
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Kivi: Verification for Cluster Management
Bingzhe Liu and Gangmuk Lim, UIUC; Ryan Beckett, Microsoft;

P. Brighten Godfrey, UIUC and Broadcom
https://www.usenix.org/conference/atc24/presentation/liu-bingzhe

Kivi: Verification for Cluster Management

Bingzhe Liu
UIUC

Gangmuk Lim
UIUC

Ryan Beckett
Microsoft

P. Brighten Godfrey
UIUC and Broadcom

Abstract
Modern cloud infrastructure is powered by cluster manage-

ment systems such as Kubernetes and Docker Swarm. While
these systems seek to minimize users’ operational burden,
the complex, dynamic, and non-deterministic nature of these
systems makes them hard to reason about, potentially leading
to failures ranging from performance degradation to outages.

We present Kivi, the first system for verifying controllers
and their configurations in cluster management systems. Kivi
focuses on the popular system Kubernetes, and models its
controllers and events into processes whereby their interleav-
ings are exhaustively checked via model checking. Central
to handling autoscaling and large-scale deployments are our
modeling optimizations and our design which seeks to find vi-
olations in a smaller and reduced topology. We show that Kivi
is effective and accurate in finding issues in realistic and com-
plex scenarios and showcase two new issues in Kubernetes
controller source code.

1 Introduction
Modern cloud infrastructure relies on technologies like con-
tainers, microservices, and serverless computing to develop
applications that are resilient and manageable. To orches-
trate these components, practitioners are widely adopting clus-
ter management systems like Kubernetes (K8s) and Docker
Swarm. These systems consist of a diverse collection of con-
trollers (e.g., scheduler, autoscaler). Aiming to minimize the
users’ operational burden, these controllers run in a continu-
ous closed loop and automatically drive the cluster towards
desired goals through manipulating shared cluster objects.

However, it is challenging for users to safely and correctly
use these cluster management systems, and many outages
have occurred as a result [10, 15, 20, 22, 35]. Even a single
controller can consist of sophisticated workflow logic that is
influenced by diverse configuration parameters, introducing
opportunities for human mistakes. For example, the sched-
uler in K8s has 12 different pipeline stages and 21 complex
scheduling strategy plugins (each of which contains a few
or even a dozen of parameters to tune) to choose from for
these stages [25]. Moreover, even if users correctly configure
a single controller, multiple controllers can have non-trivial in-
teractions because they operate on overlapping sets of cluster
components [56]. Furthermore, frequent operational changes,

multiple teams of engineers making changes with different
goals, and unpredictable environmental events (e.g., workload
changes and failures) all amplify the chance of a mistake.

Through case studies of community-collected failure
cases [2], we have identified a collection of unintended or
pathological behaviors (§3.1) that can happen due to the
aforementioned challenges. Unintended behaviors include
the number of pods (a pod is the smallest deployable unit in
K8s) dropping below a necessary minimum, or the placement
of pods becoming unexpectedly unbalanced. Pathological
behaviors include a pod oscillating in an unending cycle of
scheduling and eviction, or failing to be scheduled despite the
existence of plentiful resources. These behaviors can result
in performance degradation and even serious service outages,
yet are hard for users to reason about manually.

With the increasing complexity of cluster management
systems, we believe users need automated ways to check
the correctness of their clusters. Testing and emulation [44,
47, 57–59, 63, 74, 75, 78] are common ways to find issues,
but they are insufficient for cluster management systems
where controllers run asynchronously and events may take
place in any non-deterministic order. On the other hand,
verification techniques are known to provide high cover-
age of distributed systems by considering all interleavings
of components. There have been many successful stories
using verification for distributed systems and networking
(e.g., [40–43, 49, 50, 53, 61, 62, 67, 72, 73, 76, 77, 79]), yet
none have been tailored to cluster management systems. They
either focus on low-level implementation details or specific
protocols (e.g., Paxos, BGP), instead of the properties that are
related to the entanglement of several or even tens of control
components. For instance, in K8s, the number of replicas is
affected by the deployment controller, horizontal pod autoscal-
ing (HPA), scheduler (and its various plugins), descheduler,
events like node failures, and more.

In this paper, we present Kivi, the first system for veri-
fying cluster management system controllers and their con-
figurations. Kivi focuses on Kubernetes, the most popular
open-source cluster management platform. Kivi takes the
users’ intent1, the state and configuration of the cluster, and

1We use “intent” to mean a set of properties that the cluster administrator
wants to ensure.

USENIX Association 2024 USENIX Annual Technical Conference 509

the event assumptions as inputs, and verifies if the cluster
can violate the intent. If a violation is possible, it generates
a minimal counterexample. Kivi checks on four categories
of properties (§3.2) that we have identified in the domain
of cluster management systems: unexpected topology, object
numbers, object lifecycles, and oscillation.

It is challenging to effectively verify K8s, as it has a very
complex and large implementation. To make verification
tractable, we need to move from source code to a model; but
this in turn involves work to build a faithful model. Our main
goal in Kivi is to verify the interactions between controllers
or between controllers and events. Therefore, to make mod-
eling feasible and sufficiently faithful, we found it is enough
to model the high-level logic the controllers use to interact
with the cluster (i.e., via manipulating object states like the
status of pods). Kivi leverages the explicit model checker
SPIN [51]. We model K8s objects into shared global states
and model controllers and events into processes whereby their
non-deterministic interleaving can be searched exhaustively
by SPIN.

Scalability is another daunting challenge in cluster man-
agement systems. A cluster can reach hundreds of nodes and
many thousands of pods leading to the state explosion prob-
lem [45]. Furthermore, autoscalers are common in cluster
management systems, so users would be interested in not only
one but a wide range of cluster topologies. There may be mul-
tiple dimensions for autoscaling (i.e., various types of nodes
and pods), and the possible topologies that need to be verified
can grow exponentially against the cluster size.

To tackle the scalability challenges, we posit a hypothesis:
if a cluster setup can violate an intent, then it can do so at
relatively small scale. Prior work [60, 74] has made a simi-
lar observation in other types of systems. According to this
intuition, we designed an incremental scaling algorithm that
starts to verify a cluster at the smallest non-trivial scale, and
then intelligently increases the scale across multiple scaling
dimensions until either finding a violation or reaching an em-
pirically sufficient scale (ESC) and concluding that – if the
ESC is sufficiently large to make the hypothesis true – then
no violation is possible at any scale. This dramatically im-
proves performance compared to verifying all possible scales,
and produces violations that are more minimal and easier
for users to understand. However, it does not guarantee zero
false negatives; confidence in the no-violation response is
empirical.

In addition, to improve the performance of individual runs
of the model, we have implemented a few optimization mech-
anisms to reduce the verification search space, which enables
our model to scale to sufficiently large problem sizes.

Our implementation of Kivi includes six commonly-used
and representative controllers with logic derived from the
K8s source code. We evaluate Kivi on a test suite of eight
representative cases derived from realistic failures. Our key
findings are:

• Validating the small-scale hypothesis. Although the hypoth-
esis is not radical, it is still necessary to (a) validate it in the
novel domain of cluster management systems, and (b) quan-
tify what scale is enough. Using our collected test cases, we
show experimentally that intent violations do consistently
appear at small scale: the maximum minimum size needed
to produce a violation is only 3 nodes and 6 pods. In 6 of 7
cases, Kivi found violations at even smaller scale than the
original problem report.

• Performance. Our evaluation using realistic failure cases
shows that Kivi verifies most cases within 100 seconds
and all cases within 25 minutes. Without our incremental
scaling algorithm, verification times out (> 10000 sec) even
at moderate scale (≤ 50 nodes).

• Accuracy. Kivi has successfully found the correct violations
for all configuration violation cases and reported no failures
for non-violation cases. We have also performed a compari-
son with real K8s cluster runs and found that Kivi closely
models the real system.

• New issues found. Though we mostly focus on misconfig-
uration issues, Kivi manages to find two new issues in the
implementation of a K8s controller.
This work does not raise any ethical issues. We summarize

our contributions as follows:
1. Though K8s is widely used, there is limited work on con-

troller interaction problems. We shine a light by presenting
categories of failures that are caused by the non-trivial
interactions in K8s, and identifying new properties for
verification in this domain.

2. We present Kivi, the first system for verifying controllers
and their configurations in cluster management systems.
Kivi mostly focuses on finding misconfiguration issues,
but can also find controller logic issues. We implement
an accurate model of selected K8s objects and controllers.
Our model is designed with a set of optimizations that can
be adopted by future verification systems in the domain.
Our evaluation shows that Kivi is scalable and can verify
realistic failure cases.

3. We posit the hypothesis that for properties of interest in
K8s it is sufficient to verify at small scale. Although this
hypothesis is known to be true in some other domains, we
empirically validate and quantify it in the novel domain of
cluster management systems.

2 Modern Cluster Management Systems
Cluster management systems [1, 3, 30, 66] orchestrate the
lifecycles of compute resources by allocating and scaling
resources efficiently to improve application performance and
reliability. They consist of multiple controllers that operate
asynchronously to drive the cluster towards desired goals
through manipulating shared objects. While the concepts are
more general, we describe here the basic objects in K8s. Pods2

2Pods are also called replicas in the K8s deployment configuration. We
use replicas and pods interchangeably in this paper.

510 2024 USENIX Annual Technical Conference USENIX Association

are the smallest deployable unit that each consists of one or
several containers with shared resources. Nodes are virtual
or physical machines that run pods. Workloads define the
lifecycle of a group of pods, including both user configuration
on how they should be scaled, updated, and terminated, and
also the live state such as replica numbers. Deployments is the
most common workload that manages stateless applications.
There are other types of workloads like StatefulSets [34],
DaemonSet [26] and Job [28].

Each controller attempts to drive one or more objects to
their goal states by periodically checking the states via the
logically centralized communication channel API server and
reconciling. Multiple controllers may operate on the same
objects. Though controllers share states via the API server,
there is no agreed-upon notion of a globally desired goal state.
We briefly summarize the goal of the most popular Kubernetes
controllers in Table1.

Controllers Description Target
Objects

Scheduler Places pods to nodes. It filters out
infeasible nodes and selects the best

node based on scheduling preference.

Pods

Descheduler Actively evicts pods when placement
could drift away from the desired state.

Pods

Horizontal Pod
Autoscaler (HPA)

Autoscales pod number based on given
target resource utilization (e.g., CPU

usage) within a specified range.

Workloads

Kubelet Responsible for managing the lifecycle
of pods on each node.

Pods

Workload
Controllers

(WLC)

A set of controllers that each manages a
specific type of workload, e.g.,

deployment controller.

Pods,
Workloads

Node Controller Manages the lifecycle of nodes. Nodes

Cluster
Autoscaler (CA)

Adjusts the number of nodes according
to cluster resource usage.

Nodes

Ingress Controller Load balances outside requests to pods. Requests

Table 1: Most popular Kubernetes controllers.

3 Failure Case Study and Takeaways
We studied community-collected failure cases [2] supple-
mented with failures mentioned in talks at KubeCon (the
main conference for the Kubernetes developers and users)
between 2017-2023, and potential problems mentioned in the
Kubernetes official documentation. While there are various
reasons for failures, including DNS issues [11,18], Linux ker-
nel issues [17,19,23], configuration syntax problems [13,22],
and credential issues [8, 13], we are interested in the fail-
ures that are caused by the non-trivial interactions between
controllers, or between controllers and events. We have col-
lected 16 failure cases related to such non-trivial interactions
and summarized them in Table 2 and an extended Table 6 in
Appendix A.

In §3.1, we summarize the causes of failure into three cat-
egories and describe a few motivating examples. Based on
these failures we identify several important properties to ver-

zone: 1

hostName: 1 hostName: 2

hostName: 3

zone: 2
(a) Case C3

lifecycle: spot, weight: 4

hostName: 1 hostName: 2 hostName: 4hostName: 3

hostName: 5

lifecycle: on-demand, weight: 5

pod

node

(b) Case C8

Figure 1: Cluster configurations for two failure examples.

ify for cluster management systems in §3.2. We finally discuss
the takeaways for verification tool design in §3.3.

