
EvFS: User-level, Event-Driven File System for Non-Volatile Memory

Takeshi Yoshimura
IBM Research - Tokyo

Tatsuhiro Chiba
IBM Research - Tokyo

Hiroshi Horii
IBM Research - Tokyo

Abstract
The extremely low latency of non-volatile memory (NVM)
raises issues of latency in file systems. In particular, user-
kernel context switches caused by system calls and hardware
interrupts become a non-negligible performance penalty. A
solution to this problem is using direct-access file systems,
but existing work focuses on optimizing their non-POSIX
user interfaces. In this work, we propose EvFS, our new user-
level POSIX file system that directly manages NVM in user
applications. EvFS minimizes the latency by building a user-
level storage stack and introducing asynchronous processing
of complex file I/O with page cache and direct I/O. We report
that the event-driven architecture of EvFS leads to a 700-ns
latency for 64-byte non-blocking file writes and reduces the
latency for 4-Kbyte blocking file I/O by 20 µs compared to a
kernel file system with journaling disabled.

1 Introduction

Non-volatile memory (NVM) brings a significant benefit
to file systems in terms of read/write latency. For example,
a non-volatile memory express (NVMe) SSD shows 7 µs
read and 18 µs write latency [1]. Non-volatile main mem-
ory (NVMM) reaches between 20 and 85 ns for reads and
between 10 and 1000 ns for writes depending on memory
technology [22]. At this scale, however, user-kernel context
switches caused by system calls and hardware interrupts be-
come a non-negligible performance penalty [15]. User appli-
cations can minimize these overheads by leveraging user-level
storage frameworks for NVMe (e.g., Storage Performance De-
velopment Kit (SPDK) [21] and NVMeDirect [11]) or direct
memory-mapped I/O (mmap) for NVMM (e.g., [9, 10, 19, 20]),
but those frameworks require changes in application code.

A solution to this problem is using direct access enabled
file systems, but existing work focuses on optimizing their
specialized user interfaces for efficient I/O processing. For ex-
ample, BlobFS [3], which is a user-level file system in SPDK,
exposes its optimized user-level storage stack to applications

through its non-POSIX interface. BlobFS experimentally pro-
vides POSIX interface with FUSE, but it incurs a cost of
IPCs [17, 24]. Other user-level filesystems [15, 16, 18] also
show that their specialized interfaces outperform POSIX in-
terface. However, optimization of I/O processing with POSIX
interfaces for NVM remains an important direction for accel-
erating existing user applications.

In this work, we propose EvFS, our new user-level POSIX
file system that directly manages NVM in user applications.
Our key insight is that an event-driven architecture of EvFS
minimizes the latency of the file system since it enables a user
application to invoke a non-blocking file I/O with ns-level
latency for event submission. This design is inspired by the
event-driven architecture of BlobFS for efficient polling-based
I/O processing. We adopt their efficient execution model to
the communication between users and page cache in EvFS.
It enables EvFS to highly utilize the bandwidth of DRAM
and NVM even with few user threads. The file system can
also reduce the latency for a user’s persistent requests like
fsync by coalescing multiple writes with managed persistent
ordering.

EvFS is provided as a dynamic link library to avoid changes
in application code and binaries. The library exposes POSIX
APIs to eliminate system calls. We built EvFS on top of the
user-level storage stack in SPDK. The storage stack in SPDK
manages both NVMe and NVMM within its block layer and is
promising for the future enhancement of EvFS. EvFS contains
page cache for both NVMe and NVMM, but users can still
bypass the feature with open flags (e.g., O_DIRECT in Linux).

We also report our preliminary experimental results with
FIO, a microbenchmark for file I/O. Non-blocking I/O with
EvFS reached 700 ns for 64-B writes. For blocking I/O, EvFS
reduced file I/O latency by 20 µs compared to EXT4 with
journaling disabled.

2 Background and Motivation

In this section, we first discuss prior user-level file systems
that aim to offer high performance I/O to user applications.



Then, we summarize their problems, which our user-level file
system will solve.

