[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging-guided precision hyperthermia with magnetic nanoparticles

Abstract

Magnetic nanoparticles, including those formed of superparamagnetic iron oxides (SPIOs), are employed in various magnetic imaging and therapeutic techniques. In vivo imaging techniques based on the detection of magnetic nanoparticles inside the body include magnetic resonance imaging (MRI), magnetic particle imaging (MPI), magneto-motive ultrasonography (MMUS) and magneto-photoacoustic imaging (MPAI). Preclinical data indicate that the conditions required to heat up magnetic nanoparticles, including energy considerations, particle modifications, localization and exposure time, can be dynamically modulated during a single treatment procedure by monitoring imaging data acquired from the same magnetic nanoparticles. This Review explores the potential use of magnetic-nanoparticle-mediated imaging techniques combined with magnetic fluid hyperthermia (MFH) to selectively and precisely heat tumour locations while avoiding damage to surrounding healthy tissue. Imaging-guided MFH could provide individualized treatment plans based on information about the biodistribution of magnetic nanoparticles within the tumour and adjacent organs, as well as the volumetric distribution of the thermal dose. Requirements for the clinical translation of MFH-enabled magnetic imaging techniques are also discussed — the development of magnetic nanoparticle formulations with a favourable biosafety profile, optimal magnetic heating properties and maximal magnetic imaging signals; and the integration of magnetic imaging and heating hardware into a single platform.

Key points

  • Multifunctional magnetic nanoparticles can be used as both therapeutic and diagnostic agents for multimodal cancer imaging and therapy.

  • Combinations of magnetic imaging and hyperthermia could be used to provide individualized treatment plans based on magnetic nanoparticle biodistribution within the tumour and adjacent organs that provide guidance for an appropriate volumetric distribution of thermal dosing.

  • A critical assessment of knowledge gaps in the field of precision hyperthermia is essential for increasing clinical translation.

  • Navigation of complex regulations is essential for the manufacture of optimized magnetic nanoparticles for use with magnetic imaging-guided hyperthermia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones in the development of imaging modalities and magnetic imaging-guided hyperthermia.
Fig. 2: Precision imaging-guided hyperthermia treatment of solid tumours.
Fig. 3: Applications of magnetic fluid hyperthermia.
Fig. 4: Tentative workflow for imaging-guided magnetic fluid hyperthermia.

Similar content being viewed by others

References

  1. Chhikara, B. S. & Parang, K. Global Cancer Statistics 2022: the trends projection analysis. Chem. Biol. Lett. 10, 451–451 (2023).

    Google Scholar 

  2. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  Google Scholar 

  3. Gao, Y. et al. Multifunctional nanoparticle for cancer therapy. MedComm 4, e187 (2023).

    Article  Google Scholar 

  4. Ivkov, R. Magnetic nanoparticle hyperthermia: a new frontier in biology and medicine? Int. J. Hyperth. 29, 703–705 (2013).

    Article  Google Scholar 

  5. Beola, L., Iturrioz-Rodríguez, N., Pucci, C., Bertorelli, R. & Ciofani, G. Drug-loaded lipid magnetic nanoparticles for combined local hyperthermia and chemotherapy against glioblastoma multiforme. ACS Nano 17, 18441–18455 (2023).

    Article  Google Scholar 

  6. Hosseini, V. et al. Multimodal cancer cell therapy using Au@Fe2O3 core–shell nanoparticles in combination with photo-thermo-radiotherapy. Photodiagn. Photodyn. Ther. 24, 129–135 (2018).

    Article  Google Scholar 

  7. Movahedi, M. M. et al. Investigating the photo-thermo-radiosensitization effects of folate-conjugated gold nanorods on KB nasopharyngeal carcinoma cells. Photodiagn. Photodyn. Ther. 24, 324–331 (2018).