3.1 Why do problems occur?
Non-trivial interactions between components in a single
controller. Even configuring a single controller correctly is
challenging. For example, the scheduler contains 12 pipeline
stages that can be extended with 21 default plugins [25] for a
wide range of strategies. Each plugin contains various configs,
some of which can interact with other plugins. For exam-
ple, users can configure PodTopologySpread(SPTS) plugin
(which aims to evenly spread pods) with an unlimited number
of constraints where each constraint has 8 parameters, 2 of
which are related to another two plugins3. Furthermore, many
important details have not been documented well and users
can easily make mistakes4.

We describe a simple example that shows the non-trivial
interaction between configurations in a single plugin. Be-
fore we dive into details, we define each SPTS constraint as
skew(k)≤a, which means that the difference in the number
of pods in any two groups is ≤ a, where each group is defined
as the set of nodes that have the same value of a given label k.
For example, skew(zone)≤ 1 is satisfied by Fig. 1a: there
are two groups, one defined by the label zone:1 that has 3
pods, and the other defined by zone:2 that has 2 pods, and
hence the difference between the two groups is 1.
Case C3 (Conflict SPTS constraints) [27]. A 3-node cluster
was labeled as shown in Fig. 1a. A 6-pod deployment was
configured with two SPTS constraints: skew(hostName)≤ 1
and skew(zone)≤ 1. The first 5 pods were scheduled suc-
cessfully as shown in the figure. However, the 6th pod failed
to be scheduled because it could not satisfy both constraints.
This issue only manifests under specific topologies. If each
zone is configured with a similar number of nodes, the user
would not encounter this issue.
Non-trivial interactions between controllers. Kubernetes
contains various controllers, each of which has its own goals
while manipulating shared objects. Furthermore, these con-
trollers may be configured by multiple teams with different
goals. The interactions between controllers may affect each

3The configurations define if NodeAffinity and NodeTaints would be
considered when calculating the skewness in topology.

4For example, if multiple SPTS constraints are defined for a pod, the
node’s labels need to match with all constraints to be considered in the
skewness calculation and as a candidate for the pod.

USENIX Association 2024 USENIX Annual Technical Conference 511

Case
ID

Description Reasons Min Violation
Scale ⟨|N|, |P|⟩

Reported Scale
⟨|N|, |P|⟩

C1 [21] Pods consumed high CPU during bootstrapping leading HPA to scale up rapidly to max replicas. CE ⟨1,3⟩ ⟨Unknown,150+⟩
C2 [4,6] Not enough replicas because users applied an updated YAML file without defining number of

replicas (1 by default).
MC, CE ⟨1,2⟩ ⟨Unknown,3⟩

C3 [27] Configurations of two SPTS constraints caused the 6th pod to fail to be scheduled. SCC ⟨3,6⟩ ⟨3,6⟩
C4 [15] Scheduler kept assigning pods with high CPU usage to the same node causing a kernel panic and

pod failure loop.
CE ⟨2,5⟩ Unknown

C5 [24] Conflict configurations of scheduler and RemoveDuplicate policy in descheduler. MC ⟨2,4⟩ ⟨5,10⟩
C6 [5] Pods unbalanced after maintenance. Node failures then caused the pod count to drop too low. CE ⟨2,2⟩ ⟨3,3⟩

C7 [16] Conflicting configurations of node taint and pod NodeName caused scheduling and eviction loop MC ⟨1,1⟩ ⟨Unknown,5⟩
C8 [24] Conflicting descheduler and scheduler configurations caused scheduling and eviction loop. MC ⟨3,6⟩ ⟨5,10+⟩

Table 2: Failure cases that are caused by the non-trivial interactions between controllers and events. MC, SCC and CE stand for interactions
between multiple controllers, single controller components, and controllers and events. The last two columns show the minimum scale (where
|N| and |P| are the total number of nodes and pods accordingly) that we find violations, and whether it is smaller than the reported scale.

Property
Categories

Description Related Controller Type Failure Cases

Unexpected
Topology

Objects should be placed in certain patterns according to users’ optimization metrics. E.g.,
requests or pods may need to be evenly spread to improve failure tolerance, or certain

nodes may contain special resources (e.g., GPUs) that should be saved for specific pods.

Scheduler, CA, Ingress
Controller

Safety C6 (C9, C15)

Unexpected
Object

Numbers

The number of objects should fall into a certain range. Too many pods or nodes can
consume excessive resources and too few can affect the reliability of the applications.

Scheduler, Descheduler,
HPA, WLC, CA

Safety C1, C2, C6
(C10)

Unexpected
Object

Lifecycles

The lifecycle of an object includes its creation, execution, and termination after task
completion or failure. An object may go through an unexpected lifecycle, e.g., due to

failure during creation or unexpected eviction.

Scheduler, Descheduler,
Kubelet, WLC, Node

Controller

Safety C3, C4, C7, C8
(C11, C12, C13,

C15)

Oscillation The state of the cluster becomes unstable and changes back and forth in an unending cycle. Any Liveness C4, C5, C7, C8

Table 3: Taxonomy of properties. Failure cases in parentheses are in the Appendix A.

other’s optimization goals or even become conflicts, causing
performance degradation or even pathological behavior.
Case C8 (Conflict between scheduler and descheduler) [24].
A 5-node cluster was labeled with hostName and lifecycle
as shown in Fig. 1b. A 10-pod deployment was configured
to use two scheduling plugins: (1) SPTS with two soft con-
striants skew(hostName)≤1 and skew(lifecycle)≤1; (2)
NodeAffinity(SNA) where the nodes with on-demand for
the label lifecycle are preferred during scheduling than
the nodes with the value spot, with weight of 5 and 4 re-
spectively. The two SPTS constraints in fact conflict with
each other (similar to Case C3) and with the SNA: SPTS is
targeted to spread evenly while SNA prefers the on-demand
nodes. Therefore, the SPTS constraints cannot be satisfied, yet
scheduling was still successful because SPTS were soft con-
straints. However, a descheduler was configured to hold the
SPTS constraints even though they were soft. The non-trivial
interactions between three controllers led to an unending evic-
tion and scheduling cycle: the descheduler evicted pods, the
deployment controller added the pods back to maintain the
desired replicas, and scheduler scheduled pods back.
Non-trivial interactions between controllers and events.
Various events can occur that affect the status of the objects
in a live cluster. For example, environmental events like pod
CPU changes (e.g., due to increased user requests) and node
failures, and operational events like maintenance and new

application deployment. Users may not consider these events
when they configure controllers, and moreover, these events
can happen non-deterministically, resulting in failures that are
hard to predict prior to deployment.
Case C6 (Pod unbalance after maintenance) [5]. Pods initially
were evenly spread across the nodes. A maintenance event
happened that took down a node, resulting in rescheduling of
the affected pods. After the maintenance was completed and
the node came back, however, the pods was not rescheduled
back to the node, resulting in an unbalanced topology and
leaving the cluster with potential vulnerability to failures. A
descheduler should have been used to re-balance the pods.
Case C2 (Exceeded number of pods caused by CPU usage)
[6]. The pods in a deployment consumed high CPU (100%
of requested) at the bootstrapping phase and then dropped
back to normal usage. However, the high CPU usage at the
beginning led the HPA to rapidly scale up the pods until
hitting the maximum number of replicas allowed. After pods
gradually went through the bootstrapping phase, the HPA then
slowly scaled down these extra pods. These extra pods wasted
many resources without serving actual traffic and caused great
confusion for the users.

3.2 Properties to Verify
We observe that each controller interacts with the cluster by
manipulating a small set of well-defined objects and their

512 2024 USENIX Annual Technical Conference USENIX Association

states. For example, the scheduler listens to the creation of
pods and controls the cluster by either changing the topology
(i.e., the placement) of the pods, or affecting the number of
pods and pod lifecycles when it fails to find suitable nodes. To
get good coverage of the properties for how controllers inter-
act with the cluster, we enumerate the most popular controllers
in K8s, and we identify three object states that cover what
these controllers manipulate: object topology, object num-
bers, and object lifecycles. We cross-validate this finding
with the failure cases. We find that 15 of 16 cases are caused
by not meeting the expected goal of one or more of the three
object states, except for one case caused by the unexpected
lifecycle of the controller itself. We summarize four categories
of properties5 to check in Table 3 according to the three object
states. Oscillation is a special type, as it checks if any object
states can be changed back and forth in an unending cycle.
Note that each property category can contain several proper-
ties to verify, as each category can be “parameterized” with
object types (i.e., pods, nodes, requests, workloads). Among
these properties, oscillation is a liveness property while the
rest are safety properties. Oscillation checks for pathological
behaviors, and others check on unintended behavior that does
not match with users’ intent.

3.3 Takeaways
The goal of our case study is to learn the characteristics of the
failures that are caused by the non-trivial interactions between
components in the cluster management systems. Although the
study is not broad enough to serve as a complete quantitative
study for the domain, we believe the cases we collected have
good diversity and are representative in terms of the involved
Kubernetes components, the root causes, and the underlying
properties being violated. These findings can guide us on
what to model in Kivi: we should include events, controllers
and their features (e.g., we should model different plugins in
the scheduler), objects and their attributes (e.g., we should
model the CPU usage of pods), the properties mentioned in
§3.2, and model quantities (both real and integer numbers).

We believe the lessons we learned can also help with other
future verification work in this domain.

4 Kivi System Design
To use Kivi, users provide their cluster configurations and
select the properties that they want to verify from our property
library. Kivi takes users’ input, and either assures that the
desired properties will be preserved or generates minimal
counterexamples. §4.1 describes the workflow of Kivi. A
critical component of Kivi is the model. Kivi implements a
carefully-designed model of Kubernetes controllers, objects,
and events suitable for exhaustive analysis by a model checker.
In order to give this component a deep enough discussion, we
describe it separately in §5.

5These properties are not fully orthogonal. E.g., C8 counts for both oscil-
lation and unexpected object lifecycles. Users can verify either property.

Verifying the cluster management systems raises signifi-
cant performance challenges due to many execution paths,
parameter configurations, and potentially large scale; we de-
scribe how Kivi tackles the problems of performance and
scale with a scaling algorithm in §4.2 and model design and
optimization in §5. We describe the workflow of the main
component that operates the verification procedures in §4.3.

4.1 System Workflow
Figure 2 shows the workflow of Kivi, including the five main
components of its design:

The Parser takes three main elements as inputs: (1) the
object configurations that contain the configurations of nodes
and Kubernetes workloads, e.g., deployment YAML file, (2)
the controller and event configurations that configure the be-
havior of the controllers and event assumption, e.g., the HPA
YAML file, and (3) intent that describe operators’ expected
behavior of the cluster. Parser takes these inputs and parses
them into a uniform format, the Cluster Setup, and sends it to
the Verifier Operator. A Cluster Setup (illustrated in Figure 2)
consists of the object setup that defines the configuration for
each object type (e.g., minimum number of nodes), and the
control setup that includes the configurations for controllers,
events and intent.

The Verifier Operator carries out the actual verification pro-
cedure given the inputs from the Parser. The Verifier Operator
implements a scaling algorithm (introduced in §4.2) that con-
ducts the verification in multiple cycles with incrementally
larger and larger scale. For each cycle, the verifier operator
first decides a Profile, which contains the setup of a particular
scale, a subset of intent, and other verification configurations
for that cycle. It then calls the Model Generator to generate a
verification model, then receives the verification result from
the Model Checker and finally decides if the results are ready
to send to the users or if another cycle is needed. We describe
this workflow in more detail in §4.3.

