About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Lévy distribution logarithm of cumulative distribution function.
The cumulative distribution function for a Lévy random variable is
where mu
is the location parameter and b > 0
is the scale parameter.
npm install @stdlib/stats-base-dists-levy-logcdf
var logcdf = require( '@stdlib/stats-base-dists-levy-logcdf' );
Evaluates the logarithm of the cumulative distribution function (CDF) for a Lévy distribution with parameters mu
(location parameter) and c > 0
(scale parameter).
var y = logcdf( 2.0, 0.0, 1.0 );
// returns ~-0.735
y = logcdf( 12.0, 10.0, 3.0 );
// returns ~-1.51
y = logcdf( 9.0, 10.0, 3.0 );
// returns -Infinity
If provided NaN
as any argument, the function returns NaN
.
var y = logcdf( NaN, 0.0, 1.0 );
// returns NaN
y = logcdf( 0.0, NaN, 1.0 );
// returns NaN
y = logcdf( 0.0, 0.0, NaN );
// returns NaN
If provided c <= 0
, the function returns NaN
.
var y = logcdf( 2.0, 0.0, -1.0 );
// returns NaN
y = logcdf( 2.0, 0.0, 0.0 );
// returns NaN
Returns a function for evaluating the logarithm of the cumulative distribution function of a Lévy distribution with parameters mu
(location parameter) and c > 0
(scale parameter).
var mylogcdf = logcdf.factory( 3.0, 1.5 );
var y = mylogcdf( 4.0 );
// returns ~-1.511
y = mylogcdf( 2.0 );
// returns -Infinity
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var logcdf = require( '@stdlib/stats-base-dists-levy-logcdf' );
var mu;
var c;
var x;
var y;
var i;
for ( i = 0; i < 100; i++ ) {
mu = randu() * 10.0;
x = ( randu()*10.0 ) + mu;
c = ( randu()*10.0 ) + EPS;
y = logcdf( x, mu, c );
console.log( 'x: %d, µ: %d, c: %d, ln(F(x;µ,c)): %d', x.toFixed( 4 ), mu.toFixed( 4 ), c.toFixed( 4 ), y.toFixed( 4 ) );
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.