    Article  Google Scholar 

  8. Neshastehriz, A., Khosravi, Z., Ghaznavi, H. & Shakeri-Zadeh, A. Gold-coated iron oxide nanoparticles trigger apoptosis in the process of thermo-radiotherapy of U87-MG human glioma cells. Radiat. Environ. Biophys. 57, 405–418 (2018).

    Article  Google Scholar 

  9. Mirrahimi, M. et al. Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int. J. Biol. Macromol. 158, 617–626 (2020).

    Article  Google Scholar 

  10. Alamzadeh, Z. et al. Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur. J. Pharm. Sci. 145, 105235 (2020).

    Article  Google Scholar 

  11. Herrero de la Parte, B. et al. Proposal of new safety limits for in vivo experiments of magnetic hyperthermia antitumor therapy. Cancers 14, 3084 (2022).

    Article  Google Scholar 

  12. Lenders, V. et al. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem. Soc. Rev. 52, 4672–4724 (2023).

    Article  Google Scholar 

  13. Healy, S. et al. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 14, e1779 (2022).

    Article  Google Scholar 

  14. Shakeri-Zadeh, A. et al. Folate receptor-targeted nanoprobes for molecular imaging of cancer: friend or foe? Nano Today 39, 101173 (2021).

    Article  Google Scholar 

  15. Bulte, J. W. & Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004).

    Article  Google Scholar 

  16. Abed, Z. et al. Iron oxide–gold core–shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. J. Cancer Res. Clin. Oncol. 145, 1213–1219 (2019).

    Article  Google Scholar 

  17. Bulte, J. W. Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv. Drug. Deliv. Rev. 138, 293–301 (2019).

    Article  Google Scholar 

  18. Berezin, M. Y. Historical perspective on nanoparticles in imaging from 1895 to 2000. In Nanotechnology for Biomedical Imaging and Diagnostics: From Nanoparticle Design to Clinical Applications (ed. Berezin, M.Y.) (Wiley, 2014).

  19. Johannsen, M. et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperth. 21, 637–647 (2005).

    Article  Google Scholar 

  20. Stark, D. D. et al. Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297–301 (1988).

    Article  Google Scholar 

  21. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  Google Scholar 

  22. Xie, X. et al. Magnetic particle imaging: from tracer design to biomedical applications in vasculature abnormality. Adv. Mater. 36, e2306450 (2023).

    Article  Google Scholar 

  23. Bulte, J. W. et al. Quantitative “hot-spot” imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging. Tomography 1, 91–97 (2015).

    Article  Google Scholar 

  24. Jansson, T., Jansson, L., Mousavi, A., Persson, L. & Angenete, E. Detection of magnetomotive ultrasound signals from human tissue. Nanomed. Nanotechnol. Biol. Med. 47, 102621 (2023).

    Article  Google Scholar 

  25. Sjöstrand, S. Evertsson, M. & Jansson, T. Contrast-enhanced magnetomotive ultrasound imaging (CE-MMUS) for colorectal cancer staging: assessment of sensitivity and resolution to detect alterations in tissue stiffness. In IEEE Int. Ultrasonics Symp. (IUS) 1077–1080 (IEEE, 2019).

  26. Arsalani, S. et al. Hybrid nanoparticles of citrate-coated manganese ferrite and gold nanorods in magneto-optical imaging and thermal therapy. Nanomaterials 13, 434 (2023).

    Article  Google Scholar 

  27. Bortot, B. et al. Image-guided cancer surgery: a narrative review on imaging modalities and emerging nanotechnology strategies. J. Nanobiotechnol. 21, 155 (2023).

    Article  Google Scholar 

  28. Sharma, A. et al. Validation of a temperature-feedback controlled automated magnetic hyperthermia therapy device. Cancers 15, 327 (2023).

    Article  Google Scholar 

  29. Mahmoudi, K., Bouras, A., Bozec, D., Ivkov, R. & Hadjipanayis, C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int. J. Hyperth. 34, 1316–1328 (2018).