2.1 High performance user-level file systems

Moneta-D [7] and Arrakis [15, 16] offer their user-level file
systems with hardware-assisted virtualization. Their key idea
is to delegate software complexity such as security checks
to hardware. They require rich storage features such as pro-
tection mechanisms, flash-backed SRAM on the device (i.e.,
volatile write cache in NVMe), and the use of a flash trans-
lation layer for wear leveling. However, their requirements
include auxiliary features that are often limited due to cost effi-
ciency. For example, the volatile write cache is set to a limited
size or zero compared to main memory. In that case, we need
to emulate the hardware cache in software to work around the
limited hardware features, which can be complicated.

Aerie [18] provides a user-level file system for NVMM.
It bypasses page cache because of the high performance of
NVMM, but HiNFS [14] shows the effectiveness of cache
line-sized page cache to solve the issue of long write latency
of NVM [6,23]. Aerie also provides mmap to allow user appli-
cations to enable users’ direct accesses to NVMM as done by
kernel file systems for NVMM [9, 10, 14, 19, 20]. In the case
of mmap, those file systems can remove both context switches
and a storage stack from critical I/O paths. However, it also
raises challenges to guarantee crash safety. NOVA-Fortis [20]
resolves the challenges and reports performance degradation
caused by page faults in particular workloads.

ScaleFS [5] and Strata [12] employ user-level loggers to
record per-process updates and digest them into their kernel
file systems. They move file cache from the kernel to user
processes. As a result, cache reads/writes do not need context
switches. These in-memory logs are lazily collected at fsync,
so users can increase total throughput by coalescing multiple
writes. However, their fsync needs context switches because
it involves their kernel file systems.

FUSE enables user-level file systems running within a
user process. Applications with FUSE can easily export their
mount point to an OS while serving the high customizability
in file system implementation. As a result, there are many
use-cases of FUSE for high-performance file systems such as
distributed file systems (e.g., GlusterFS and HDFS). However,
FUSE incurs a cost of IPCs [17, 24], which cause a relatively
large latency for NVM.

SPDK also has BlobFS [3], which is its own simple user-
level file system for RocksDB enhancement. We initially
extend BlobFS, but EvFS departs from the original design.
For example, BlobFS provides POSIX APIs with FUSE and
their page cache does not allow random accessing. As a result,
we need to design and implement EvFS from scratch although
we reuse some SPDK utilities in its implementation.

Application

Filesystem
/block layer

NVM

write() fsync()

Flush

Context switch Execution

Figure 1: Breakdown of a persistent write with a kernel
file system. We regard in-memory processing of file systems
such as memory copy from a user buffer to page cache and
preparing an I/O submission as “Execution.” We omit jour-
naling from the figure.

2.2 Problem summary
In summary, prior user-level file systems aim to reduce OS
involvement with modern hardware features and sophisticated
storage software stacks. Prior work aimed to simplify criti-
cal I/O paths in user applications by using hardware features
or mmap. However, the reality of NVM raises the require-
ment for complex but essential software features such as page
cache and crash safety. The complexity is derived from the
never-ending demand for crash safety and file I/O optimiza-
tion. From this observation, we argue that we should explore
how we hide the file system’s complexity, which potentially
increases its latency, from user applications.

Figure 1 describes the breakdown of a persistent write that
prior file systems aim to optimize. Kernel file systems syn-
chronously execute the complex processing of file I/O within
the kernel context of a process that requests a system call. We
divide the latency of a file system from user applications into
context switches and synchronous processing of file I/O.

3 EvFS

EvFS is a user-level POSIX file system that minimizes its
latency from user applications by reducing the number of
context switches and asynchronously processing all file I/O.
Figure 2 shows the comparison of a traditional kernel file
system and EvFS. We built a user-level storage stack with
SPDK to reduce context switches caused by system calls
and hardware interrupts. We also leveraged SPDK utilities to
build an event-driven architecture for asynchronous file I/O
processing.

