[go: up one dir, main page]

Search a number
bemirps
A number is called bemirp (short for bi-directional emirp) if it yields a different prime when turned upside down with reversals of both being two more different primes.

For example, 168601 produces 106861, 198901 and 109891.

The only digits allowed in a bemirp are 0, 1, 6, 8 and 9.

Every number greater than 40258 can be written as the sum of bemirps.

The first bemirps are 1061, 1091, 1601, 1901, 10061, 10091, 16001, 19001, 106861, 109891, 168601, 198901, 1106881, 1109881 more terms

Bemirps can also be... (you may click on names or numbers and on + to get more values)

a-pointer 198901 18991981 110098601 1016910161 1069110901 1161110191 1166019611 1190010161 1191110161 1601169611 aban 10601000101 10901000101 11060000101 11090000101 16160000161 19190000191 106068000611 106080000011 106690000661 106989000191 + 189908000011 190608000911 196169000081 199889000881 alternating 109698961 169896901 amenable 1061 1601 1901 10061 16001 19001 106861 168601 198901 1106881 + 199089061 199109681 199180081 199680881 apocalyptic 10061 10091 16001 19001 arithmetic 1061 1091 1601 1901 10061 10091 16001 19001 106861 109891 + 1809091 1886011 1889011 1909081 balanced p. 18616681 168910801 199109681 1088900611 1161111661 1180606991 1198600801 1610889101 1666116901 1690896061 1969081091 c.decagonal 1901 199068088111 c.pentagonal 119010099181 Chen 1061 1091 1601 1901 10061 10091 16001 19001 198901 1109881 + 19091981 19199981 19689611 19880981 congruent 1061 1901 10061 106861 198901 1806061 Cunningham 1601 Curzon 1601 1901 10061 16001 11906981 16880681 18890801 106891601 109168901 110600981 199680881 cyclic 1061 1091 1601 1901 10061 10091 16001 19001 106861 109891 + 1809091 1886011 1889011 1909081 de Polignac 10061 16061681 16880681 18690611 18908891 18999191 deficient 1061 1091 1601 1901 10061 10091 16001 19001 106861 109891 + 1809091 1886011 1889011 1909081 dig.balanced 16001 198901 11816011 161188681 161899861 168668881 168910801 186009011 188089661 189166801 economical 1061 1091 1601 1901 10061 10091 16001 19001 106861 109891 + 19199981 19689611 19880981 19986091 emirp 1061 1091 1601 1901 10061 10091 16001 19001 106861 109891 + 199180081 199198891 199680881 199800091 equidigital 1061 1091 1601 1901 10061 10091 16001 19001 106861 109891 + 19199981 19689611 19880981 19986091 evil 1061 1091 1601 1901 10061 168601 1806061 1809091 1909081 11091811 + 196899191 198816811 198888601 199800091 good prime 10061 10091 19001 happy 1106881 1886011 Honaker 1091 1606081 1806061 106891601 109168901 118880911 161080811 169806181 inconsummate 1601 16001 lucky 1606081 odious 10091 16001 19001 106861 109891 198901 1106881 1109881 1606081 1886011 + 199109681 199180081 199198891 199680881 Ormiston 1969081091 pernicious 16001 19001 1109881 1606081 1886011 1889011 prime 1061 1091 1601 1901 10061 10091 16001 19001 106861 109891 + 199996091101 199996180081 199998990101 199999069901 Proth 1601 16001 self 16001 198901 11816011 16098661 16689061 18616681 18661681 106186681 110600981 110900681 + 190680661 198969611 199180081 199800091 Sophie Germain 1601 1901 10061 10091 16001 11906981 16880681 18890801 106891601 109168901 + 1961009111 1981868081 1986199601 1988809001 strong prime 1061 1091 1901 10061 10091 16001 19001 109891 1106881 1109881 + 18919091 18960911 19068991 19091981 super-d 1061 1901 19001 106861 1106881 1109881 1606081 1806061 1909081 twin 1061 1091 10091 106861 168601 198901 1806061 1889011 1909081 11816011 + 198668191 198969611 198998881 199680881 uban 1088016000011 1088019000011 16068066000061 19098099000091 Ulam 168601 1606081 weak prime 1601 106861 168601 198901 1806061 1889011 1909081 10806881 11061811 11609681 + 19199981 19689611 19880981 19986091