    Article  Google Scholar 

  30. Gavilán, H. et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 50, 11614–11667 (2021).

    Article  Google Scholar 

  31. Rodriguez, B. et al. Magnetic hyperthermia therapy for high-grade glioma: a state-of-the-art review. Pharmaceuticals 17, 300 (2024).

    Article  Google Scholar 

  32. Adnan, A. et al. Hyperthermia and tumor immunity. Cancers 13, 2507 (2021).

    Article  Google Scholar 

  33. Cazares-Cortes, E. et al. Recent insights in magnetic hyperthermia: from the “hot-spot” effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids. Adv. Drug. Deliv. Rev. 138, 233–246 (2019).

    Article  Google Scholar 

  34. Kaur, P., Aliru, M. L., Chadha, A. S., Asea, A. & Krishnan, S. Hyperthermia using nanoparticles—promises and pitfalls. Int. J. Hyperth. 32, 76–88 (2016).

    Article  Google Scholar 

  35. Rahban, D., Doostan, M. & Salimi, A. Cancer therapy: prospects for application of nanoparticles for magnetic-based hyperthermia. Cancer Invest. 38, 507–521 (2020).

    Article  Google Scholar 

  36. Beik, J. et al. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J. Control. Rel. 235, 205–221 (2016).

    Article  Google Scholar 

  37. Calderwood, S. K., Theriault, J. R. & Gong, J. How is the immune response affected by hyperthermia and heat shock proteins? Int. J. Hyperth. 21, 713–716 (2005).

    Article  Google Scholar 

  38. Skitzki, J. J., Repasky, E. A. & Evans, S. S. Hyperthermia as an immunotherapy strategy for cancer. Curr. Opin. Invest. Drugs 10, 550–558 (2009).

    Google Scholar 

  39. Hadi, F. et al. Combinatorial effects of radiofrequency hyperthermia and radiotherapy in the presence of magneto‐plasmonic nanoparticles on MCF‐7 breast cancer cells. J. Cell. Physiol. 234, 20028–20035 (2019).

    Article  Google Scholar 

  40. Beik, J. et al. Gold nanoparticle‐induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor‐bearing mice. Med. Phys. 45, 4306–4314 (2018).

    Article  Google Scholar 

  41. Curley, S. A., Palalon, F., Sanders, K. E. & Koshkina, N. V. The effects of non-invasive radiofrequency treatment and hyperthermia on malignant and nonmalignant cells. Int. J. Environ. Res. Public Health 11, 9142–9153 (2014).

    Article  Google Scholar 

  42. Diederich, C. J. & Hynynen, K. Ultrasound technology for hyperthermia. Ultrasound Med. Biol. 25, 871–887 (1999).

    Article  Google Scholar 

  43. Mensel, B., Weigel, C. & Hosten, N. Laser-induced thermotherapy. Recent Results Cancer Res. 167, 69–75 (2006).

    Article  Google Scholar 

  44. Suriyanto, N. E. & Kumar, S. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. Biomed. Eng. Online 16, 36 (2017).

    Article  Google Scholar 

  45. Gneveckow, U. et al. Description and characterization of the novel hyperthermia‐and thermoablation‐system for clinical magnetic fluid hyperthermia. Med. Phys. 31, 1444–1451 (2004).

    Article  Google Scholar 

  46. Hergt, R., Dutz, S., Müller, R. & Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter 18, S2919 (2006).

    Article  Google Scholar 

  47. Huang, H. S. & Hainfeld, J. F. Intravenous magnetic nanoparticle cancer hyperthermia. Int. J. Nanomed. 8, 2521–2532 (2013).

    Google Scholar 

  48. Balivada, S. et al. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10, 119 (2010).

    Article  Google Scholar 

  49. Flores-Ramírez, A. et al. Physicochemical-electrochemical characterization of the nanocomposite chitosan-coated magnetite nanoparticles. J. Clust. Sci. 34, 1019–1035 (2023).

