Due to algorithmic and time constraints some properties cannot be tested in real-time up to 1015 and similarly, when I crossed the various families to find common members, often I cannot consider all the members up to 1015.
For those numbers families for which recognition and/or crossing is not performed up to 15 digits (1015), I report the actual limits I used in the table below.
Please note that in the "cross" section I disregard common numbers below 10, because, well..., they are too common.
Family | Search | Cross | Notes |
---|---|---|---|
aban | 1012 | 1015 | |
eban | 1015 | 1015 | |
iban | 1015 | 1015 | |
oban | 1015 | 1015 | |
uban | 1015 | 1015 | |
ABA | 1015 | 1013 | |
a-pointer | 1015 | 1010 | |
abundant | 1015 | 5×107 | |
Achilles | 1015 | 5×1013 | |
admirable | 1015 | 108 | |
amicable | 1012 | 1014 | |
alternating | 1015 | 109 | |
amenable | 1015 | 109 | |
anti-perfect | 3×108 | 3×108 | |
apocalyptic | * | 30000 | Numbers over 3⋅106 are apocalyptic exponents with high probability |
arithmetic | 1015 | 107 | |
dig.balanced | 1015 | 2×108 | |
bemirp | 1015 | 2×1014 | |
betrothed | 2.03×1010 | 2.03×1010 | |
balanced p. | 1015 | 1010 | |
binomial | 1015 | 1013 | |
brilliant | 1015 | 109 | |
Carmichael | 1015 | 1012 | |
congruent | * | 107 | numbers whose squarefree part is < 107 |
Chen | 109 | 108 | |
Curzon | 1015 | 2×108 | |
cyclic | 1015 | 107 | |
d-powerful | 107 | 107 | |
D-number | 7043133 | 7043133 | |
deceptive | 1015 | 1011 | |
deficient | 1015 | 107 | |
de Polignac | 1015 | 108 | |
droll | 1015 | 1015 | |
Duffinian | 1015 | 107 | |
economical | 1015 | 2×107 | |
emirp | 1015 | 2×108 | |
emirpimes | 1012 | 108 | |
enlightened | 1015 | 5.57×1011 | |
equidigital | 1015 | 2×107 | |
eRAP | 1012 | 1012 | |
esthetic | 1015 | 1015 | |
evil | 1015 | 109 | |
fibodiv | 1015 | 1.14×1010 | |
Friedman | 106 | 106 | A few numbers may be missing |
frugal | 1015 | 109 | |
gapful | 1015 | 1011 | |
Gilda | 1015 | 1.61×1010 | |
good prime | 1015 | 2×108 | |
happy | 1015 | 107 | |
harmonic | 1015 | 1014 | |
Harshad | 1015 | 1010 | |
hoax | 1015 | 108 | |
Honaker | 109 | 109 | |
hungry | 108 | 108 | |
hyperperfect | 1015 | 4×1012 | |
iccanobiF | 1.1×1014 | 1.1×1014 | |
interprime | 1015 | 108 | |
inconsummate | 106 | 106 | |
junction | 1015 | 108 | |
Lehmer | 1015 | 1012 | |
lonely | 1014 | 1014 | |
lucky | 107 | 107 | |
modest | 1015 | 2×109 | |
Moran | 1015 | 108 | |
nude | 1015 | 5×108 | |
odious | 1015 | 109 | |
panconsummate | 106 | 106 | Actually, it is conjectured that the largest term is 3097 |
pandigital | 1015 | 1010 | |
palprime | 1015 | 1015 | |
pernicious | 1015 | 107 | |
persistent | 1015 | 1011 | |
power | 1015 | 5×1013 | |
powerful | 1015 | 1015 | |
practical | 1015 | 106 | |
prime | 1015 | 1012 | |
primeval | 1.01×1011 | 1.01×1011 | |
prim.abundant | 1015 | 108 | |
Proth | 1015 | 1012 | |
pseudoperfect | 106 | 106 | Some numbers larger than 106 are recognized using their properties |
repdigit | 1015 | 1015 | |
repunit | 1015 | 1015 | |
Rhonda | 1015 | 1012 | |
Ruth-Aaron | 1012 | 1012 | |
self | 1015 | 109 | |
semiprime | 1015 | 108 | |
sliding | 1015 | 1015 | |
Smith | 1015 | 108 | |
Sophie Germain | 1015 | 108 | |
sphenic | 1015 | 108 | |
strong prime | 1015 | 108 | |
super-d | 1015 | 107 | |
super Niven | 1015 | 5×1010 | |
tau | 1015 | 109 | |
taxicab | 1015 | 1015 | |
tcefrep | 1015 | 1013 | |
truncatable prime | 1015 | 1015 | |
twin | 1015 | 109 | |
Ulam | 107 | 107 | |
untouchable | 106 | 106 | |
unprimeable | 1015 | 107 | |
vampire | 1010 | 1010 | |
wasteful | 1015 | 107 | |
weak prime | 1015 | 108 | |
weakly prime | 1015 | 1011 | |
weird | 106 | 106 | |
Wieferich | * | 1015 | The largest known number 16547533489305 is also the last, unless a third Wieferich prime exists. |
Zuckerman | 1015 | 1010 | |
Zumkeller | 105 | 105 | Some numbers larger than 105 are recognized using their properties |