The Model Generator pre-processes the Profile to complete
any missing elements with default values, discretizes all the
values, and selects a subset of controller and event templates
from the Model Templates that are related to the designated
intent and configurations according to the Profile.

The Model Templates include the model logic with “holes”
that will be filled in with configuration parameters from
the Profile for the controllers and events Kivi supports. We
have implemented these templates manually, where most con-
trollers are modeled based on the Kubernetes source code.
These independent templates enable the modularization of
the verification process. We discuss more details in §5.

The Model Checker performs exhaustive verification for
the generated model. It either assures desired properties
will be preserved, or finds property violations and generates
counterexamples demonstrating violations. We leverage the
explicit-state model checker SPIN [51] in Kivi.

USENIX Association 2024 USENIX Annual Technical Conference 513

intent

controllers
events

Model Templates

…

Model
Generator

Cluster runtime

Controller/Event
configs

Object
configs

Kivi

Model Checker

Parser

Intent

Model

Cluster setup
Incremental

Scaling Algorithm

Options
(e.g., find all violations)

②

③

④
⑤ ⑥

⑦

⑧

Counterexamples
1. Deployment create 5 pods.
2. Schedule pod 1 to node 1.
3. Schedule pod 2 to node 2.
4. Kubelet start pod 1 on
node 1.
…
21. expReplicas is violated!

Or

Verifier Operator

Profile
(scaled setup,

queue size, etc.)

Verification
results

①

nodes

templates: status,
labels, resources, …

configs: lowerbound,
upperbound, …

type#1

…

type#2

deps

templates: status,
requestResources,
schedConfig, …

configs: lowerbound,
upperbound, …

type#1

…

type#2

Object setup

Control setup
noOscillationEviction,
replicaNumAlwaysMeetExp

descheduler: RemoveDuplicates
…

Cluster Setup

maintenance

Verifier ③

Figure 2: Kivi workflow. It consists of five main components: Parser, Verifier Operator, Model Generator, Model Templates and Model
Checker. It receives the configurations and intent from the users and outputs verification results. A cluster setup consists of the object setup that
defines the configurations for object types and the control setup that includes the configurations for controllers, events and intent.

4.2 Verifying Clusters at Small Scale

4.2.1 Incremental Scaling Algorithm Intuition

On the one hand, verifying cluster management systems has
a daunting scale challenge. Clusters can reach hundreds or
thousands of nodes, and many thousands of pods, bringing
well-known state explosion problems [45]. Moreover, clus-
ters typically run autoscalers and vary in size, so that users
would be interested in not only one but a wide range of the
cluster topologies that are generated from a cluster setup, and
there may be multiple dimensions of scale (i.e., pod size and
node size), so there is a very large number of possible cluster
topologies even for a medium-sized cluster (tens of nodes).

On the other hand, the problem is actually simpler in the
domain of cluster management systems, because much of the
complexity mainly lies in the cluster setup which does not
grow with the size of the cluster. All the cluster topologies are
generated from the cluster setup, where each object is gen-
erated from a template in the setup rather than being crafted
by hand. Because of this, the patterns and properties demon-
strated in a subset of the topologies are often representative
for all the topologies.

This leads to a key hypothesis, similar to observations in
other domains [60, 74]: we posit that if a cluster setup can
violate an intent, then it can do so at relatively small scale.
This means that it will be sufficient to verify the cluster at
small scale. If we cannot find a failure at small scale, we can
conclude that, with high confidence, there are no violations at
any scale.

Of course, it is possible to invent cluster setups that do
not satisfy the hypothesis. The question is whether it is valid
empirically – and if so, what scale is typically enough to en-
sure finding a violation? To answer that question, we evaluated
the failure cases shown in Table 2. We use our verification
workflow to explore all the cluster topologies to find the mini-
mum scale in which the problems occur for each case, in the
“Min Violation Scale” column. All cases show a violation at

relatively small scale, with the maximum minimum violation
scale being 3 nodes and 6 pods. (We discuss the study in
detail in §6.1.)

4.2.2 Incremental Scaling Algorithm
The above intuition leads to our scaling algorithm: start at
small scale, and gradually increase the size until we find viola-
tions or reach a empirically sufficient scale (ESC), i.e., a scale
at which we have high confidence that the violation should
have been found if there is one. In addition to performance,
smaller counterexamples will generally be easier for users to
understand.

We describe the algorithm first assuming we are given the
ESC, in the form ESC = ⟨nesc,θesc⟩, where nesc is an integer
number of nodes and θesc is a ratio of number pods to number
of nodes, representing the scale that is considered empirically
sufficient.

One complication is that there may be multiple node or pod
types that are treated differently by controller configurations
(e.g., one node type could be a set of nodes with the same
available resources). Given that, do we need to explore all the
combinations of the scale dimensions? We observe in practice
that violations can appear or disappear depending on the exact
scale values in each dimension (§6.1). We therefore check
all combinations of node and pod scale dimensions, up to the
ESC limits, to avoid compromising confidence. As we will
see, Kivi is still sufficiently fast.

Our scaling algorithm is shown in Algorithm 1. For each
node type i, it explores its scale from nmin

i to nmax
i , where by

default nmin
i = 0 and nmax

i = nesc for all i. For each pod type
i, it explores its scale from pmin

i to pmax
i , where by default

pmin
i = 0 and pmax

i = θesc ·n where n is the number of nodes
in the topology being tested.

This description omits a few details. We allow the user to
configure minimum and maximum node and pod scales if
desired. We skip any scale that results in trivial failure cases,
meaning if the total node or pod size is 0 or generates non-

514 2024 USENIX Annual Technical Conference USENIX Association

Algorithm 1 incremental scaling algorithm
1: procedure SCALING
2: α = number of node types
3: φ = number of pod types
4: for (n1, . . . ,nα) ∈ sort(Πα

i=1{nmin
i , . . . ,nmax

i }) do
5: n = ∑

α
1 ni

6: for (p1, . . . , pφ) ∈ sort(Πφ

j=1{pmin
j , . . . ,θesc ·n}) do

7: t = topology of n1, . . . ,nα nodes and p1, . . . , pφ pods
8: if not trivalCase(t) then
9: verifier(t) ▷ verify the topology

interesting failures (i.e., an excessive number of pods6 cannot
be scheduled onto the nodes). A complete description is in
Appendix B.

To illustrate the scaling algorithm with a tiny example, sup-
pose there are two types of nodes both with nmin = 0 and
nmax = 1 and one type of pod with θesc = 2. The incremen-
tal scaling algorithm then explores topologies of the form
⟨|N1|, |N2|, |P1|⟩ in the following order, where |N1| and |N2|
are the number of nodes of type 1 and type 2 respectively, and
P1 is the number of pods of type 1: ⟨1,0,1⟩, ⟨0,1,1⟩, ⟨1,0,2⟩,
⟨0,1,2⟩, ⟨1,1,1⟩, ⟨1,1,2⟩, ⟨1,1,3⟩, ⟨1,1,4⟩. Each scale will
be verified in one cycle by the verifier operator (discussed in
§4.3).

4.2.3 Determining ESC
To determine ESC = ⟨nesc,θesc⟩, Kivi leverages a library of
known failure cases (in our experiments, those in Table 2) to
empirically find at which minimum scale the failures have
been found for all the cases.

We run Algorithm 1 with small changes to find the mini-
mum violation scale for each failure case: 1) we set nmax

i and
pmax

i to infinity to allow the algorithm to explore all possible
scale; 2) we stop the algorithm after finding the first violation,
which determines the minimum violation scale.

We then find the maximum, across all failure cases, of
the total number of nodes (summed across all node types)
among all minimum violation scales and define it as the ESC
for nodes (nesc). Because the number of pods that a cluster
can host generally scales with the number of nodes (due to
resource limits), we define the ESC for the pods (θesc) as
the ratio of the total number of pods (summed across all pod
types) to the number of nodes. We calculate this ratio as
the maximum value of the ratios among all the minimum
violation scale mentioned above. (Note that although these
values are sums across types, when we use the ESC limits in
Algorithm 1 we will test each individual type ranging up to
the maximum, to be conservative.) We double both nesc and
θesc to provide more confidence.

Taking the failure cases in Table 2 as an example, we can
find nesc = 3 ·2= 6 and θesc = 3 ·2= 6 (after doubling), where
nesc is from C8 and C3, and θesc is from C1 and C4. Users can

6The user can provide us an upper bound of the ratio of pods to nodes
numbers in their cluster, or we can approximate it from the resource requests
of pods and available resources of nodes.

also leverage their cluster failure history and execute Kivi’s
verification workflow without setting the bounds of the scaling
algorithm to find the minimum violation scale for their failure
cases and empirically customize the ESC.

While the intuition that failures appear at small sizes (if
they appear at all) works for our collected failure cases, it may
not be applicable to some other properties, like the failures
related to proportions or absolute values7. If desired, rather
than using ESC as a limit, users can use Kivi to check on
a specific scale in a live cluster (by providing the cluster
logs), a range of scale of interests, or even the entire scale-
spaces. However, checking the entire scale-space may require
significant time.

4.3 Workflow of Verifier Operator
Consider again Figure 2. The incremental scaling algorithm
(2) takes in the cluster setup (1) and generates an array of
scaled setups each of which is a setup for a particular scale,
sorted from smallest to largest. The verifier (3) takes each
scaled setup in order and generates a profile with the setup and
other verification parameters. The parameters include options
set by the users, e.g., stop at the first violation or find all,
whether to enable randomness in search (optimization options
in §5.2), or other internal parameters like the queue size for
the controllers (§5.1) or verifying for a subset of intent at a
time if applicable. The profile is sent to the model generator
(4) to generate the SPIN model (5 , see §5.1). Then the
model checker is triggered to compile and verify the model
(6) and sends the result back to the operator (7).

If a violation is found, the verifier can generate the coun-
terexample by analyzing the error trace produced by SPIN,
and present the result to the user (8). Or it can continue
to find more violations if the user has chosen the “find all”
option. If no violation is found, the operator picks the next
profile (e.g., larger queue size or another subset of intent if
applicable, or the next scaled setup) and repeats 3 - 7 again.

5 Model
In this section, we first discuss the overview of our model in
§5.1. We then discuss a few optimization mechanisms to help
improve run time performance in §5.2. We summarize the
implementation details in §5.3.

5.1 Modeling Overview
It is challenging to effectively verify Kubernetes, as it has
a complex and large implementation. Our main goal is to
verify the interactions between control components as well
as with events, rather than implementation details (i.e., error
handling, data structures, APIs). Thus, instead of verifying
source code, our model focuses on the high-level logic of

7For example, a slowly progressed problem where if one node goes down
in a 3-node cluster, it is 1

3 of the nodes and is noticed immediately, while for
50 nodes, one node failure becomes 1

50 ; or absolute value problems like an
application can only go down if there are too many requests at the same time.

USENIX Association 2024 USENIX Annual Technical Conference 515

Global system states

…

Proctype

CPU Change

EventsControllers

Maintenance
Application
Deployment
…

pod1pod3 dep1

status,
cpuLeft,
…

name,
labels,
…

status,
location,
…

namespace,
template,
…

status,
replicas,
…

HPASpec,
template,
…

Pods DeploymentsNodes

Objects

Scheduler HPA
…

Figure 3: Kivi model structure.

the control components and captures the essential logic that
affects the shared global states (i.e., the status of pods, nodes).

Kivi leverages the explicit state model checker SPIN [51].
We choose SPIN because it can help to effectively verify the
interactions mentioned above, as SPIN targets the efficient
verification of concurrent and asynchronous distributed soft-
ware. SPIN provides a high-level language PROMELA to
specify system behavior as non-deterministic automata. Each
asynchronous process is modeled as a proctype process in
PROMELA, and SPIN will exhaustively explore all possible
interleavings between these processes through a depth-first
search (DFS) of a state graph that is constructed from the
supplied PROMELA model.