    Article  Google Scholar 

  50. Choi, J.-G., Hasan, M., Akter, H. & Lee, S.-S. Characterization of dextran-coated magnetic nanoparticles (Fe3O4) conjugated with monoclonal antibody through low gradient magnet and centrifugation-based buffer separation processes. Curr. Appl. Phys. 48, 79–83 (2023).

    Article  Google Scholar 

  51. Hasan, M., Choi, J.-G., Akter, H. & Lee, S.-S. Spleen distribution and serum immune responses after acute administration of silica-conjugated magnetite (Fe3O4) nanoparticles. AIP Adv. 13, 025135 (2023).

    Article  Google Scholar 

  52. Gonzales-Weimuller, M., Zeisberger, M. & Krishnan, K. M. Size-dependent heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1947–1950 (2009).

    Article  Google Scholar 

  53. Nguyen, L. H. et al. The role of anisotropy in distinguishing domination of Néel or Brownian relaxation contribution to magnetic inductive heating: orientations for biomedical applications. Materials 14, 1875 (2021).

    Article  Google Scholar 

  54. Mehak, Thummer, R. P. & Pandey, L. M. Surface modified iron-oxide based engineered nanomaterials for hyperthermia therapy of cancer cells. Biotechnol. Genet. Eng. Rev. 39, 1187–1233 (2023).

    Article  Google Scholar 

  55. Mohammad, F. et al. Magnetically controlled drug delivery and hyperthermia effects of core-shell Cu@Mn3O4 nanoparticles towards cancer cells in vitro. Int. J. Biol. Macromol. 249, 126071 (2023).

    Article  Google Scholar 

  56. Heydaryan, K., Mohammadalizadeh, M., Montazer, A. H. & Kashi, M. A. Reaction time-induced improvement in hyperthermia properties of cobalt ferrite nanoparticles with different sizes. Mater. Chem. Phys. 303, 127773 (2023).

    Article  Google Scholar 

  57. Somvanshi, S. B., Jadhav, S. A., Gawali, S. S., Zakde, K. & Jadhav, K. Core-shell structured superparamagnetic Zn–Mg ferrite nanoparticles for magnetic hyperthermia applications. J. Alloy. Compd. 947, 169574 (2023).

    Article  Google Scholar 

  58. Ali, I. et al. Comparison of copper-based Cu–Ni and Cu–Fe nanoparticles synthesized via laser ablation for magnetic hyperthermia and antibacterial applications. Phys. B 650, 414503 (2023).

    Article  Google Scholar 

  59. Olusegun, S. J. et al. Synthesis and characterization of Sr2+ and Gd3+ doped magnetite nanoparticles for magnetic hyperthermia and drug delivery application. Ceram. Int. 49, 19851–19860 (2023).

    Article  Google Scholar 

  60. Bulte, J. W., Wang, C. & Shakeri‐Zadeh, A. In vivo cellular magnetic imaging: labeled versus unlabeled cells. Adv. Funct. Mater. 32, 2207626 (2022).

    Article  Google Scholar 

  61. Roumaih, K., Yehia, M. & Hassan, H. Synthesis and characterization of core–shell NiFe2O4@MgFe2O4 and ZnFe2O4@MgFe2O4 nanoferrites. J. Inorg. Organomet. Polym. 30, 3132–3142 (2020).

    Article  Google Scholar 

  62. Patade, S. R. et al. Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 46, 25576–25583 (2020).

    Article  Google Scholar 

  63. Kharat, P. B., Somvanshi, S. B., Khirade, P. P. & Jadhav, K. Induction heating analysis of surface-functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS Omega 5, 23378–23384 (2020).

    Article  Google Scholar 

  64. Gasser, A. et al. Feasibility of superparamagnetic NiFe2O4 and GO-NiFe2O4 nanoparticles for magnetic hyperthermia. Mater. Sci. Eng. B 297, 116721 (2023).

    Article  Google Scholar 

  65. Vatsalya, V. L. S., Sundari, G. S., Sridhar, C. S. & Lakshmi, C. S. Evidence of superparamagnetism in nano phased copper doped nickel zinc ferrites synthesized by hydrothermal method. Optik 247, 167874 (2021).