3.1 User-level storage stack
3.1.1 Library calls

EvFS is provided as a shared library, which has the same
POSIX file APIs as LIBC (e.g., open). By preloading the
shared library before LIBC, EvFS can hook these APIs. We



Application threads

POSIX interfaces

SPDK
Blobstore

NVMe
NVMM

LogVol
RAID

POSIX interfaces

VFS

Page cache
Page
cache

File system

NVMe

Block layer

NVMM

Kernel filesystems EvFS

User

Kernel

EvFS thread

SPDK block layer

Application threads

Figure 2: Comparison of a traditional kernel file system
and EvFS. We use SPDK’s storage stack and utilities to
implement EvFS. EvFS has poller threads for asynchronous
file I/O processing and block-level I/O

eliminate system calls that cause context switches between
users and the kernel by replacing these APIs into our li-
brary function calls. Those library functions operate storage
read/writes via file descriptors like traditional file systems
(Section 3.1.4 and 3.1.5), but invoke user-level storage stack
and NVM drivers in SPDK to directly operate storage within
a user process context (Section 3.1.2 and 3.1.3). This design
enables us to avoid modifying existing Linux applications to
enable EvFS.

3.1.2 User-level block layer

We architect a backend storage stack with SPDK to support
various NVMe and NVMM devices in our user-level block
layer. SPDK contains a user-level NVMe driver and also sup-
ports PMDK, which is an external library for NVM. We can
easily apply EvFS to new storage by developing a new SPDK
block driver. SPDK also provides a scalable thread library,
event-based I/O processing, and extended storage drivers such
as software RAID and logical volumes. We expect that we can
easily combine and enhance modern NVM devices with this
rich storage stack and EvFS to our future enterprise solutions.

EvFS builds a UNIX file-directory structure within an
NVM namespace by using SPDK Blobstore [4]. It builds and
maintains a simple logical block layout for flash storage. The
superblock of Blobstore maintains metadata for each BLOB,
which represents a chunk of block page clusters in storage.
Blobstore provides interfaces for reads, writes, and resizes on
a BLOB, and thus, we regard a BLOB as an inode. However,
Blobstore itself has a flat structure and does not maintain any
trees or directories. Thus, we emulate a UNIX-like directory
by using a BLOB that contains the pointer to other BLOBs
and subdirectories under the directory.

A limitation of Blobstore is that the size of a BLOB must
be sufficient for a write. Thus, EvFS has to track the size of

each BLOB and invoke an expand request before a BLOB
write occurs if the write exceeds the size. Each BLOB has
customizable extended attributes that contain the name and
length of a BLOB. Blobstore updates these metadata in mem-
ory and writes it back to storage when we explicitly invoke a
synchronization API. Blobstore has the crash safety at page
granularity, but EvFS handles the file-level consistency by
using the synchronization API.

3.1.3 User-level page cache

In addition to the SPDK storage stack, we introduce user-level
page cache in EvFS to coalesce multiple writes and reads on
BLOBs. With page cache, user applications can achieve either
DRAM-level speed at no memory pressure or NVM-level
speed at high memory pressure. Note that user applications
can choose direct I/O by specifying it at an open call to avoid
redundant memory copies for page cache.

EvFS enables users to set the limit of memory usage in
page cache. EvFS evicts page cache from memory to NVM
if the ratio of dirty page cache reaches a configurable thresh-
old. In the case of no memory space for page cache, EvFS
delays a user’s request by using event chaining described in
Section 3.2.2. EvFS reduces its speed to NVM-level when
there is no memory space for event descriptors described in
Section 3.2.1. In that case, a requesting thread sleeps until
EvFS finishes the processing of a chained event and releases
the memory for it.

3.1.4 Private mount point

EvFS creates a private mount point for the user application
when the library loads. Users can specify the mounted path
and a used NVM namespace through environmental variables.
Thus, multiple applications can share data on NVM by speci-
fying the same variable. However, EvFS currently does not
allow concurrent accesses to the same NVM namespace from
different user processes. NVM namespace that is mounted
becomes inaccessible and invisible to the OS kernel and other
concurrent processes. To enable concurrent accesses, we are
planning to develop an exposed interface as done in prior
work [16]. We use a hardware-based NVM namespace to
partition storage that our NVMe supports. Theoretically, we
can apply logical volumes in SPDK or isolated virtual vol-
umes [13] to EvFS with separated partitions even if NVM
does not support namespaces.

