required by the system model that Π ≥ ΘN ≥ ΘC ,
which implies γN ≥ 0 and γC ≥ 0. Furthermore, because
2(Π − ΘN ) and 2(Π − ΘC), as illustrated in Fig. 2, are the
maximum time duration of no available budget for the VP
in nominal and critical modes, respectively, it is necessary to
require that 2(Π − ΘN ) < Tmin and 2(Π − ΘC) < Tmin

HI as
well; otherwise, the potential scenario of the entire scheduling
window of a job (i.e., from its release to its deadline) falling
into such a time duration of absolutely no available budget
clearly prevents that job from meeting its deadline in the worst
case. Thus, it is necessary for any feasible system that

0 ≤ γN < 1 and 0 ≤ γC < 1 (4)

Similar to many mixed-criticality scheduling algorithms,
EDF-VDVP also has two modes to cope with the two esti-
mates. In many prior work on multiple estimates on execution
time, the mode switch point is rather straightforward —
when a job has executed for its less pessimistic execution
time without signaling completion. In our context, the less
pessimistic budget ΘN is the greater one, and therefore the
mode switch cannot be in the same manner as before.
Mode switch. Under EDF-VDVP, there are two modes,
namely the nominal mode and critical mode. The system
always starts with the nominal mode. At every time instant,
the scheduler keeps track of that 1) b time units budget have
already received during the current resource period, and 2)
there are still p time units until the end of current resource
period. The mode switch must happen when a time unit has
no available supply budget, i.e., for some time instant t∗,
the time unit [t∗, t∗ + 1) is not available to provide any
execution for tasks in T . If at time t∗+ 1 it becomes true that
b+p < ΘN , then EDF-VDVP notices that a mode switch to the
critical mode is inevitable and therefore switches to critical-
mode scheduling immediately. We define t∗ (the time instant
followed by an unavailable time unit) as the mode-switch time
instant. Note that, the scheduler detecting the mode switch
at time instant t∗ or t∗ + 1 does not affect any scheduling
decision as [t∗, t∗ + 1) is an unavailable time unit anyway.
Fig. 4 illustrates the mode switch time instant t∗.
Scheduling with virtual deadlines. Besides the differences in
the assumed system model, EDF-VDVP schedules tasks in the
same virtual-deadline-based manner as EDF-VD does. Every



job of HI-task τi has a virtual deadline T ′i = x · Ti time units
after its release, where x is the system-wide virtual deadline
scaling factor such that 0 < x ≤ 1. In contrast, the virtual
deadlines of LO-tasks is the same as their actual deadlines.
In the runtime, the EDF-VDVP always begins with nominal
mode where the pending job with the earliest virtual deadline
is scheduled for execution whenever available processing time
is allocated for the VP. When a mode switch to the critical
mode is triggered, EDF-VDVP discards any pending and
upcoming LO-jobs, and afterwards, schedules the pending
HI-job with earliest actual deadline for execution whenever
available processing time is allocated for the VP.
Calculating the scaling factor x. For a given task set T and
given parameters Π, ΘN , the scaling fact x is calculated by

x =
UHI + wNγN

wN − ULO
. (5)

In any feasible system where THI is not empty, it is clearly
necessary that wN ≥ U > ULO, which implies x > 0. On the
other hand, we further require that x ≤ 1, which is validated
by the schedulability test as presented in Theorem 2 in the
next section.

Moreover, to further understand the implications behind
the requirement of x ≤ 1 in the context, it might be worth
noting that the requirement of x ≤ 1 can also be implied
by an assumption that the system is deemed schedulable
by Theorem 1 in nominal mode when no mode switch is
triggered, because UHI + ULO ≤ wN ·

(
1− γN

)
=⇒ x ≤ 1.

IV. SCHEDULABILITY TEST

In this section, we present a sufficient schedulability test
for EDF-VDVP. The schedulability test needs to validate the
guarantees in the two modes corresponding to the nominal and
critical budgets, respectively, so that the schedulability criteria
defined in Sec. II are met.

The following lemma shows that with x being set by (5),
the deadlines of all (HI- and LO-) tasks are met in the nominal
mode, since the virtual deadline of any job is no later than its
actual deadline.