There are three main parts to model for Kubernetes: (1)
the controllers, (2) the objects, including pods, nodes and
workload, and (3) the events, including environmental events
like CPU change and operational events like maintenance.

As introduced in §2, the API server provides a central place
for controllers to query and manipulate the state of the objects.
Our model is structured in a similar way as shown in Fig-
ure 3: we model controllers and events using the proctype
in PROMELA, and model objects using global system state
that is shared across all the proctypes. The design differs
from Kubernetes’s API-style interaction slightly – instead of
listening to the updates from the API server, the controllers
trigger each other. This avoids having a centralized procedure
that needs to update its state after each control loop, which
can unnecessarily add search depth and affect verification
optimization like partial order reduction.

Modeling the objects. We model each kind of object using
an array of customized typedef in the global states. Each
object contains a set of attributes that are related to the system
behaviors of interest. To detect issues that occur while state
transitions are in progress, we model the intermediate states
of the objects (e.g., pending and terminating states for pods).
For example, as bringing up pods takes time, the scheduler
can only change the state of the pod to pending, and other
controllers may take action in the pod pending phase. Listing 1
shows a code snippet of a node definition.

1 typedef nodeType{
2 short status;
3 short cpuLeft;
4 short numPod;
5 ...
6 }
7 nodeType nodes[SIZE];
8 ...

Listing 1: Defining nodes.

1 byte sQueue[MAX_SCHED_QUEUE];
2 short sTail , sIndex;
3 proctype scheduler() {
4 atomic{
5 do
6 :: (sTail != sIndex) ->
7 // control loop logic
8 od;
9 }

10 }

Listing 2: Defining scheduler.

Modeling the controllers and events. We model each con-
troller in an event-driven loop. The queue is in the global
system states that can be enqueued by other controllers and
events when a control loop should be triggered. For example,
when the deployment controller adds a new pod, it enqueues
the pod into the scheduler’s event queue, and a scheduling
loop will be triggered. Listing 2 shows a code snippet for
the scheduler. We model events in proctype, the same as
controllers, so that SPIN can exhaustively explore the inter-
leavings of the events and controllers non-deterministically.

Modeling the properties. We implement the properties in-
troduced in §3.2. For the safety properties, Some (e.g., un-
expected object lifecycles) are implemented as assert in-
serted into controllers, e.g., when there is no feasible node for
scheduling. Some (e.g., unexpected object numbers and topol-
ogy) involve temporal logic, e.g., after deployment is stable
the pod number should always be more than expected. These
properties are implemented as proctypes. Each proctype is
implemented as a “monitor” process that runs independently
and keeps its own states that track changes in the global states
and use assertions to catch violations. These proctypes can
be explored by SPIN before and after each step.

For the oscillation (liveness) property, we find that the de-
fault way in SPIN is often slow, because it only considers a
loop as when all the global variables appear the same repeat-
edly, which is unnecessarily strict. We instead only check if
the loop has appeared in key relevant variables. However, as
we are not checking full system state, it is possible that this
subset of state could recur without causing permanent oscilla-
tion since other parts of the system state may evolve. Thus,
to weed out most such false positives, we look for multiple
occurrences. For example, when checking on the eviction and
scheduling cycle, we check if an eviction flag and a deploy
flag for a deployment appear in turns 3 times in a row. One
can increase this number to gain confidence. Here we believe
it is worth alerting users if events repeat 3 times, even if the
loop is not infinite.

516 2024 USENIX Annual Technical Conference USENIX Association

Modeling time. Time is an important variable in Kubernetes.
For example, HPA runs periodically (every 15 seconds by de-
fault), and CPU usage of a pod changes after the initialization
phase of a certain time. Modeling time can help avoid generat-
ing non-interesting counterexamples (i.e., failures caused by
HPA reacting too fast), and further help to avoid unnecessary
interleavings between proctype to improve runtime perfor-
mance. SPIN does not provide a built-in notion of time. We
model time as a variable T in the global system state. Each
proctype i has its own local time variable τi representing the
last time of execution, and it can only execute its next control
loop or event logic when τi + δi ≤ T , where δi denotes the
time interval between control loops or events. T is updated
accordingly after each execution of an event or a control loop.

Modeling quantitative values. Many controllers use integers
or real numbers, e.g., when calculating the average CPU usage
in HPA and calculating scores in the scheduler. There are also
strings like labels on nodes. SPIN can model integers yet not
real numbers or strings. We pre-process and discretize any
string into integers. For real numbers, we observe that they
mostly appear either in configurations with two decimals (e.g.,
average CPU utilization threshold in HPA) or in division. We
hence convert each real number r into ⌊r ·100⌋. For division,
luckily, the final results of most calculations are integers (e.g.,
replica numbers proposed by HPA).

5.2 Optimization
SPIN implements DFS to search for violations. It stores the
visited state spaces to implement strategies (e.g., partial order
reduction) to reduce its search space. We summarize three
major aspects that can affect the run time: (1) the size of
the global states, where large global states can cause huge
memory usage during search and lead to potential out-of-
memory and memory swapping; (2) concurrency, where if
there are too many processes that can be chosen from for each
search step, the search spaces can be huge; (3) search depth,
where large search depth can lead to a lot more search spaces.

We discuss a few heuristic mechanisms in our design to
improve run time performance according to the three aspects.

Clearly defining small sets of mutating global variables.
To reduce the state size, we carefully pick the attributes that
are related to the properties of interest. We divide these global
states into two sections for performance8: a stable section that
will not be changed at runtime and is not tracked by SPIN,
like pod templates, node labels and names, HPA specification;
and a mutating section that keeps changes and is tracked by
SPIN, including status, resource usage, pod locations, etc.

Reducing concurrency. Some controllers are deployed as
one instance per object, e.g., each node has a Kubelet con-
troller, and each deployment has its own HPA instance if
enabled. The size of the concurrent controller instances can

8SPIN stores tracked global states in its search stack. Unnecessarily
storing and mutating these states can result in increased memory and time.

increase relative to the number of objects and the search space
can explode exponentially. Instead, we model these multiple
instances of a controller as a single process. In most cases, it
is safe to model in this way, as each instance operates on its
own object (e.g., configurations are defined per deployment).
In addition, we model each control loop into an atomic block
to avoid interleaving between other controllers in the middle
of its execution with the observation that the execution time
of one control loop is negligible. We still can check on the
interleaving between multiple control loops.
Reducing search steps. While some controllers (e.g., sched-
uler) are implemented with queuing designs and some are
not (e.g., HPA runs periodically), we modeled all of them
using an event-driven schema to avoid unnecessary search
when controllers are not involved, e.g., HPA would not be
triggered until there are resource changes. We also reduce the
execution of back-to-back control loops or events into a single
event, e.g., if multiple pods change their CPU back-to-back,
we change all of them at the same time. Another example is
how we check oscillation property as discussed in §5.1.
More options. SPIN provides additional options to improve
its runtime, e.g., partial order reduction enabled by default,
searching up to a bounded depth and time, state compression
(e.g. leveraging bloom filter), and searching with random
seeds. Users can turn on these options through Kivi.

5.3 Implementation
Though our modeling mechanisms are rather general, due
to limited time, we focus on implementing a selected set
of controllers (and their features) and objects (and their at-
tributes) that are most common and representative in terms
of the failure types they are involved in (e.g., need to be able
to represent how we verify for each property category) and
the required verification techniques (e.g., choosing HPA that
require modeling time and real values). We carefully pick five
built-in controllers and one add-on controller (the desched-
uler)9. For each controller, we understand all the details of
the source code and only model the most essential details
needed to accurately capture how the controller manipulates
the shared objects and interacts with the cluster. We now
do not model when controllers themselves encounter issues.
For example, we omitted error handling, retries, and handler
registration. Some controllers (e.g., Kubelet) have too many
low-level details (e.g., manage the pod image) that are un-
related to the properties of interest while their higher-level
functionalities are simple, so we model them according to
their documentation [32, 33]. We also implement a few com-
mon events that may result in interesting failure cases. Table 4
shows the controllers and events that we have modeled. We
currently implement 7 properties spanning all four categories
in §3.2 that focus on the objects of pods and deployments,
such as checkBalanceNode(k) which ensures the pods in a

9We focus on Kubernetes v1.26.0 and Descheduler v0.27.1. Our code is
publicly available on Github [38].

USENIX Association 2024 USENIX Annual Technical Conference 517

Controllers Features/Plugins Beyond Basic Framework Source code? Source code
LoC

Model
LoC

Deployment/Replicaset Controller ReCreate, RollingUpdates ● 781 199

Scheduler
NodeName, NodeAffinity, TaintToleration, NodeResourcesFit
PodTopologySpread ● 3826 783

Descheduler RemovePodsViolatingTopologySpread, RemoveDuplicates ● 1306 471

HPA Metric type Utilization and Values ● 1157 222

Kubelet N/A 2108 90

Node Controller Taint Manager 435 86

Events Description LoC

CPU Change/CPU Pattern Change The CPU usage of the pods can change randomly or in a pre-defined pattern. 86

Kernel panic High resource usage can cause kernel panic and node become unhealthy. 25

Node Failure Node can fail non-deterministically. 6

Apply/Create Deployment Users deploy their deployment configured in YAML files. 126

Scale Deployment Users scale up their deployment on the fly. 11

Maintenance
Users put down the nodes for maintenance and put them back when updates
are done. 37

Table 4: Kivi implementation of controllers and events. We have implemented a subset of features or plugins beyond the basic framework for
each controller. We label whether we derived the model from the source code (or from documentation otherwise). We calculate the lines of
code (LoC) for both the controller source code and our model, which includes log printing and excludes blank lines and comments. For our
model, all the code shares a utility library of 311 LoC which is not included in the table. For the controller source code, we approximately
include the main framework and the features that we modeled. In particular, for Kubelet, we only count the Kubelet main file; the actual
Kubelet implementation is much more complicated as it handles lower-level Linux details like network, volumes, journal, and more – which is
one reason that our model is simplified.

deployment are balanced across nodes with skew of no more
than k, checkExpReplicas(k) which checks if the number
of pods is ≥ k. Modeling other objects (i.e., nodes and traffic)
could leverage the same framework in future work.

6 Evaluation
We seek to answer four main questions in our evaluation:
(1) Can we use realistic failures to validate our intuition and
scaling approach in §4.2? (2) What is the performance and
scalability of Kivi? (3) How accurate is Kivi? (4) Can Kivi
find new problems in Kubernetes controllers?

To answer these questions, we evaluate Kivi on a test suite
with the 8 realistic failure cases as shown in Table 2. These
cases are representative in terms of the involved controllers
(and their features) and events, the properties (covering all
four summarized in §3.2), and the type of failure reasons
(covering all three as summarized in §3.1).

To be able to evaluate the performance of our system, we
need to generate test suites of various sizes. All these 8 failure
cases are either discussed using a fixed size of cluster or are
vague on details of their configurations. We fill in reasonable
details to make each example complete and parameterized
to scale up while preserving its failure pattern. To affirm our
understanding of each case, we have reproduced all these
cases in a Kubernetes cluster.

To be able to evaluate Kivi under situations both with and
without property violations, we further extend our test suite
by generating non-violation configurations for each failure
case. We make small changes to the configurations to keep
the main skeleton the same while avoiding failures.

We perform all experiments on a 2021 Macbook Pro with
an M1 Max processor and 64GB RAM and reproduction on
VM having 8 CPU cores of Intel(R) Xeon(R) CPU E5-2630L
0 @ 2.00GHz and 8GB RAM.

Failure Case Reproduction. We leverage Kind [29] to build
a cluster with adjustable size (i.e., 1 master and 1-3 workers)
on a local machine. We successfully reproduced 7 of the 8
cases, but skipped C4 as it involves kernel panic that is hard
to emulate. We used reproduction to further affirm our scaling
observation (§6.1) and evaluate Kivi’s accuracy (§6.3). The
reproduction code is available on Github [37].