3.1.5 POSIX interface

Figure 3 lists all the APIs and open flags EvFS currently
provides. EvFS associates a file descriptor (FD) to an inode,
i.e., a BLOB at an open call. We keep the integer for the
FD to be consistent for files under file systems other than
EvFS by opening a pseudo file (e.g., /dev/null in Linux)
and reusing it. By changing open flags such as O_SYNC, users



Type APIs
File open, read, write, pread, pwrite,

lseek, close, __xstat, __lxstat,
__fxstat, posix_fadvise, fsync,
unlink, unlinkat, stat, access,
truncate, ftruncate, creat

Directory opendir, readdir, closedir, mkdir
Flags O_SYNC, O_DIRECT
Thread pthread_create, __libc_start_main

Figure 3: Supported APIs and flags in EvFS under
Ubuntu 18.04 LTS. This figure excludes 64-bit variations
such as open64. __libc_start_main calls the main() function
and handles the return from it in an application. Note that
exact names of APIs depend on the version of an OS and
LIBC, CPU type, and other environments.

can control the blocking level and consistency for file I/O.
EvFS enables a non-blocking write if a user does not specify
O_SYNC. O_DIRECT enables direct I/O on a file so that users
can choose to bypass page cache. EvFS will support mmap as
well as the APIs shown in Figure 3 in the future.

We also hook APIs for thread creation (pthread_create
and __libc_start_main) to associate I/O channels to indi-
vidual application threads. We attach thread-local memory
to application threads during the thread creation so that we
can avoid frequent memory allocation to prepare events for
file reads and writes. Memory allocation increases page table
updates, which cause not only user-kernel context switches
but also potential scalability issues [8].

3.2 Asynchronous file I/O processing
3.2.1 Executions with event descriptors

In EvFS, dedicated threads poll event queues and execute sub-
mitted events. Each event consists of an event descriptor that
contains a callback address and arguments such as a BLOB,
target offset, length, and user buffer. We follow the SPDK’s
event-driven execution model for our file I/O processing.

Suppose that a user thread called a read. In that case, read
in EvFS allocates an event descriptor with EvFS’s internal
read callback, the arguments for read, and a semaphore for
I/O completion notification. Then, the poller thread expands
the event descriptor and executes EvFS’s internal read with
the argument. The internal read also allocates an event de-
scriptor with Blobstore’s internal read callback, a callback
for the completion handler for Blobstore’s read, and the argu-
ments for the read. Finally, the poller thread extracts it and
executes Blobstore’s read.

These recursive event submissions finally invoke SPDK’s
user-level NVMe device driver if the file system mounts an
NVMe. The NVMe driver writes memory-mapped I/O to
trigger data transfer from the NVMe with direct memory

access (DMA). Unfortunately, we cannot directly set a user
buffer that an application specifies at the first read’s argument
to the DMA target, since it is often allocated from non-page
aligned heap memory such as malloc, which is not DMA-
enabled memory. Instead, EvFS allocates page-aligned, DMA-
enabled memory for page cache (or temporary memory for
direct I/O) and uses it for the physical data transfer from/to
NVMe.

After the DMA request, a poller thread periodically checks
NVMe’s doorbell device register to catch physical I/O comple-
tion. If the thread detects the I/O completion, it synchronously
calls the upper-level completion handlers. For example, the
completion handler for Blobstore’s read is called, and it should
post the semaphore to notify the completion to the user thread.
This polling-based I/O completion handling eliminates hard-
ware interrupts and reduces the latency of EvFS.

POSIX APIs allow both blocking and non-blocking file I/O.
Non-blocking file I/O enables user applications to return to
their thread execution immediately after an event submission.
In this case, we cannot eliminate additional memory copies
before the submission since the copy elimination would result
in an inconsistent write if the user conducted an in-place
update on the buffer. For blocking I/O, user threads need
to wait for the I/O completion. In this case, we can add the
address of the user buffer to the event descriptor to directly
copy data from a DMA-enabled memory.

We need to carefully avoid memory allocation for event
submissions since it increases system calls and page table
updates. EvFS employs a simple memory pool for reducing
the number of system calls for memory allocation.

3.2.2 Event Chaining

In cases where EvFS needs to handle complex event dependen-
cies, we postpone the event until the dependent one finishes
by chaining the event descriptor to the dependent object. The
dependent object invokes the postponed event after it finishes.
For example, a BLOB write must be called after a resize if
the write occurs on a larger offset than the on-disk BLOB
length. In this case, we chain the event to one for the depen-
dent resize. EvFS also supports page cache, so we need to
handle cases where a write happens on a page that is being
written back. In that case, we postpone the write event by
chaining it to one for the dependent page in page cache. We
also have to release non-dirty pages if the memory pressure
or a fsync call occurs. Users expect that all the API calls will
finish before fsync returns, so EvFS chains a “barrier” event
to a queue that manages on-going events and synchronously
start cache eviction after all the on-going events complete.