Lemma 2. Given that 0 < x ≤ 1, all virtual deadlines of HI-
and LO-tasks are met in the nominal mode if

x ≥ UHI + wNγN

wN − ULO
.

Proof. In the nominal mode, treating the virtual deadlines as
the actual deadlines, every HI-task τi can be viewed as a
sporadic task τ ′i with a shorter period (and shorter relative
deadline) T ′i = x · Ti. Therefore,

u′i =
Ci
T ′i

=
Ci
x · Ti

=
ui
x
.

On the other hand, the period, deadline, and therefore utiliza-
tion of every LO-task remain unchanged. That is, each task

τi ∈ T can be viewed as a sporadic task with period T ′i such
that

T ′i =

{
Ti, if τi ∈ TLO

x · Ti, if τi ∈ THI,

and therefore, given that 0 < x ≤ 1,

∀i, T ′i ≥ x · Ti
=⇒ min

τi∈T
{T ′i} ≥ x · Tmin

=⇒ 2(Π−ΘN )

minτi∈T {T ′i}
≤ 2(Π−ΘN )

x · Tmin

=⇒ 1− 2(Π−ΘN )

minτi∈T {T ′i}
≥ 1− 2(Π−ΘN )

x · Tmin
. (6)

Furthermore, the budget supply in the nominal mode follows
the periodic resource model with parameters (Π,ΘN ). Thus,
by Theorem 1, the virtual deadlines of all tasks are met if∑

τi∈TLO

ui +
∑
τi∈THI

ui
x
≤ ΘN

Π

(
1− 2(Π−ΘN )

minτi∈T {T ′i}

)
by (6)⇐=

∑
τi∈TLO

ui +
∑
τi∈THI

ui
x
≤ ΘN

Π

(
1− 2(Π−ΘN )

x · Tmin

)
⇐⇒ ULO +

UHI

x
≤ wN · (1− γN

x
)

⇐⇒ x ≥ UHI + wNγN

wN − ULO
.

The lemma follows.
Furthermore, the following lemma provides a sufficient

condition for all actual deadlines of HI-tasks being met in the
critical mode.

Lemma 3. Given that 0 < x ≤ 1, all actual deadlines of HI-
tasks in the critical mode will be met if

x ≤ 1− UHI + wCγC

wC
.

Proof. At the mode switch point from the nominal to critical
mode, a job from any task τi ∈ THI must either be completed
or have its virtual deadline at or after the mode switch point,
because by Lemma 2, all virtual deadlines of HI-jobs are met
in the nominal mode. That is, if not completed yet, a job of
a HI-task τi must have an actual deadline at least (1 − x)Ti
time units after this mode-switch point. Afterwards, any job
from any task τi ∈ τHI has at least Ti, which is greater than
(1− x)Ti (as 0 < x < 1.0), time units from their releases in
the HI-mode to their corresponding deadlines.

That is, in the critical mode, every HI-task τi can be viewed
as a sporadic task τ ′i with a shorter period (and shorter relative
deadline) T ′i = (1− x) · Ti. Therefore,

u′i =
Ci
T ′i

=
Ci

(1− x) · Ti
=

ui
1− x

.

Furthermore, the budget supply in the critical mode follows the
periodic resource model with parameters (Π,ΘC). Please note
that (Π,ΘC) specification has been actually maintained since



time 0, as ΘC denotes the minimum budget in each resource
period, Therefore, any time intervals, including the ones in the
critical mode can be viewed as a certain time interval under
periodic resource model (Π,ΘC). Thus, by Theorem 1, the
actual deadlines of all HI-tasks are met in the critical mode if∑

τi∈THI

u′i ≤
ΘC

Π

(
1− 2(Π−ΘC)

minτi∈THI{T ′i}

)
⇐⇒

∑
τi∈THI

u′i ≤
ΘC

Π

(
1− 2(Π−ΘC)

(1− x) · Tmin
HI

)
⇐⇒ UHI

1− x
≤ wC · (1− γC

1− x
)

⇐⇒ 1− x ≥ UHI + wCγC

wC

⇐⇒ x ≤ 1− UHI + wCγC

wC

Note that the second last step is because 0 < x < 1.0. The
lemma follows.

By Lemmas 2 and 3, the following theorem holds and serves
as a sufficient schedulability test.