6.1 Empirical Study
In §4.2.2, we introduced the methodology to find the em-
pirically sufficient scale (ESC) for the incremental scaling
algorithm. Here, we empirically find the ESC for the collected
failure cases in Table 2, and discuss how our study affirms
our intuition of §4.2.1.

We run the verification workflow with the scaling algorithm
without bounding it by the ESC: we explore any combination
of sizes that do not have trivial failures (explained in §4.2.2).
The last two columns in Table 2 show the minimum violation
scale and whether such scale is smaller than the scale in the
original failure reports. Our results show that intent violations
consistently appear at relatively small scale: the maximum
(across our test cases) of the minimum scale needed to demon-
strate a violation is only 3 nodes and 6 pods. Indeed, in 6 of
7 test cases, Kivi found violations at even smaller scale than
the scale in the original report, and we confirmed these by
running the configurations in a real Kubernetes cluster. This

518 2024 USENIX Annual Technical Conference USENIX Association

(e). Case C6, all nodes

(a). Case C8, |P|= 10 (b). Case C8, |P| = 11 (c). Case C8, |P| = 40

(d). Case C8, all nodes

Figure 4: Heatmap of the verification results at various scale. (e) shows the result for Case C6 that scales against nodes and pods. (a)-(d)
shows the result for Case C8. C8 contains two types of nodes and we test on all the combinations of |N1|, |N2|, and |P| until reaching the scale
of trivial failures. (a)-(c) each shows a heatmap against |N1| and |N2| with varying |P|. (d) shows the result against |N| and |P|, where if we find
a violation in any (|N1|, |N2|), we count |N1|+ |N2| as a violation point.

 1

 10

 100

 1000

 10000

C1 C2 C3 C4 C5 C6 C7 C8

T
im

e
 (

s
)

Case ID

Violation
Non-Violation

Figure 5: Kivi performance. Most cases can
finish within 100s and all cases finish within
25mins. The run time is proportional to the
number of scaled setups.

 0

 2000

 4000

 6000

 8000

 10000

 2 4 8 16 32 64 100

T
im

e
 (

s
)

Scale

C8
C1
C7

Figure 6: Performance without scaling algo-
rithm. Times out at medium sizes. (Note: this
is not the actual performance for Kivi. Lines
stop at time-out scale.)

 0

 1

 2

 3

 4

 5

 2 4 8 16 32 64 100

T
im

e
 (

s
)

Scale

C8
C1
C5
C3
C4
C6
C2
C7

Figure 7: Internal test on the model per-
formance: non-violation cases range from
|N| = 3 to |N| = 100. Each data point is a
single run of SPIN at a specific size.

also demonstrates Kivi’s ability to minimize counterexample
sizes to simplify debugging. Based on this result, doubling
to provide additional confidence, we set nesc = 3 ·2 = 6 (ex-
tracted from C3 and C8) and θesc = 3 · 2 = 6 (from C1 and
C4) for our evaluation.

To further understand how failures appear, we sweep a
range of combinations of node and pod sizes for two repre-
sentative cases with diverse patterns in Figure 4. Each cell
in the heatmaps is colored based on the result at that scale:
violation, non-violation, or trivial failure. |Ni| denotes the
number of nodes of type i and |Pi| denotes the number of pods
of type i. |N| and |P| denote the total number of nodes and
pods, respectively. From these graphs, we make a few ob-
servations: (1) Violations consistently appear for sufficiently
large |N| and |P|, again affirming that we can use small scale
to find violations that would appear large scale. (2) The exact
combinations of the |Ni| and |P| dimensions matter. There are
many different patterns – generally more violations at larger
scale, some clear relationships between |N| and |P|, but also
complex patterns can emerge. This justifies the choice in our
incremental scaling algorithm to explore all combinations up
to the ESC.

6.2 What is the Performance of Kivi?
Figure 5 shows the performance for Kivi under both violations
and non-violations for the test suite. The result shows that Kivi
verifies most cases within 100 seconds and all cases within
25 minutes. Some non-violation cases take longer, as the run

time is proportional to the number of scaled setups that need
to be tested: if a case contains various sizes of objects (i.e.
C8 and C3 contain 1764 scaled setups) or is being tested for
non-violation where the verification needs to explore all scale,
it can take longer. Figure 6 shows the performance without the
incremental scaling algorithm for three representative cases:
the verification times out (> 10000 sec) even at moderate
scale (≤ 50 nodes).

To provide a sense of the performance of the underlying
model itself, we do an internal measurement on the non-
violation version of the test suite at a few specific scale rang-
ing from |N|= 3 to |N|= 100, where 100 is a large enough
scale for most clusters. Figure 7 shows our model performs
well even at large scale. Note, however, this shows perfor-
mance for a single run of SPIN (a single topology) at each
scale, rather than checking a whole range of combinations of
scale parameters which we require for high coverage.

6.3 Is Kivi accurate?
We evaluate Kivi on both violation or non-violation versions
of the test suite. Kivi successfully found the correct violation
for all the violation cases, while reporting no failures for all
the non-violation cases.

To further evaluate the accuracy of our model in terms of
controller interactions, we compare the counterexamples Kivi
generated against the real Kubernetes event logs and see if the
order of actions (i.e., a control action, an event) matches with
each other. We convert each action in the related reproduc-

USENIX Association 2024 USENIX Annual Technical Conference 519

tion logs and verification counterexamples into a canonical
representation. We skip the actions that we don’t model, like
pulling an image, HPA failure due to unavailable metric server
at bootstrapping phase. We calculate the matching rate as the
number of matched reproduction actions plus the number of
matched verifier actions divided by the total number of both
actions. Table 5 shows the results.

Non-deterministic cases Deterministic cases

Case ID C1 C2 C6 C3, C5, C7, C8

Matching rate 81.6% 97.8% 100% 100%

Table 5: Actions matching rates.

Among all the cases, the cases with only deterministic
events (C3, C5, C7 and C8) match 100%. The other cases
contain non-deterministic events: C1 involves CPU changes,
C2 and C6 involve operational events. Among them, matching
rates of C2 and C6 are near or at 100%10 as the operational
events happen at slower speeds and don’t interact much with
the controllers. For C1, 43.8% of the mismatches are due
to extra CPU change events in the reproduction logs. The
rest are due to an inaccuracy in HPA modeling, where we do
not model stabilization windows when the HPA controller
is scaling down, causing the verification logs to scale down
faster than the reproduction, though the final stable number
is the same. Note that for non-deterministic cases in general,
the accuracy as evaluated here is pessimistic because Kivi’s
reported event sequence could be entirely valid but not the
one that happened to occur in our runs of Kubernetes.

These results show good accuracy of Kivi in verifying
realistic issues and modeling the interactions of controllers.

6.4 New Issues Found
Though we mostly focus on misconfiguration issues, we used
Kivi to find two new issues in the implementation of the
Kubernetes descheduler. We identified these failures in the
process of running Kivi on failure scenarios C5 and C8. Al-
though those failure scenarios are known, the discussions [24]
had focused on configuration work-arounds and had not un-
covered the root causes in the controllers.
RemoveTopologySpreadConstraint does not consider all
constraints together and can mistakenly evict pods. When
there are multiple PodTopologySpread constraints, the
RemoveTopologySpreadConstraint plugin decides which
pods to evict per constraint instead of solving all the con-
straints together. This results in a sub-optimal decision to evict
more pods. C8 is a failure caused by this issue. If implemented
correctly, RemoveTopologySpreadConstraint should have
known that the two constraints in C8 cannot both be satisfied
and hence decided not to evict any pods.

10C2 has one event mismatched because the verifier deleted a pod in a
different node than reproduction logs, though the two nodes are symmetric.

RemoveDuplicates does not respect node resources and
can mistakenly evict pods. When the RemoveDuplicates
plugin decides which pods to evict, it first collects the avail-
able nodes that can serve the duplicated pods. If there are
fewer available nodes, fewer pods are evicted. However, this
plugin fails to consider the available resources and mistakenly
counts the occupied nodes as available, resulting in more pods
being evicted than desired. C5 is a failure caused by this issue.
If the RemoveDuplicates had considered node resources, no
pods would be evicted.

We have submitted both issues to the Descheduler project
on Github [36, 39].

7 Discussion and Future work
Limitation in accuracy. We have made several approxima-
tions that can potentially affect the accuracy of Kivi.
From Kubernetes code to model. As shown in Table 4, our
model uses fewer LoC than the original Kubernetes code.
While this makes verification tractable, it comes at the cost
of potential deviations from the code (§5.2 and §5.3 discuss
some, and we enumerate more in Appendix C). With more
engineering effort, our model can be brought closer to real
implementations. To implement the model of a new controller,
depending on programmer familiarity of the controller, one
would need to read the documentation or the controller source
code, decide which parts are essential to model and simplify
the workflow if possible.

However, there are always gaps that are a fundamental
result of verifying a model rather than code. Ultimately, verifi-
cation of a model (as in Kivi) is complementary to testing the
real implementation: while testing avoids the need to model
and its inevitable imperfections, verification can provide much
higher coverage of all possible scenarios.
Incremental scaling algorithm. Kivi may miss some failures
that only manifest at large scale as discussed in §4.2.2. One
can run Kivi at a specific large scale to find these issues,
though there may be a performance penalty.
Limitation in the failure dataset. Our failure cases may
not be large enough to serve as a complete quantitative study
and to demonstrate that Kivi can empirically extract the ESC
for arbitrary clusters. Although there is plentiful open source
code available online, we need real K8s configurations which
are much less frequently released. Besides searching online,
we have talked with dozens of operators, and they confirmed
the types of failures we discussed are big concerns, yet due
to security concerns or limited operational practices (i.e., no
postmortem reports), they cannot share more details. Hope-
fully people can start to see the needs of open-sourcing their
configs, and future work can leverage a larger dataset.
Limitation in scalability and future work. While Kivi’s
scaling algorithm performs well on our test setups, Kivi may
not scale to clusters with a large degree of node and deploy-
ment type diversity, where the number of scaled setups to

520 2024 USENIX Annual Technical Conference USENIX Association

verify can grow exponentially with the types. However, we
have found that empirically we need to verify only a small
number of types. For the nodes, it is recommended that a
cluster should minimize the number of node groups (i.e., set
of nodes that share the same properties) to ensure the cluster
autoscaler can perform well on large clusters [31]. For the
deployment, we find that most failures happened for a single
deployment (i.e., most configurations are defined per deploy-
ment) and hence verifying one deployment at a time while
removing the resources taken by others is often enough.

If users are still interested in operating more types of nodes
or interested in the interactions between deployments, we also
propose a few optimizations to explore as future work:
(1) Divide and conquer. For multiple deployments, we can
still verify one deployment at a time, and abstract the impact
of other deployments together into a small set of arbitrary
“external” events (e.g., CPU changes on shared nodes).
(2) Partial order reduction on symmetric objects. Additional
partial order reduction mechanisms can be explored to reduce
the search branches that explore the symmetric objects.
(3) Multi-core. One can leverage multi-core computation to
parallelize the verification for various scale.
(4) Faster ramp up in scaling algorithm. Instead of increasing
the size by 1 at a time, we could add it by 2 or even multiply it
by 2. As shown in the heatmap in Fig. 4, increasing the speed
can still potentially catch the failure with high confidence.

8 Related Work
Verification for cluster management systems. Sun et al.
[65] present Anvil, a framework for developing controller
implementations and verifying if the controller correctly im-
plements the property of eventual stable reconciliation (ESR).
Our work complements their work in several ways: 1) while
Anvil verifies single controller implementation logic at the
executable level, Kivi addresses issues arising from the com-
plex interactions among multiple controllers at the model
level, and it can detect misconfiguration issues across various
cluster topologies; 2) while Anvil focuses on the ESR prop-
erty, Kivi checks on sets of commonly overlooked properties
related to unintended or pathological behaviors.