4 Preliminary Evaluation

In this section, we show the result of our preliminary eval-
uation of EvFS. Specifically, we compare the performance



0
10
20
30
40
50
60

64
 B

12
8 

B

1 
K

B

4 
K

B

La
te

nc
y 

(μ
s)

(b) 99th latency

EXT4 EvFS

0
0.5

1
1.5

2
2.5

3

64
 B

12
8 

B

1 
K

B

4 
K

BTh
ro

ug
hp

ut
 (G

B/
s)

(c) Throughput

EXT4 EvFS

0

5

10

15

20

25
64

 B

12
8 

B

1 
K

B

4 
K

B

La
te

nc
y 

(μ
s)

(a) Mean latency

EXT4 EvFS

Figure 4: Latency of non-blocking writes. The mean and
99th-percentile latencies of non-blocking writes with different
request sizes on EvFS and EXT4 are shown in (a) and (b),
respectively. The throughputs for each workload are shown
in (c).

of EvFS and EXT4. Our benchmark is FIO, which executes
file I/O with POSIX APIs. Reported results are the average
of ten FIO runs. For each run, a single FIO thread executes
40-GB random reads or writes (no mixed reads and writes).
Our evaluation uses Ubuntu 18.04 LTS on an IBM Power Sys-
tem AC922 machine with 160 logical CPU cores (POWER9,
3.8GHz), 1-TB DRAM, and 6.4-TB NVMe SSD [2]. We
disabled readahead at the block layer and journaling for the
EXT4 to simplify our analysis. We do not show the result
with memory pressure. EvFS shows higher latency and lower
bandwidth under memory pressure as well as other file sys-
tems. Note that even if the memory is sufficient, EvFS evicts
cache to reach the configured ratio of dirty pages as well as
other file systems. We set the ratio to 20% in our experiments.

4.1 Does EvFS minimize latency?
Figure 4 (a) and (b) shows the mean and 99th-percentile la-
tency of non-blocking writes on EXT4 and EvFS, respectively.
EvFS shows a lower latency than EXT4 for all the cases. In
this workload, the dominant factor of write latency for EXT4
is the time for memory copies from the user buffer to ker-
nel page cache and user-kernel context switches. EvFS also
copies the user buffer to a per-thread event buffer, but we elim-
inated the context switches and busy-waits for racy writes on
a page by event chaining. As a result, non-blocking writes
with EvFS reached 700 ns for 64-B writes.

An advantage of the ns-level latency is that the storage
bandwidth can be highly utilized with a single thread. Fig. 4
(c) shows a large throughput gain at 4-KB writes. We ex-
pect that EvFS can mitigate the issue of NVMM’s limited
bandwidth by utilizing DRAM.

As related techniques, we also conducted similar experi-
ments with Linux’s LIBAIO and POSIXAIO. However, they
do not show better latency for I/O submissions than sim-
ple non-blocking I/O with EXT4 because LIBAIO needs to
call Linux APIs and POSIXAIO also needs the overhead of
thread creations. Thus, we expect that EvFS can optimize

0

50

100

150

200

250

EX
T4

EX
T4

-d
ire

ct

Ev
FS

Ev
FS

-d
ire

ctTh
ro

ug
hp

ut
 (M

B/
s)

(c) Throughput

Read Write

0
10
20
30
40
50
60

EX
T4

EX
T4

-d
ire

ct

Ev
FS

Ev
FS

-d
ire

ct

La
te

nc
y 

(μ
s)

(b) Write latency

Mean 99th

0

40

80

120

160

200

EX
T4

EX
T4

-d
ire

ct

Ev
FS

Ev
FS

-d
ire

ct

La
te

nc
y 

(μ
s)

(a) Read latency

Mean 99th

Figure 5: Performance of direct and buffered I/O. The
mean and 99th-percentile latencies for 4-KB reads and writes
on EXT4, EXT4 with direct I/O (EXT4-direct), EvFS, and
EvFS with direct I/O (EvFS-direct) are shown in (a) and (b),
respectively. We regard a buffered I/O for a write as a pair
of write and fsync. The throughputs for each workload are
shown in (c).

asynchronous I/O.