Theorem 2. A mixed-criticality task set T is schedulable by
EDF-VDVP on a VP with resource period Π, nominal budget
ΘN , and critical budget ΘC , if

UHI + wNγN

wN − ULO
+
UHI + wCγC

wC
≤ 1. (7)

Proof. Because it is clear that UHI+w
CγC

wC > 0, (7) implies
x < 1 as x is defined by (5). Therefore, an additional explicit
requirement of x ≤ 1 as discussed in Sec. III is redundant
and can be omitted in this theorem. Furthermore, 0 < x ≤ 1
implies the fact that the virtual deadline of every job is at
or before its actual deadline. Thus, by Lemmas 2 and 3, the
theorem follows.

V. SPEED-UP BOUND

In this section, we derive a speed-up bound for EDF-VDVP,
given its schedulability test as presented by Theorem 2. The
interpretation of speed-up bound in the context of this paper
is as follows.
Speed-up bound. A scheduling algorithm A has a speed-up
bound of ρ if and only if any task set that is schedulable
by some (potentially optimal) algorithm on a unit-speed
processor with the resource model 3-tuple (ΘC ,ΘN ,Π) must
also be schedulable by algorithm A on a speed-ρ processor
with the same resource model 3-tuple.

Please note that each of ΘC , ΘN , and Π is defined by
time units while the amount of work completed by consuming
one time unit budget is proportionally scaled by the processor
speed. As a result, please note that ΘC , ΘN , Π, and therefore
γC and γN , are all independent from the processor speed.
Also, please note that we focus on MC systems where THI 6= ∅;
otherwise, it reduces to a conventional non-MC system.

Limitation. Our results in this section about the speed-up
bound for EDF-VDVP rely on the assumption that

γN + γC < 1, (8)

which is more strict than (4) that is necessarily required in any
feasible MC system. In other words, the speed-up bound in this
section only applies to systems that satisfy (8). Nonetheless,
(8) was not required in the schedulability test derived earlier in
Sec. IV, and therefore the schedulability test itself applies to a
larger set of MC systems than the set of MC systems to which
the speed-up bound in the section applies. Also, please note
that (8) does not impose restrictions on task set utilizations —
given an arbitrary feasible task set and VP bandwidth, (8) only
implies that the resource period (i.e., Π), or more precisely the
maximum length of time interval of no budget (i.e., 2(Π−ΘN )
and 2(Π−ΘC)), needs to be sufficiently small in comparison
to the task periods. For example, while not necessary, requiring
Π ≤ Tmin/4 is able to sufficiently guarantee (8) holds.

In order to derive a speed-up bound for EDF-VDVP, we
establish the following preliminary lemma first.

Lemma 4. In any feasible MC system, the following inequality
holds for all 0 < s ≤ 1− γN that

wN · (s+ γN )− ULO

wN − ULO
≤ s+ γN .

Proof. In a feasible MC system, the total utilization of tasks
in LO-mode must not exceed the bandwidth of the VP in LO-
mode. That is, it must hold that U = ULO +UHI ≤ wN . Since
THI 6= ∅ =⇒ UHI > 0, we then have 0 ≤ ULO < wN , which
implies wN − ULO > 0. Therefore,

wN · (s+ γN )− ULO

wN − ULO
≤ s+ γN

⇐⇒ − ULO ≤ −ULO · (s+ γN )

⇐= 1 ≥ s+ γN

⇐= 0 < s ≤ 1− γN .

Thus, the lemma follows.
Then, we prove the following lemma, which will directly

imply a speed-up bound for EDF-VDVP by scaling speed unit
by 1/s.

Lemma 5. Any task set that is schedulable by some (poten-
tially optimal) algorithm on a speed-s processor (0 < s < 1)
with the resource model 3-tuple (ΘC ,ΘN ,Π) must also be
schedulable by EDF-VDVP on a unit-speed processor with the
same resource model 3-tuple, if

s ≤ 1− γN − γC

2
. (9)

Proof. The goal of the proof is to show that the necessary con-
ditions for a task set T to be schedulable (by any algorithm)
on a speed-s processor will sufficiently imply that this task set
T is schedulable by EDF-VDVP on a unit-speed processor,
by applying Theorem 2.