A couple of other works have applied formal methods to
the domain of cluster management systems. Turin et al. [68]
demonstrate a Kubernetes formal model yet it is based on
much simplified assumptions of controllers and does not test
it for verification. Liu et al. [56] presents a proof-of-concept
verification approach yet it models a couple of selected failure
scenarios rather than a comprehensive implementation of con-
trollers. Flux [46] applies verification to serverless yet focuses
on idempotence properties from the application perspective.
Compared to these works, Kivi is a more comprehensive ver-
ification system based on a novel set of properties derived
from real Kubernetes issues.

Verification for systems. Verification has been successfully
applied to many distributed systems (e.g., [42, 43, 49, 50, 61,

62, 67, 69, 72, 77, 79]) as well as in networking (e.g., [40,
41, 53, 73, 76]). While cluster management systems are also
a distributed system, existing work is insufficient to verify
them. First, many works focus on verifying specific protocols
(e.g., Paxos, BGP) instead of dynamic closed-loop controllers.
Second, many works rely on theorem proving, which involves
a great deal of human effort and can be hard to apply to
this domain with ever-evolving large-scale implementations.
Third, the properties for this domain (§3.2) are quite different
from what these works focus on (e.g., crash-safety, integer
overflow, network reachability). However, Kivi shares some of
the underlying technologies with distributed verification work
such as the use of model checking techniques [48, 52, 54, 71].
Cluster management reliability. Several works seek to im-
prove the reliability of cluster management systems [47, 55,
64, 70]. Sieve [64] presents testing tools for state reconcilia-
tion issues in customized Kubernetes controllers. Häyhä [55]
presents a tool to detect intra-update sniping vulnerabilities
using dataflow graph analysis. Kivi targets different issues
and is complementary to these works in improving various
perspectives of the cluster management systems.

9 Conclusion
We present Kivi, the first system for verifying cluster manage-
ment system controllers and configurations. Kivi empirically
demonstrates the insight that failures that happen at large
scale can manifest at small scale and leverages it to tackle the
scalability challenge. Kivi has shown good performance and
accuracy in verifying realistic failure and showcases two new
issues in Kubernetes controller.

References

[1] Classic Swarm: a Docker-native clustering system.
https://docs.docker.com/engine/swarm/.

[2] Kubernetes Failure Stories. https://codeberg.org/
hjacobs/kubernetes-failure-stories.

[3] VM vSphere. https://www.vmware.com/products/
vsphere.html.

[4] Expected behavior for Deployment replicas with HPA
during update #25238. https: // github.com/
kubernetes/kubernetes/issues/25238, 2016.

[5] MOVING THE ENTIRE STACK TO K8S WITHIN
A YEAR – LESSONS LEARNED. https :
/ / www.youtube.com / watch?v = tA8Sr3Nsx1I&t =
1575s&ab_channel=CodeSpaceITeducation, 2018.

[6] Removing spec.replicas of the Deployment resets
replicas count to single replica #67135. https:
//github.com/kubernetes/kubernetes/issues/
67135, 2018.

USENIX Association 2024 USENIX Annual Technical Conference 521

https://docs.docker.com/engine/swarm/
https://codeberg.org/hjacobs/kubernetes-failure-stories
https://codeberg.org/hjacobs/kubernetes-failure-stories
https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsphere.html
https://github.com/kubernetes/kubernetes/issues/25238
https://github.com/kubernetes/kubernetes/issues/25238
https://www.youtube.com/watch?v=tA8Sr3Nsx1I&t=1575s&ab_channel=CodeSpaceITeducation
https://www.youtube.com/watch?v=tA8Sr3Nsx1I&t=1575s&ab_channel=CodeSpaceITeducation
https://www.youtube.com/watch?v=tA8Sr3Nsx1I&t=1575s&ab_channel=CodeSpaceITeducation
https://github.com/kubernetes/kubernetes/issues/67135
https://github.com/kubernetes/kubernetes/issues/67135
https://github.com/kubernetes/kubernetes/issues/67135

[7] 10 Ways to Shoot Yourself in the Foot with Kuber-
netes, #9 Will Surprise You. https://youtu.be/QKI-
JRs2RIE?t=1183, 2019. Incident #4 and #7.

[8] Build Errors of Continuous Delivery Platform . https:
//github.com/zalando- incubator/kubernetes-
on-aws/blob/dev/docs/postmortems/jun-2019-
kubelet-qps.md, 2019.

[9] Did Kubernetes Make My p95s Worse? https://
youtu.be/QXApVwRBeys?t=727, 2019. At 727s, 987s
and 1245s.

[10] How a Production Outage Was Caused Using Kuber-
netes Pod Priorities. https://grafana.com/blog/
2019/07/24/how- a- production- outage- was-
caused - using - kubernetes - pod - priorities/,
2019.

[11] Intermittent delays in Kubernetes. https :
/ / medium.com / techmindtickle / intermittent -
delays-in-kubernetes-e9de8239e2fa, 2019.

[12] Kubernetes’ dirty endpoint secret and Ingress. https:
/ / philpearl.github.io / post / k8s_ingress/,
2019.

[13] Kubernetes Failure Stories, or: How to Crash Your
Cluster. https : / / www.youtube.com / watch?v =
LpFApeaGv7A&ab_channel = ContainerDays, 2019.
Incident #0 and #2.

[14] On Infrastructure at Scale: A Cascading
Failure of Distributed Systems. https : / /
danveloper.medium.com/on-infrastructure-at-
scale-a-cascading-failure-of-distributed-
systems-7cff2a3cd2df, 2019.

[15] Outage post-mortem. https : / /
updates.moonlightwork.com / outage - post -
mortem-87370, 2019.

[16] Replicaset controller bug: continuously creating pod
to tainted nodes #75913. https://github.com/
kubernetes/kubernetes/issues/75913, 2019.

[17] CPU limits and aggressive throttling in Kuber-
netes. https://medium.com/omio-engineering/
cpu- limits- and- aggressive- throttling- in-
kubernetes-c5b20bd8a718, 2020.

[18] DNS issues in Kubernetes. Public postmortem 1.
https://medium.com/preply-engineering/dns-
postmortem-e169efd45afd, 2020.

[19] Kubernetes: Make your services faster by remov-
ing CPU limits. https://erickhun.com/posts/
kubernetes-faster-services-no-cpu-limits/,
2020.

[20] Kubernetes Outages with real-world case studies.
https://kubevious.io/blog/post/kubernetes-
outages-with-real-world-case-studies, 2020.

[21] 10 Ways to Blow Up Your Kubernetes. https:
/ / www.youtube.com / watch?v = 1vfLuDBhABA&t =
1516s&ab_channel=ShareLearn, 2021.

[22] How a couple of characters brought down our
site. https://medium.com/@SkyscannerEng/how-
a- couple- of- characters- brought- down- our-
site-356ccaf1fbc3, 2021.

[23] Resource Requests and Limits Under the Hood: The
Journey of a Pod Spec. https://www.youtube.com/
watch?v = WB3_sV_EQrQ&ab_channel = CNCF %
5BCloudNativeComputingFoundation%5D, 2021.

[24] Incorrect work with HPA (when replicas more than
number of nodes) #921. https://github.com/
kubernetes - sigs / descheduler / issues / 921,
2022.

[25] Scheduler Configuration. https://kubernetes.io/
docs/reference/scheduling/config/, 2022.

[26] DaemonSet. https : / / kubernetes.io / docs /
concepts/workloads/controllers/daemonset/,
2023.

[27] Example: conflicting topology spread con-
straints. https : / / kubernetes.io / docs /
concepts / scheduling - eviction / topology -
spread - constraints / #example - conflicting -
topologyspreadconstraints, 2023.

[28] Job. https://kubernetes.io/docs/concepts/
workloads/controllers/job/, 2023.

[29] Kind . https://kind.sigs.k8s.io/, 2023.

[30] Kubernetes. https : / / kubernetes.io / docs /
concepts/overview/, 2023.

[31] Kubernetes Cluster Autoscaler. https :
/ / aws.github.io / aws - eks - best - practices /
cluster- autoscaling/#reducing- the- number-
of-node-groups, 2023.

[32] Kubernetes kubelet . https://kubernetes.io/docs/
reference / command - line - tools - reference /
kubelet/, 2023.

[33] Node Controller . https : / / kubernetes.io /
docs / concepts / architecture / nodes / #node -
controller, 2023.

[34] StatefulSets. https : / / kubernetes.io /
docs / concepts / workloads / controllers /
statefulset/, 2023.

522 2024 USENIX Annual Technical Conference USENIX Association

https://youtu.be/QKI-JRs2RIE?t=1183
https://youtu.be/QKI-JRs2RIE?t=1183
https://github.com/zalando-incubator/kubernetes-on-aws/blob/dev/docs/postmortems/jun-2019-kubelet-qps.md
https://github.com/zalando-incubator/kubernetes-on-aws/blob/dev/docs/postmortems/jun-2019-kubelet-qps.md
https://github.com/zalando-incubator/kubernetes-on-aws/blob/dev/docs/postmortems/jun-2019-kubelet-qps.md
https://github.com/zalando-incubator/kubernetes-on-aws/blob/dev/docs/postmortems/jun-2019-kubelet-qps.md
https://youtu.be/QXApVwRBeys?t=727
https://youtu.be/QXApVwRBeys?t=727
https://grafana.com/blog/2019/07/24/how-a-production-outage-was-caused-using-kubernetes-pod-priorities/
https://grafana.com/blog/2019/07/24/how-a-production-outage-was-caused-using-kubernetes-pod-priorities/
https://grafana.com/blog/2019/07/24/how-a-production-outage-was-caused-using-kubernetes-pod-priorities/
https://medium.com/techmindtickle/intermittent-delays-in-kubernetes-e9de8239e2fa
https://medium.com/techmindtickle/intermittent-delays-in-kubernetes-e9de8239e2fa
https://medium.com/techmindtickle/intermittent-delays-in-kubernetes-e9de8239e2fa
https://philpearl.github.io/post/k8s_ingress/
https://philpearl.github.io/post/k8s_ingress/
https://www.youtube.com/watch?v=LpFApeaGv7A&ab_channel=ContainerDays
https://www.youtube.com/watch?v=LpFApeaGv7A&ab_channel=ContainerDays
https://danveloper.medium.com/on-infrastructure-at-scale-a-cascading-failure-of-distributed-systems-7cff2a3cd2df
https://danveloper.medium.com/on-infrastructure-at-scale-a-cascading-failure-of-distributed-systems-7cff2a3cd2df
https://danveloper.medium.com/on-infrastructure-at-scale-a-cascading-failure-of-distributed-systems-7cff2a3cd2df
https://danveloper.medium.com/on-infrastructure-at-scale-a-cascading-failure-of-distributed-systems-7cff2a3cd2df
https://updates.moonlightwork.com/outage-post-mortem-87370
https://updates.moonlightwork.com/outage-post-mortem-87370
https://updates.moonlightwork.com/outage-post-mortem-87370
https://github.com/kubernetes/kubernetes/issues/75913
https://github.com/kubernetes/kubernetes/issues/75913
https://medium.com/omio-engineering/cpu-limits-and-aggressive-throttling-in-kubernetes-c5b20bd8a718
https://medium.com/omio-engineering/cpu-limits-and-aggressive-throttling-in-kubernetes-c5b20bd8a718
https://medium.com/omio-engineering/cpu-limits-and-aggressive-throttling-in-kubernetes-c5b20bd8a718
https://medium.com/preply-engineering/dns-postmortem-e169efd45afd
https://medium.com/preply-engineering/dns-postmortem-e169efd45afd
https://erickhun.com/posts/kubernetes-faster-services-no-cpu-limits/
https://erickhun.com/posts/kubernetes-faster-services-no-cpu-limits/
https://kubevious.io/blog/post/kubernetes-outages-with-real-world-case-studies
https://kubevious.io/blog/post/kubernetes-outages-with-real-world-case-studies
https://www.youtube.com/watch?v=1vfLuDBhABA&t=1516s&ab_channel=ShareLearn
https://www.youtube.com/watch?v=1vfLuDBhABA&t=1516s&ab_channel=ShareLearn
https://www.youtube.com/watch?v=1vfLuDBhABA&t=1516s&ab_channel=ShareLearn
https://medium.com/@SkyscannerEng/how-a-couple-of-characters-brought-down-our-site-356ccaf1fbc3
https://medium.com/@SkyscannerEng/how-a-couple-of-characters-brought-down-our-site-356ccaf1fbc3
https://medium.com/@SkyscannerEng/how-a-couple-of-characters-brought-down-our-site-356ccaf1fbc3
https://www.youtube.com/watch?v=WB3_sV_EQrQ&ab_channel=CNCF%5BCloudNativeComputingFoundation%5D
https://www.youtube.com/watch?v=WB3_sV_EQrQ&ab_channel=CNCF%5BCloudNativeComputingFoundation%5D
https://www.youtube.com/watch?v=WB3_sV_EQrQ&ab_channel=CNCF%5BCloudNativeComputingFoundation%5D
https://github.com/kubernetes-sigs/descheduler/issues/921
https://github.com/kubernetes-sigs/descheduler/issues/921
https://kubernetes.io/docs/reference/scheduling/config/
https://kubernetes.io/docs/reference/scheduling/config/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#example-conflicting-topologyspreadconstraints
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#example-conflicting-topologyspreadconstraints
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#example-conflicting-topologyspreadconstraints
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#example-conflicting-topologyspreadconstraints
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kind.sigs.k8s.io/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://aws.github.io/aws-eks-best-practices/cluster-autoscaling/#reducing-the-number-of-node-groups
https://aws.github.io/aws-eks-best-practices/cluster-autoscaling/#reducing-the-number-of-node-groups
https://aws.github.io/aws-eks-best-practices/cluster-autoscaling/#reducing-the-number-of-node-groups
https://aws.github.io/aws-eks-best-practices/cluster-autoscaling/#reducing-the-number-of-node-groups
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/concepts/architecture/nodes/#node-controller
https://kubernetes.io/docs/concepts/architecture/nodes/#node-controller
https://kubernetes.io/docs/concepts/architecture/nodes/#node-controller
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