4.2 Does EvFS optimize direct I/O? Does di-
rect I/O reduce latency?

Figure 5 shows the mean and 99th-percentile latencies for di-
rect and buffered I/O. We regard a buffered I/O for a write as a
pair of write and fsync in this case. For both I/O types, EvFS
enables applications to avoid user-kernel context switches for
their critical I/O paths. EvFS reduced mean latency for direct
reads and writes by 20 µs from EXT4. As a result, the band-
width of EvFS reached 2.2x higher for writes and 1.3x higher
for reads than EXT4. Direct I/O in EvFS reduced the read la-
tency by two µs from buffered reads. This result indicates that
EvFS is promising for future NVM with much lower latency
for reads and writes. Latency sensitive applications can be
optimized with EvFS and its direct I/O, although they should
maintain a self-managed cache.

5 Conclusion

In this work, we introduced EvFS, our new user-level, event-
driven, POSIX file system for NVM. The event-driven archi-
tecture of EvFS enables low latency and high throughput I/O
with NVM for user applications. EvFS potentially mitigates
the limited bandwidth of NVMM by utilizing DRAM. How-
ever, at the time of writing, EvFS is not a production-ready
file system because it neither provides all the POSIX APIs
or crash-safe properties. We believe that the event-driven ar-
chitecture enables us to mitigate the latency of future EvFS
and NVM due to their increased complexity and requirements
through its 700-ns latency of non-blocking I/O and 20-µs
improvements in blocking I/O.



6 Discussion

We are looking to receive feedbacks around mmap with user-
level file systems like EvFS. As a file system for NVM, EvFS
should enable user applications to use mmap. We are planning
to hook LIBC mmap to provide this functionality as well as
other POSIX APIs. However, we can provide two different
ways for mmap: allowing or disallowing direct mapping of
NVMM area to user applications.

The former answer is to allow direct mapping as well as
other file systems, but it exposes the NVM complexity to user
applications. Applications can easily degrade performance
or causes inconsistency if they incorrectly specify memory
barriers. Also, a slow write latency may affect the applications’
performance.

Disallowing the direct mapping means EvFS enables user
applications to map page cache instead of raw NVM area. The
biggest advantage is that user applications can use the mapped
area with the same manners as other storage. Applications
can read and write the mapped area at DRAM speeds. Even if
the size of NVM is limited, we can provide a larger area for
mmap by using DRAM. However, this idea may raise another
challenge for how we replace pages on DRAM and NVMM.
Without smart replacement policies, application performance
will easily degrade due to frequent page faults.

References

[1] Intel R© optaneTM memory series (32gb, m.2
80mm pcie 3.0, 20nm, 3d xpoint) product spec-
ifications. https://ark.intel.com/content/
www/us/en/ark/products/series/99743/
intel-optane-memory-series.html.

[2] Pcie3 x8 nvme 6.4 tb ssd nvme flash adapter (fc ec5e and
ec5f; ccin 58fe). https://www.ibm.com/support/
knowledgecenter/8335-GTH/p9hcd/fcec5e.htm.

[3] Spdk: Blobstore filesystem. https://spdk.io/doc/
blobfs.html.

[4] Spdk: Blobstore programmer’s guide. https://spdk.
io/doc/blob.html.

[5] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements,
M. Frans Kaashoek, and Nickolai Zeldovich. Scaling a
file system to many cores using an operation log. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17), pages 69–86, 2017.

[6] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and
Zili Shao. Emerging nvm: A survey on architectural
integration and research challenges. ACM Transactions
on Design Automation of Electronic Systems (TODAES),
23(2):14:1–14:32, November 2017.

[7] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner,
Arup De, Joel Coburn, and Steven Swanson. Providing
safe, user space access to fast, solid state disks. In Pro-
ceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XVII), pages 387–400,
2012.

[8] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. Radixvm: Scalable address spaces for multi-
threaded applications. In Proceedings of the 8th ACM
European Conference on Computer Systems (EuroSys
’13), pages 211–224, 2013.