For the schedulability on a speed-s processor, it is necessary
that in each of nominal and critical modes, the total utilization
of the tasks does not exceed the computing capacity to be
provided in the long-term, where the latter is calculated by
the VP bandwidth multiplying the processor speed. That is, it
is necessarily true that

U ≤ wN · s and UHI ≤ wC · s. (10)

Therefore, we have

U − ULO + wNγN

wN − ULO
+
UHI + wCγC

wC
≤ 1

{by (10)}⇐=
wN · s− ULO + wNγN

wN − ULO
+
wC · s+ wCγC

wC
≤ 1

⇐⇒ wN · (s+ γN )− ULO

wN − ULO
+ s+ γC ≤ 1.

By (9), s ≤ 1−γN

2 ≤ 1 − γN . Therefore, by Lemma 4, we
have

wN · (s+ γN )− ULO

wN − ULO
+ s+ γC ≤ 1

⇐= s+ γN + s+ γC ≤ 1

⇐⇒ s ≤ 1− γN − γC

2
.

That is, by combining the above two steps of derivation, we
have

s ≤ 1− γN − γC

2

=⇒U − ULO + wNγN

wN − ULO
+
UHI + wCγC

wC
≤ 1, (11)

where (11) is in fact identical to (7).
Thus, by Theorem 2, the system must be schedulable under

EDF-VDVP on a unit-speed processor, and the lemma follows.

By Lemma 5 above, scaling up the speed unit by 1/s yields
the following theorem for a speed-up bound for EDF-VDVP
when (8) holds.

Theorem 3. For all systems where γN + γC < 1, algorithm
EDF-VDVP has a speed-up bound of

2

1− γN − γC
.

Proof. By scaling up the speed unit by 1/s in Lemma 5, we
have the following statement. Thus, the lemma follows.

Any task set that is schedulable by some (potentially
optimal) algorithm on a unit-speed processor with
the resource model 3-tuple (ΘC ,ΘN ,Π) must also be
schedulable by EDF-VDVP on a speed-(1/s) processor
(0 < s < 1) with the same resource model 3-tuple, if s
satisfies (9).

Given that γN +γC < 1, s ≤ 1−γN−γC

2 , i.e., (9), is equivalent
to 1

s ≥
2

1−γN−γC . Thus, the theorem follows.

Clairvoyance v.s. non-clairvoyance. It may be worth noting
that the necessary feasibility conditions used in the speed-up
bound derivation in this section are fundamental ones that even
a clairvoyant2 scheduler must respect as well. Therefore, the
speed-up bound for EDF-VDVP, which is a non-clairvoyant
scheduler, is established with respect to any (clairvoyant or
non-clairvoyant) schedulers. It is interesting to investigate
in future work whether a better speed-up bound with re-
spect to non-clairvoyant schedulers only could be achieved
by exploring tighter necessary feasibility conditions for non-
clairvoyance scheduling.

VI. SETTING RESOURCE PERIOD

In the prior sections, we have focused on the problem of
determining whether a given task set is schedulable when
the resource model 3-tuple (ΘC ,ΘN ,Π) is also given. In this
section, we view this problem from another angle, as a system
design problem of selecting a proper resource period Π.

In general, a larger resource period Π is desirable in practice
for less overheads on budget replenishment and preemptions
due to budget exhausting. On the other hand, a larger resource
period Π can jeopardize the schedulability due to the looser
budget guarantees implied by the larger resource period, even
if the long-term bandwidth is preserved.

In particular, we study the optimization problem of maxi-
mizing the resource period Π with given nominal bandwidth
wN and critical bandwidth wC while the schedulability is
required. Please note that, given the fixed values of wN and
wC , the nominal and critical budgets are contingent on the
resource period Π and can be derived by

ΘN = Π · wN and ΘC = Π · wC . (12)

Therefore, by (2) and (3), we have

γN =
2(Π−ΘN )

Tmin
=

2(1− wN )

Tmin
Π, (13)

γC =
2(Π−ΘC)

Tmin
HI

=
2(1− wC)

Tmin
HI

Π, (14)

where

Tmin = min
τi∈T
{Ti}, and Tmin

HI = min
τi∈THI

{Ti}.