[35] You Broke Reddit: The Pi-Day Outage. https://
www.reddit.com/r/RedditEng/comments/11xx5o0/
you_broke_reddit_the_piday_outage/, 2023.

[36] The gettargetnodes in removeduplicates does not respect
node resources and can mistakenly evict pods. https:
//github.com/kubernetes- sigs/descheduler/
issues/1237, 2024.

[37] k8s-failure-reproduction. https://github.com/
gangmuk/k8s-failure-reproduction, 2024.

[38] Kivi: verifying your Kubernetes clusters. https://
github.com/bingzheliu/Kivi, 2024.

[39] Topologyspreadconstraint calculation has issues that
can mistakenly evict pods. https://github.com/
kubernetes - sigs / descheduler / issues / 1219,
2024.

[40] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed,
Mohammad Alizadeh, and Hari Balakrishnan. Toward
formally verifying congestion control behavior. In Pro-
ceedings of the 2021 ACM SIGCOMM 2021 Conference,
pages 1–16, 2021.

[41] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2017, Los Angeles, CA, USA, August 21-25,
2017, pages 155–168. ACM, 2017.

[42] James Bornholt, Rajeev Joshi, Vytautas Astrauskas,
Brendan Cully, Bernhard Kragl, Seth Markle, Kyle Sauri,
Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob Van
Geffen, and Andrew Warfield. Using lightweight formal
methods to validate a key-value storage node in amazon
S3. In Robbert van Renesse and Nickolai Zeldovich,
editors, SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021, pages 836–850. ACM,
2021.

[43] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with perennial. In Tim Brecht and Carey
Williamson, editors, Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP 2019,
Huntsville, ON, Canada, October 27-30, 2019, pages
243–258. ACM, 2019.

[44] Koen Claessen and John Hughes. Quickcheck: a
lightweight tool for random testing of haskell programs.
In Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 268–279,
2000.

[45] Edmund M Clarke, William Klieber, Miloš Nováček,
and Paolo Zuliani. Model checking and the state explo-
sion problem. In LASER Summer School on Software
Engineering, pages 1–30. Springer, 2011.

[46] Haoran Ding, Zhaoguo Wang, Zhuohao Shen, Rong
Chen, and Haibo Chen. Automated verification of idem-
potence for stateful serverless applications. In 17th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23), pages 887–910, Boston, MA,
July 2023. USENIX Association.

[47] Jiawei Tyler Gu, Xudong Sun, Wentao Zhang, Yuxuan
Jiang, Chen Wang, Mandana Vaziri, Owolabi Legunsen,
and Tianyin Xu. Acto: Automatic End-to-End Testing
for Operation Correctness of Cloud System Manage-
ment. In Proceedings of the 29th ACM Symposium on
Operating Systems Principles (SOSP’23), October 2023.

[48] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Jun-
feng Yang, and Lintao Zhang. Practical software model
checking via dynamic interface reduction. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, page 265–278, New York,
NY, USA, 2011. Association for Computing Machinery.

[49] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon
Howell, Rob Johnson, and Bryan Parno. Storage sys-
tems are distributed systems (so verify them that way!).
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2020, Virtual Event,
November 4-6, 2020, pages 99–115. USENIX Associa-
tion, 2020.

[50] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
T. V. Setty, and Brian Zill. IronFleet: proving prac-
tical distributed systems correct. In Ethan L. Miller
and Steven Hand, editors, Proceedings of the 25th Sym-
posium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015, pages 1–17.
ACM, 2015.

[51] Gerard J. Holzmann. The model checker SPIN. IEEE
Trans. Software Eng., 23(5):279–295, 1997.

[52] Charles Killian, James W. Anderson, Ranjit Jhala, and
Amin Vahdat. Life, death, and the critical transition:
Finding liveness bugs in systems code. In 4th USENIX
Symposium on Networked Systems Design & Implemen-
tation (NSDI 07), Cambridge, MA, April 2007. USENIX
Association.

[53] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad
Shahbaz, Nick Feamster, and Russell J. Clark. Kinetic:
Verifiable dynamic network control. In 12th USENIX

USENIX Association 2024 USENIX Annual Technical Conference 523

https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://github.com/kubernetes-sigs/descheduler/issues/1237
https://github.com/kubernetes-sigs/descheduler/issues/1237
https://github.com/kubernetes-sigs/descheduler/issues/1237
https://github.com/gangmuk/k8s-failure-reproduction
https://github.com/gangmuk/k8s-failure-reproduction
https://github.com/bingzheliu/Kivi
https://github.com/bingzheliu/Kivi
https://github.com/kubernetes-sigs/descheduler/issues/1219
https://github.com/kubernetes-sigs/descheduler/issues/1219

Symposium on Networked Systems Design and Imple-
mentation, NSDI 15, Oakland, CA, USA, May 4-6, 2015,
pages 59–72. USENIX Association, 2015.

[54] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi
Joshi, Jeffrey F. Lukman, and Haryadi S. Gunawi.
SAMC: Semantic-Aware model checking for fast dis-
covery of deep bugs in cloud systems. In 11th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), pages 399–414, Broomfield, CO,
October 2014. USENIX Association.

[55] Julien Lepiller, Ruzica Piskac, Martin Schäf, and Mark
Santolucito. Analyzing infrastructure as code to prevent
intra-update sniping vulnerabilities. In Tools and Al-
gorithms for the Construction and Analysis of Systems:
27th International Conference, TACAS 2021, Held as
Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2021, Luxembourg City,
Luxembourg, March 27–April 1, 2021, Proceedings, Part
II 27, pages 105–123. Springer, 2021.

[56] Bingzhe Liu, Ali Kheradmand, Matthew Caesar, and
P Brighten Godfrey. Towards verified self-driving in-
frastructure. In Proceedings of the 19th ACM Workshop
on Hot Topics in Networks, pages 96–102, 2020.

[57] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin
Cao, Sri Tallapragada, Nuno P. Lopes, Andrey Ry-
balchenko, Guohan Lu, and Lihua Yuan. Crystalnet:
Faithfully emulating large production networks. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 599–613, New York, NY,
USA, 2017. Association for Computing Machinery.

[58] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O.
Suminto, Daniar H. Kurniawan, Dikaimin Simon, Satria
Priambada, Chen Tian, Feng Ye, Tanakorn Leesataporn-
wongsa, Aarti Gupta, Shan Lu, and Haryadi S. Gunawi.
Flymc: Highly scalable testing of complex interleavings
in distributed systems. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[59] Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang
Wang. Finding heterogeneous-unsafe configuration pa-
rameters in cloud systems. In Proceedings of the Six-
teenth European Conference on Computer Systems, Eu-
roSys ’21, page 410–425, New York, NY, USA, 2021.
Association for Computing Machinery.

[60] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Finding
{Crash-Consistency} bugs with bounded {Black-Box}
crash testing. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
33–50, 2018.

[61] Rian Shambaugh, Aaron Weiss, and Arjun Guha. Re-
hearsal: a configuration verification tool for puppet. In
Chandra Krintz and Emery Berger, editors, Proceedings
of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, June 13-17, 2016, pages 416–
430. ACM, 2016.

[62] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-
Karney, James Bornholt, Emina Torlak, and Xi Wang.
Nickel: A framework for design and verification of in-
formation flow control systems. In Andrea C. Arpaci-
Dusseau and Geoff Voelker, editors, 13th USENIX Sym-
posium on Operating Systems Design and Implemen-
tation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018, pages 287–305. USENIX Association, 2018.

[63] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine
Ang, Owolabi Legunsen, and Tianyin Xu. Testing con-
figuration changes in context to prevent production fail-
ures. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 735–751.
USENIX Association, November 2020.

[64] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aish-
warya Ganesan, Ramnatthan Alagappan, Michael Gasch,
Lalith Suresh, and Tianyin Xu. Automatic reliability test-
ing for cluster management controllers. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 143–159, Carlsbad, CA,
July 2022. USENIX Association.

[65] Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma,
Tej Chajed, Jon Howell, Andrea Lattuada, Oded Padon,
Lalith Suresh, Adriana Szekeres, and Tianyin Xu. Anvil:
Verifying Liveness of Cluster Management Controllers.
In Proceedings of the 18th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI’24),
July 2024.

[66] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,
Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long
Cheng, Ben Christensen, Alex Gartrell, Maxim Khutor-
nenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas
Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaish-
navi Venkatesan, and Peter Zhang. Twine: A unified
cluster management system for shared infrastructure.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 787–803.
USENIX Association, November 2020.

[67] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Ja-
son Nieh, and Ronghui Gu. Formal verification of a
multiprocessor hypervisor on arm relaxed memory hard-
ware. In Robbert van Renesse and Nickolai Zeldovich,

524 2024 USENIX Annual Technical Conference USENIX Association

editors, SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021, pages 866–881. ACM,
2021.

[68] Gianluca Turin, Andrea Borgarelli, Simone Donetti,
Einar Broch Johnsen, Silvia Lizeth Tapia Tarifa, and
Ferruccio Damiani. A formal model of the kubernetes
container framework. In Tiziana Margaria and Bern-
hard Steffen, editors, Proc. 9th International Symposium
on Leveraging Applications of Formal Methods (ISoLA
2020), volume 12476 of Lecture Notes in Computer
Science, pages 558–577. Springer, 2020.

