[go: up one dir, main page]

Search a number
pandigital numbers
A number whose representation in base b contains all the digits from 0 to b-1. more

The first 600 pandigital numbers :
2, 11, 15, 19, 21, 75, 78, 99, 108, 114, 120, 135, 141, 147, 156, 177, 180, 198, 201, 210, 216, 225, 228, 694, 698, 714, 722, 738, 742, 894, 898, 954, 970, 978, 990, 1014, 1022, 1054, 1070, 1102, 1110, 1138, 1142, 1178, 1190, 1202, 1210, 1294, 1298, 1334, 1346, 1358, 1366, 1394, 1398, 1454, 1470, 1478, 1490, 1634, 1646, 1654, 1670, 1726, 1730, 1758, 1766, 1778, 1790, 1826, 1830, 1914, 1922, 1934, 1946, 1982, 1986, 2014, 2022, 2054, 2070, 2102, 2110, 2134, 2146, 2154, 2170, 2226, 2230, 2382, 2386, 2402, 2410, 2426, 2430, 2538, 2542, 2558, 2566, 2582, 2586, 2638, 2642, 2678, 2690, 2702, 2710, 2758, 2766, 2778, 2790, 2826, 2830, 2882, 2886, 2902, 2910, 2926, 2930, 8345, 8350, 8375, 8385, 8410, 8415, 8525, 8530, 8585, 8600, 8620, 8630, 8735, 8745, 8765, 8780, 8835, 8840, 8950, 8955, 8980, 8990, 9015, 9020, 10505, 10510, 10535, 10545, 10570, 10575, 11045, 11050, 11165, 11190, 11200, 11220, 11255, 11265, 11345, 11370, 11415, 11430, 11470, 11475, 11560, 11580, 11595, 11610, 11765, 11770, 11825, 11840, 11860, 11870, 12125, 12130, 12245, 12270, 12280, 12300, 12545, 12560, 12605, 12630, 12710, 12720, 12760, 12770, 12820, 12840, 12890, 12900, 13055, 13065, 13085, 13100, 13155, 13160, 13415, 13425, 13505, 13530, 13575, 13590, 13625, 13640, 13685, 13710, 13790, 13800, 14055, 14060, 14115, 14130, 14150, 14160, 14350, 14355, 14380, 14390, 14415, 14420, 14710, 14715, 14800, 14820, 14835, 14850, 14920, 14930, 14980, 15000, 15050, 15060, 15135, 15140, 15195, 15210, 15230, 15240, 15905, 15910, 15935, 15945, 15970, 15975, 16265, 16270, 16355, 16375, 16390, 16405, 16475, 16485, 16535, 16555, 16605, 16615, 16690, 16695, 16750, 16765, 16785, 16795, 16985, 16990, 17015, 17025, 17050, 17055, 17525, 17530, 17645, 17670, 17680, 17700, 17735, 17745, 17825, 17850, 17895, 17910, 17950, 17955, 18040, 18060, 18075, 18090, 19505, 19510, 19595, 19615, 19630, 19645, 19685, 19690, 19805, 19830, 19840, 19860, 20315, 20335, 20345, 20370, 20485, 20490, 20530, 20545, 20560, 20580, 20665, 20670, 20795, 20805, 20855, 20875, 20925, 20935, 20975, 20985, 21065, 21090, 21135, 21150, 21395, 21415, 21425, 21450, 21565, 21570, 21825, 21835, 21855, 21870, 21925, 21930, 22090, 22095, 22150, 22165, 22185, 22195, 22270, 22275, 22360, 22380, 22395, 22410, 22690, 22705, 22720, 22740, 22825, 22830, 22905, 22915, 22935, 22950, 23005, 23010, 23645, 23650, 23705, 23720, 23740, 23750, 23825, 23830, 23915, 23935, 23950, 23965, 24245, 24260, 24275, 24295, 24380, 24385, 24460, 24470, 24490, 24505, 24560, 24565, 24725, 24730, 24785, 24800, 24820, 24830, 25085, 25090, 25205, 25230, 25240, 25260, 25505, 25520, 25565, 25590, 25670, 25680, 25720, 25730, 25780, 25800, 25850, 25860, 25985, 25990, 26075, 26095, 26110, 26125, 26165, 26170, 26285, 26310, 26320, 26340, 26795, 26815, 26825, 26850, 26965, 26970, 27010, 27025, 27040, 27060, 27145, 27150, 28565, 28580, 28595, 28615, 28700, 28705, 28745, 28760, 28805, 28830, 28910, 28920, 28955, 28975, 28985, 29010, 29125, 29130, 29600, 29605, 29630, 29640, 29665, 29670, 29860, 29870, 29890, 29905, 29960, 29965, 30040, 30050, 30100, 30120, 30170, 30180, 30250, 30265, 30280, 30300, 30385, 30390, 30680, 30685, 30710, 30720, 30745, 30750, 31415, 31425, 31445, 31460, 31515, 31520, 31595, 31605, 31655, 31675, 31725, 31735, 31805, 31820, 31835, 31855, 31940, 31945, 32235, 32240, 32265, 32275, 32300, 32305, 32495, 32505, 32525, 32540, 32595, 32600, 32855, 32865, 32945, 32970, 33015, 33030, 33065, 33080, 33125, 33150, 33230, 33240, 33495, 33500, 33555, 33570, 33590, 33600, 33755, 33765, 33815, 33835, 33885, 33895, 33935, 33945, 34025, 34050, 34095, 34110, 34355, 34375, 34385, 34410, 34525, 34530, 34785, 34795, 34815, 34830, 34885, 34890, 35045, 35060, 35075, 35095, 35180, 35185, 35225, 35240, 35285, 35310, 35390, 35400, 35435, 35455, 35465, 35490, 35605, 35610, 36080, 36085, 36110, 36120, 36145, 36150, 37635, 37640, 37665, 37675, 37700, 37705, 37815, 37820, 37875, 37890, 37910, 37920, 38025, 38035, 38055, 38070, 38125, 38130, 38240, 38245, 38270, 38280, 38305, 38310, 39190.

Distribution of the remainders when the numbers in this family are divided by n=2, 3,..., 11. (I took into account 3628799 values, from 2 to 9876543210).

n\r 0  1 
219940991634700 2 
33392472118013118314 3 
41138470837305855629797395 4 
5758019717012716929716990719849 5 
61769810607311234916226621119405965 6 
7547892513641513259512513513651514310513533 7 
8408318418663427799398627730152418642427830398768 8 
933117393938239405405083925639531402253937539378 9 
10430803326960390043326808393019327216390052326886390182326830 10 
11318285329636332615329759332563329364332749329395332311329903332219

A pictorial representation of the table above
motab
Imagine to divide the members of this family by a number n and compute the remainders. Should they be uniformly distributed, each remainder from 0 to n-1 would be obtained in about (1/n)-th of the cases. This outcome is represented by a white square. Reddish (resp. bluish) squares represent remainders which appear more (resp. less) frequently than 1/n.