Furthermore, by definition, any bandwidth on a uniprocessor
cannot exceed 1 and any overutilization in the long term must
result in non-schedulability, and we restrict our attention to
non-trivial MC systems where THI is not empty and wC < wN .
Therefore, it is clearly necessary that

ULO < U ≤ wN ≤ 1 and 0 < UHI ≤ wC < wN ≤ 1. (15)

The following theorem provides a range for selecting the
resource period Π in order to guarantee the system to be
schedulable. In the case of the following range for Π is empty,

2A clairvoyant scheduler is able to “look into the future” and know the exact
budget allocation for the entire schedule at the beginning of the scheduling.



i.e., 1− UHI
wN−ULO

− UHI
wC ≤ 0 , the implications are that no such

a resource period can be found by the presented approach.

Theorem 4. Considering the problem of scheduling the MC
task set T on a uniprocessor VP and given the values of
nominal bandwidth wN and critical bandwidth wC , the system
is schedulable under EDF-VDVP if

0 < Π ≤
1− UHI

wN−ULO
− UHI

wC

2wN (1−wN )
(wN−ULO)Tmin + 2(1−wC)

Tmin
HI

,

where

Tmin = min
τi∈T
{Ti}, and Tmin

HI = min
τi∈THI

{Ti}.

Proof. By Theorem 2, (7) sufficiently guarantees the schedu-
lability of the MC system under EDF-VDVP. Also, by (13)
and (14), it is true that (7) is equivalent to(

2wN (1− wN )

(wN − ULO)Tmin
+

2(1− wC)

Tmin
HI

)
Π ≤ 1− UHI

wN − ULO
−UHI

wC
.

(16)
By (15), it is clear that

2wN (1− wN )

(wN − ULO)Tmin
+

2(1− wC)

Tmin
HI

> 0.

Therefore, (16) is equivalent to

Π ≤
1− UHI

wN−ULO
− UHI

wC

2wN (1−wN )
(wN−ULO)Tmin + 2(1−wC)

Tmin
HI

,

and the theorem follows.

VII. EVALUATION

We have conducted extensive simulations using synthesized
task sets to evaluate our proposed approaches. Our goal is to
examine the effectiveness of the proposed model and algorithm
EDF-VDVP along with its schedulability test. Specifically, we
evaluate our MC schedulability analysis under EDF-VDVP
(this analysis is denoted by “VDVP”) given its schedulability
test in Theorem 2 and compare it against the conventional non-
MC schedulability analysis under EDF in a compositional real-
time system (this analysis is denoted by “VP”) by Theorem 1
in [58]. Especially, in the case of “VP,” because of the
lack of the notion of tasks’ criticalities, every deadline of all
tasks must be met in all scenarios. Furthermore, since only
one budget estimate Θ is provided in the conventional non-
MC periodic resource model [58] and it models the minimum
budget for any resource period, it must set Θ = ΘC ≤ ΘN to
cover the worst-case budget scenario with the single budget
estimate Θ. In order to compare the schedulability results
provided by VDVP and VP, the metric is to measure the
acceptance ratio of the above tests with respect to a given
goal of task set utilization level U . The experimental results
demonstrated in this section were performed on a PC, enabling
figures to be obtained for large numbers of randomly generated
task sets.
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Fig. 5: Schedulability results when the resource period Π is
small.

A. Simulation Setup

The task parameters are randomly generated as follows: of
the n tasks in each task set, n

K tasks were assigned to each
of the K order of magnitude ranges identified (e.g., when
K = 4, 4 different ranges are selected, i.e., [1, 10], [10, 100],
[100, 10000], [1000, 10000]). Task periods were determined
based on a uniform random distribution, according to each
assigned range. This period generation method is proposed to
replicate the type of period distributions found in commercial
real-time systems (by varying K from 2 to 6 [22]). In all task
sets, task deadlines were set equal to their periods. For each
utilization level studied, the UUniFast-Discard method [14]
is implemented to determine individual task utilization ui
and each task’s execution time was set accordingly, i.e.,
Ci = Ti × ui, given the previously selected task periods. A
total of 100,000 task sets were generated in all experiments.
A similar task sets generation approach is used by Davis and
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Fig. 6: Schedulability results when the resource period Π is
medium.