[69] James R. Wilcox, Doug Woos, Pavel Panchekha,
Zachary Tatlock, Xi Wang, Michael D. Ernst, and
Thomas Anderson. Verdi: A framework for implement-
ing and formally verifying distributed systems. PLDI
’15, page 357–368, New York, NY, USA, 2015. Associ-
ation for Computing Machinery.

[70] Xiaohan Yan, Ken Hsieh, Yasitha Liyanage, Minghua
Ma, Murali Chintalapati, Qingwei Lin, Yingnong Dang,
and Dongmei Zhang. Aegis: Attribution of control plane
change impact across layers and components for cloud
systems. In 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), pages 222–233. IEEE, 2023.

[71] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu,
Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long,
Lintao Zhang, and Lidong Zhou. MODIST: Transparent
model checking of unmodified distributed systems. In
6th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 09), Boston, MA, April 2009.
USENIX Association.

[72] Nofel Yaseen, Behnaz Arzani, Ryan Beckett, Selim
Ciraci, and Vincent Liu. Aragog: Scalable runtime
verification of shardable networked systems. In 14th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November
4-6, 2020, pages 701–718. USENIX Association, 2020.

[73] Farnaz Yousefi, Anubhavnidhi Abhashkumar, Kausik
Subramanian, Kartik Hans, Soudeh Ghorbani, and
Aditya Akella. Liveness verification of stateful net-
work functions. In Ranjita Bhagwan and George Porter,
editors, 17th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2020, Santa
Clara, CA, USA, February 25-27, 2020, pages 257–272.
USENIX Association, 2020.

[74] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna
Rodrigues, Xu Zhao, Yongle Zhang, Pranay Jain, and
Michael Stumm. Simple testing can prevent most critical
failures: An analysis of production failures in distributed

data-intensive systems. In Jason Flinn and Hank Levy,
editors, 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, Broomfield, CO,
USA, October 6-8, 2014, pages 249–265. USENIX As-
sociation, 2014.

[75] Xinhao Yuan and Junfeng Yang. Effective concurrency
testing for distributed systems. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 1141–1156, New York, NY,
USA, 2020. Association for Computing Machinery.

[76] Yifei Yuan, Soo-Jin Moon, Sahil Uppal, Limin Jia, and
Vyas Sekar. Netsmc: A custom symbolic model checker
for stateful network verification. In Ranjita Bhagwan
and George Porter, editors, 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2020, Santa Clara, CA, USA, February 25-27, 2020,
pages 181–200. USENIX Association, 2020.

[77] Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li,
Yishuai Li, Li-Yao Xia, Lennart Beringer, William Man-
sky, Benjamin Pierce, and Steve Zdancewic. Verifying
an HTTP Key-Value Server with Interaction Trees and
VST. In Liron Cohen and Cezary Kaliszyk, editors, 12th
International Conference on Interactive Theorem Prov-
ing (ITP 2021), volume 193 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 32:1–32:19,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[78] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi,
Kirk Rodrigues, Shan Lu, and Ding Yuan. Under-
standing and detecting software upgrade failures in
distributed systems. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples, SOSP ’21, page 116–131, New York, NY, USA,
2021. Association for Computing Machinery.

[79] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui
Gu, and Haibo Chen. Using concurrent relational logic
with helpers for verifying the atomfs file system. In Tim
Brecht and Carey Williamson, editors, Proceedings of
the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP 2019, Huntsville, ON, Canada, October
27-30, 2019, pages 259–274. ACM, 2019.

A More failure cases

We list more failure cases in the extended Table 6.

USENIX Association 2024 USENIX Annual Technical Conference 525

Case
ID

Description Properties Reasons

C9 [9] Pods are being scheduled into the same node due to the image locality plugins outweighs all
other scoring plugins

Unexpected Topology Non-trivial interactions
between components in

a single controller

C10 [9] Network issues caused some pods to become unreachable (yet still healthy) and in turn their
average CPU usage had dropped, causing the HPA to scale down pods and further reduce the

capacity.

Unexpected Object
Numbers

Non-trivial interactions
between controllers and

events

C11 [7] Nodes that were supposed to only host the App pods failed to set the right taint, causing new
Daemonset pods to run on every node while App pods failed to be scheduled.

Unexpected Object
Lifecycles

Non-trivial interactions
between components in

a single controller

C12 [10] The priorities of the pods in the production cluster were not set correctly and the deployment of
a new cluster with higher priority triggered a cascading failure to preempt all the production

pods.

Unexpected Object
Lifecycles

Non-trivial interactions
between controllers and

events

C13 [12] The ingress controller kept sending traffic to the pods that are pending deletion by the
deployment controller.

Unexpected Object
Lifecycles

Non-trivial interactions
between controllers

C14 [9] The scheduler scheduled more pods on one node over the other, while the ingress controller
scheduled the traffic randomly. This caused more traffic imbalance across nodes.

Unexpected Topology Non-trivial interactions
between controllers

C15 [7] One availability zone (AZ) had poor node availability, causing the node autoscaler to scale up
nodes in another AZ. Later the nodes came back, causing the autoscaler to scale down the

newly created nodes and pods failed to be scheduled due to bounded volumes to deleted nodes.

Unexpected Object
Lifecycles

Non-trivial interactions
between controllers and

events

C16 [14] When a system component became unavailable, the logging components all woke up and
cumulatively consumed high resources, causing the nodes to report unhealthy, at which time the

scheduler moved the workload to the healthy node. The previous unhealthy nodes became
healthy as the workload was moved while the previous healthy node became unhealthy, and the

cycle perpetuated.

Oscillation /
Unexpected Object
Lifecycle (object is

the controller)

Non-trivial interactions
between controllers and

events

Table 6: Extended Failure Cases.

B Incremental Scaling algorithm

B.1 Terminology
We define a cluster setup C = ⟨CS,OT ⟩ as the configuration
for the cluster. The control setup CS includes the configu-
rations for controllers, event assumptions, and users’ intent.
The object setup OT defines the configuration for types of
objects, where OT = ⟨NT,DT ⟩,11 with NT denotes the set of
node types and DT denotes the set of deployment types. Each
node type NTi = ⟨template,con f ig⟩ consists of a template of
object attributes (e.g., status, labels) and configs that define
the lower bound ol

i and upper bound ou
i for replica ranges of

object type oi. DT is similar to NT yet their templates contain
different sets of attributes (e.g., resource requests, scheduling
configs). Figure 2 illustrates a graphic example of cluster
setup. Kivi derives the cluster setup from users’ inputs.

At run time, each cluster setup C can generate a set
of cluster topologies TC with different numbers of repli-
cas for each type. We define a cluster topology t ∈ TC as
t = ⟨N,P⟩. N is the set of nodes N = N1 ∪N2 ∪ ·· · , where
Ni denotes the set of nodes of type i. P is the set of pods
P = P1 ∪P2 ∪·· · , where Pi denotes the set of pods generated
from the deployment of type i. The scale of a topology t can
be defined as a vector of the sizes for all types of objects

11It can also include other workloads like StatefulSet, Job. We only discuss
the Deployment for simplicity.

st = ⟨|N1|, |N2|, · · · , |Nα|, |P1|, |P2|, · · · , |Pφ|⟩, where α and φ

are the number of node types and deployment types respec-
tively.

We define a scaled setup Ct = ⟨t,C⟩ as an instance of the
cluster setup C running with topology t.

B.2 Incremental Scaling Algorithm

More formally, we define the ESC as:

ESC = ⟨nesc,θesc⟩ nesc = N (max
∀C

(min
t∈TC

V

(st))) ·2

N (st) = ∑∀|Ni|∈st |Ni| θesc = max
∀C

(Θ(min
t∈TC

V

(st))) ·2

P (st) = ∑∀|Pi|∈st |Pi| Θ(st) =
⌈

P (st)
N (st)

⌉
TC

V is the set of topologies that have violations for setup
C. When comparing the two scale sr and sq where r,q ∈ TC,
sr ≥ sq if N (sr)>N (sq) or N (sr) =N (sq)∧P (sr)≥P (sq).
The min and max functions are defined on this comparison.
We double both nesc and θesc to provide more confidence.

With the determined ESC, we design our scaling algorithm
as shown in Algorithm 2. It starts from the smallest scale, and
gradually increases the scale. In particular, for each node type
i, it explores its scale from nmin

i to nmax
i where

nmin
i = max(0,nl

i) nmax
i = min(nu

i ,nesc)

526 2024 USENIX Annual Technical Conference USENIX Association

nl
i and nu

i are the lower and upper bound of the number
of node type i defined by the users. After determining the
number of nodes to explore for each scale, we determine the
number of pods according to the total number of nodes |N|. In
particular, for each pod type i, we explore the pod size from
pmin

i to FPi(|N|) (a function of total number of nodes) where

pmin
i = max(0, pl

i) FPi(|N|) = min(pu
i ,θesc · |N|)

where pl
i and pu

i are the lower and upper bound of the
number of pod type i defined by the users . If there are multiple
types of nodes and pods, it explores all combinations of sizes
Πα

i=1{nmin
i , · · · ,nmax

i }×Π
φ

j=1{pmin
j , · · · ,FPj(|N|)}. We skip

any scale that result in trivial failure cases, meaning if that
scale is not meaningful (i.e., |N|= 0 or |P|= 0) or generates
non-interesting failures (i.e., when |P| ≫ |N|, the excessive
number of pods cannot be scheduled onto the nodes).

Algorithm 2 incremental scaling algorithm
1: procedure SCALING

2: for st in sort(Πα
i=1{nmin

i , · · · ,nmax
i }×Π

φ

j=1{pmin
j , · · · ,FPj(|N|)}) do

3: if not trivalCase((st ,C)) then
4: verifer((st ,C)) ▷ verify for the scaled setup ⟨t,C⟩
5: end if
6: end for
7: end procedure=0

C Approximation in Kivi

We summarize a list of major approximations when imple-
menting the model.

• We do not model the requests and we abstract the impact of
these requests into resource changes (i.e., CPU resource us-
age change on pods). If users are interested in the properties
of the requests (e.g., if traffic distribution is unbalanced),
we currently cannot support these intent.

• We only model subsets of the features in Kubernetes as
listed in Table 4. If a cluster includes unmodeled features,
our model may not provide accurate results. Examples in-
clude pod graceful termination period, pod priority, pod
disruption budgets, HPA stabilization windows, and State-
fulSets.

• We do not model anything related to the container image or
smaller elements than a pod, e.g., at the container level.

• We put one control loop into an atomic step and merge back-
to-back control loops and events. Normally, one control
loop or event can finish in a very short time. However,
this can miss failures caused by such small transiting time
windows.

• We do not model when controllers themselves encounter
issues. Hence we omit error handling. If there are failures
caused by the behavior of error handling, we cannot catch
them.

• We approximate real numbers to two decimal places, which
may lead to a loss of precision, though we have not yet seen
any cases that need such precision.

• We implement the oscillation properties by examining if the
loop has appeared on a small set of key relevant variables.
As we do not check full system states, it is possible the loop
we found does not cause permanent oscillation.

USENIX Association 2024 USENIX Annual Technical Conference 527

	Introduction
	Modern Cluster Management Systems
	Failure Case Study and Takeaways
	Why do problems occur?
	Properties to Verify
	Takeaways

	Kivi System Design
	System Workflow
	Verifying Clusters at Small Scale
	Incremental Scaling Algorithm Intuition
	Incremental Scaling Algorithm
	Determining ESC

	Workflow of Verifier Operator

	Model
	Modeling Overview
	Optimization
	Implementation

	Evaluation
	Empirical Study
	What is the Performance of Kivi?
	Is Kivi accurate?
	New Issues Found

	Discussion and Future work
	Related Work
	Conclusion
	More failure cases
	Incremental Scaling algorithm
	Terminology
	Incremental Scaling Algorithm

	Approximation in Kivi