[9] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better i/o through byte-addressable, persis-
tent memory. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles (SOSP
’09), pages 133–146, 2009.

[10] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems (EuroSys ’14), pages 15:1–15:15,
2014.

[11] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim.
Nvmedirect: A user-space i/o framework for application-
specific optimization on nvme ssds. In Proceedings of
the 8th USENIX Conference on Hot Topics in Storage
and File Systems (HotStorage ’16), pages 41–45, 2016.

[12] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP
’17), pages 460–477, 2017.

[13] Mihir Nanavati, Jake Wires, and Andrew Warfield. Deci-
bel: Isolation and sharing in disaggregated rack-scale
storage. In Proceedings of the 14th USENIX Confer-
ence on Networked Systems Design and Implementation
(NSDI ’17), pages 17–33, 2017.

[14] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A high perfor-
mance file system for non-volatile main memory. In Pro-
ceedings of the Eleventh European Conference on Com-
puter Systems (EuroSys ’16), pages 12:1–12:16, 2016.

[15] Simon Peter, Jialin Li, Doug Woos, Irene Zhang, Dan
R. K. Ports, Thomas Anderson, Arvind Krishnamurthy,
and Mark Zbikowski. Towards high-performance
application-level storage management. In Proceedings
of the 6th USENIX Conference on Hot Topics in Storage
and File Systems (HotStorage ’14), 2014.

https://ark.intel.com/content/www/us/en/ark/products/series/99743/intel-optane-memory-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/99743/intel-optane-memory-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/99743/intel-optane-memory-series.html
https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm
https://www.ibm.com/support/knowledgecenter/8335-GTH/p9hcd/fcec5e.htm
https://spdk.io/doc/blobfs.html
https://spdk.io/doc/blobfs.html
https://spdk.io/doc/blob.html
https://spdk.io/doc/blob.html


[16] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Imple-
mentation (OSDI ’14), pages 1–16, 2014.

[17] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and
Erez Zadok. To fuse or not to fuse: Performance of user-
space file systems. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST
’17), pages 59–72, 2017.

[18] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and
Michael M. Swift. Aerie: Flexible file-system interfaces
to storage-class memory. In Proceedings of the Ninth
European Conference on Computer Systems (EuroSys
’14), pages 14:1–14:14, 2014.

[19] Jian Xu and Steven Swanson. Nova: A log-structured
file system for hybrid volatile/non-volatile main mem-
ories. In Proceedings of the 14th Usenix Conference
on File and Storage Technologies (FAST ’16), pages
323–338, 2016.

[20] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,

Steven Swanson, and Andy Rudoff. Nova-fortis: A fault-
tolerant non-volatile main memory file system. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17), pages 478–496, 2017.

[21] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu,
C. Chang, G. Cao, J. Stern, V. Verma, and L. E. Paul.
Spdk: A development kit to build high performance
storage applications. In 2017 IEEE International Con-
ference on Cloud Computing Technology and Science
(CloudCom ’17), pages 154–161, 2017.

[22] X. Zhang, D. Feng, Y. Hua, and J. Chen. Optimizing
file systems with a write-efficient journaling scheme on
non-volatile memory. IEEE Transactions on Computers,
68(3):402–413, March 2019.

[23] X. Zhang, D. Feng, Y. Hua, and J. Chen. Optimizing
file systems with a write-efficient journaling scheme on
non-volatile memory. IEEE Transactions on Computers,
68(3):402–413, March 2019.

[24] Yue Zhu, Teng Wang, Kathryn Mohror, Adam Moody,
Kento Sato, Muhib Khan, and Weikuan Yu. Direct-fuse:
Removing the middleman for high-performance fuse
file system support. In Proceedings of the 8th Interna-
tional Workshop on Runtime and Operating Systems for
Supercomputers (ROSS ’18), pages 6:1–6:8, 2018.


	Introduction
	Background and Motivation
	High performance user-level file systems
	Problem summary

	EvFS
	User-level storage stack
	Library calls
	User-level block layer
	User-level page cache
	Private mount point
	POSIX interface

	Asynchronous file I/O processing
	Executions with event descriptors
	Event Chaining


	Preliminary Evaluation
	Does EvFS minimize latency?
	Does EvFS optimize direct I/O? Does direct I/O reduce latency?

	Conclusion
	Discussion