Burns [22]. The value of |THI|
|TLO| to control the ratio between the

number of high critical tasks and the number of low critical
tasks is also parameterized in evaluations. (For example, |THI|

|TLO|
= 1

3 , 1 and 3.) Similarly, the value of Θ
Π denotes the percentage

of time units which can be utilized to execute real-time tasks
on the virtual processor. Θ

Π are distributed using three uniform
distributions: [0.2, 0.4] (the bandwidth of virtual processor
is low), (0.4, 0.6] (medium), and (0.6, 0.8] (high). Since the
analytical schedulability results of both VDVP and VP are
impacted by the specific values of Θ and Π as well, Π
is distributed using three uniform distributions: [1, 10] (The
resource period of the virtual processor is small), (10, 100]
(medium), and (100, 1000] (large). Furthermore, the budget
Θ can be calculated from the ratio and the resource period
Π. Each such task set was generated by creating tasks until
total utilization exceeded the corresponding utilization cap,
and by then reducing the last task’s utilization so that the total
utilization equalled the utilization cap.
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Fig. 7: Schedulability results when the resource period Π is
large.

B. Schedulability Results

In all graphs, the x-axis denotes the task set utilization cap
and the y-axis denotes the fraction of generated task sets
that were schedulable. In Fig. 5 (respectively, Fig. 6 and
Fig. 7), the resource period of the virtual processor Π is set
to be small (respectively, medium and large). In each figure,
three graphs are presented, where |THI|

|TLO| = 1
3 , 1 and 3 are

assumed. Each graph gives three curves per tested approach
for the cases of high, medium, and low bandwidth of the
virtual processor, respectively. As seen in each graph, the label
“VDVP-h (m/l)” indicates the approach of our utilization-
based test assuming high (medium/low) bandwidth of the
virtual processor. Similarly, “VP” labels are used to denote
the test given in Theorem 1 in [58] under three scenarios.

The obtained schedulability results are shown in Fig. 5 -
Fig. 7. Each curve plots the fraction of the generated task sets
successfully scheduled by the corresponding approach, as a



function of total utilization. As we mentioned earlier, all tasks
in each task set are not differentiated with criticalities in the
case of “VP” and every deadline of all tasks must be met in
all scenarios, thus the three curves labeled by “VP” in three
figures remain the same.

From the experimental results, we can see that, in all tested
scenarios, VDVP achieves the best performance, in many cases
improving upon VP by a substantial margin. For example, as
seen in Fig. 5(b), when the number of high critical tasks is
equal to the number of low critical tasks and the utilization
of the virtual processor is high, VDVP can achieve 100%
schedulability when U equals 0.66 while VP fails to do so
when U merely exceeds 0.46. Note that when |THI|

|TLO| is smaller,
the improvement margin by VDVP over VP increases. This
is because in this case, under MCS model, if more low
critical tasks are discarded in critical mode, it will increase the
chance for the high criticality tasks to be schedulable. Another
interesting observation is when more low critical tasks are
involved, the system is easier to be schedulable under VDVP.
Because fewer high critical tasks are scheduled concurrently
with the same amount of supplied computing capacity in the
high criticality mode. Also in each graph, we observe that all
six tests perform better under higher bandwidth of the virtual
processor. This is because when the bandwidth is larger, more
processing time is available for executing the task system,
which clearly helps all six tests achieve higher schedulability.
Additionally, when the resource period of the virtual processor
is small, the task set seems easier to be schedulable. The
intuitive reason is that when the resource is more frequently
scheduled, the resource may obtain better utilization when
serving the real-time tasks. On average, VDVP yields an over
30% improvement w.r.t. schedulability compared to VP.

VIII. RELATED WORK

In the last decade, multicore processors have become ubiqui-
tous and there has been extensive research work on how to
efficiently utilize these parallel machines with different types
of real-time tasks, including mixed-criticality real-time task
scheduling and compositional real-time task scheduling.

The first work on the verification of a mixed-criticality
system was published by Vestal (of Honeywell Aerospace)
in 2007 [64]. It used an extension of standard fixed-priority
(FP) real-time scheduling theory and proposed a restrictive
work-flow model, focused on a single processor and made
use of Response Time Analysis [3]. It showed that neither
rate monotonic [50] nor deadline monotonic [49] priority
assignment is optimal for MCS; however, Audsley’s optimal
priority assignment algorithm [4] was found to be applicable.
This paper was followed by two publications in 2008 by
Baruah and Vestal [11], and Huber et al. [45]. Later on, EDF-
VD scheduling of MC tasks has been further investigated
[29, 34, 72].

Beside the original mixed-criticality task model, a bunch
of techniques addressing mixed-criticality systems in different
scenarios are proposed: letting any LO-criticality job that has

started, run to completion [12]; reducing the priorities of the
LO-criticality tasks [7], or similar with EDF scheduling [44];
increasing the periods and deadlines of LO-criticality jobs [37,
46, 57, 60, 61, 62], called task stretching, the elastic task model
or multi-rate; decreasing the computation times of some or all
of the LO-criticality tasks [19], perhaps by utilising an impre-
cise mixed-criticality (IMC) model [43] or budget control [39];
moving some LO-criticality tasks to a different processor that
has not experienced a criticality mode change [65]; improving
resource utilization while guaranteeing safe execution of crit-
ical applications [38, 40, 47]. Furthermore, mixed-criticality
scheduling involving varying-speed processors [9, 10, 13, 69]
and graceful degradation [8, 36, 41, 42, 51, 71] has also been
studied.

There also has been extensive research on compositional
real-time scheduling. Insik Shin and Insup Lee present a
formal description of compositional real-time scheduling prob-
lems in [58, 59]. They identify issues that need to be addressed
by solutions and provide their framework for the solutions,
which is based on the periodic interface. Following this work,
[30] introduces the Explicit Deadline Periodic (EDP) resource
model, and present compositional analysis techniques under
EDF and DM. It shows that these techniques are bandwidth
optimal, in that they do not incur any bandwidth overhead in
abstraction or composition. ARINC specification 653-2 [32]
describes the interface between application software and un-
derlying middleware in a distributed real-time avionics sys-
tem. Authors develop compositional techniques for automated
scheduling of partitions and processes in such systems. This
work is followed by [20]. It proposes a compositional approach
to formal specification and schedulability analysis of real-
time applications running under a Time Division Multiplexing
(TDM) global scheduler and preemptive Fixed Priority (FP)
local schedulers, according to the ARINC-653 standard.

In addition to the above initial work on compositional real-
time systems, several novel scheduling algorithms[30, 35, 54]
are proposed to schedule real-time task systems under different
system architectures [2, 18, 21, 24, 25, 26, 27, 28, 48, 55, 56,
66, 67, 68]. Correspondingly, to validate the schedulability
of each real-time task system, schedulability analysis frame-
works [1, 30, 31] are proposed for analyzing real-time tasks in
different real-time applications. Furthermore, when real-time
task re-weighting techniques [15, 16, 17, 52, 53] are applied
to the server tasks at the supply level of each component, it
may result in the VP of a component to have varying budgets.

IX. CONCLUSION

In this paper, we have made efforts to extend the funda-
mental ideas and frameworks of MC scheduling to a new
dimension in the context of compositional real-time systems.
We proposed to use multiple parameters to provision the VP
supply. To illustrate this approach, we form up a specific
scheduling problem in the context of a single virtual processor
characterizing by the periodic resource model and propose
a virtual-deadline-based algorithm to solve it. The proposed



algorithm is supported by a polynomial-time schedulability
test and a speed-up bound. In the context of bandwidth and
task set are given, we have also derived a range for setting
the resource period to ensure schedulability. Moreover, we
have conducted schedulability studies for evaluation, and our
simulation experiment results demonstrate the effectiveness of
our proposed model and algorithm.
Future Work. The work in this paper can be further extended
in several ways. First, in addition to implicit-deadline tasks,
constrained- and arbitrary-deadline may be considered. Sec-
ond, we plan to incorporate multiple budget estimates with the
classic multiple WCET estimates together in MC scheduling.
Also, in addition to the resource budget, multiple estimates
on the resource period are another possible dimension and
need further investigation. Finally, multiprocessor extension
may need more efforts due to the complicated supply analysis
induced by parallelism but is definitely an interesting topic.
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