    Article  Google Scholar 

  66. Rani, B. J., Mageswari, R., Ravi, G., Ganesh, V. & Yuvakkumar, R. Physico-chemical properties of pure and zinc incorporated cobalt nickel mixed ferrite (ZnxCo0.005−xNi0.005Fe2O4, where x = 0, 0.002, 0.004 M) nanoparticles. J. Mater. Sci. Mater. Electron. 28, 16450–16458 (2017).

    Article  Google Scholar 

  67. Rezaei, B., Kermanpur, A. & Labbaf, S. Effect of Mn addition on the structural and magnetic properties of Zn–ferrite nanoparticles. J. Magn. Magn. Mater. 481, 16–24 (2019).

    Article  Google Scholar 

  68. Sharma, R., Sharma, A., Chen, C. J., Kwon, S. & Hayek, S. S. Temperature and magnetic resonance characteristics of zinc, manganese, gadolinium, gold, iron magnetic nanoparticles and cytokine synergy in hyperthermia. J. Biomed. Sci. Eng. 1, 182–189 (2008).

    Article  Google Scholar 

  69. Seo, W. S. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 5, 971–976 (2006).

    Article  Google Scholar 

  70. Muscas, G. et al. Magnetic interactions versus magnetic anisotropy in spinel ferrite nanoparticles. IEEE Magn. Lett. 10, 6110305 (2019).

    Article  Google Scholar 

  71. Ma, Y. et al. Facile synthesis of ultrasmall MnFe2O4 nanoparticles with high saturation magnetization for magnetic resonance imaging. Ceram. Int. 47, 34005–34011 (2021).

    Article  Google Scholar 

  72. Wang, Y. et al. Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications. Mater. Today Adv. 8, 100119 (2020).

    Article  Google Scholar 

  73. Schenck, J. F. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23, 815–850 (1996).

    Article  Google Scholar 

  74. Kalaiselvan, C. R. et al. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coordin. Chem. Rev. 473, 214809 (2022).

    Article  Google Scholar 

  75. Maier-Hauff, K. et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81, 53–60 (2007).

    Article  Google Scholar 

  76. Ahamed, M. et al. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283, 101–108 (2011).

    Article  Google Scholar 

  77. Dadfar, S. M. et al. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance. J. Nanobiotechnol. 18, 22 (2020).

    Article  Google Scholar 

  78. Laurent, S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008).

    Article  Google Scholar 

  79. Gavilán, H., Rizzo, G. M., Silvestri, N., Mai, B. T. & Pellegrino, T. Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications. Nat. Protoc. 18, 783–809 (2023).

    Article  Google Scholar 

  80. Zou, L. et al. Microfluidic synthesis of magnetic nanoparticles in droplet-based microreactors. Mater. Chem. Phys. 276, 125384 (2022).

    Article  Google Scholar 

  81. Blanco-Andujar, C. et al. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 11, 1889–1910 (2016).

    Article  Google Scholar 

  82. Parat, A. et al. Dendrimer–nanoparticle conjugates in nanomedicine. Nanomedicine 10, 977–992 (2015).

    Article  Google Scholar 

  83. Cheng, K.-W. & Hsu, S.-H. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles. Int. J. Nanomed. 12, 1775–1789 (2017).

    Article  Google Scholar 

  84. Schleich, N. et al. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int. J. Pharm. 447, 94–101 (2013).

    Article  Google Scholar 

  85. Chen, Y.-P. & Hsu, S.-H. Preparation and characterization of novel water-based biodegradable polyurethane nanoparticles encapsulating superparamagnetic iron oxide and hydrophobic drugs. J. Mater. Chem. B 2, 3391–3401 (2014).

    Article  Google Scholar 

  86. Chan, N. et al. Multidentate block-copolymer-stabilized ultrasmall superparamagnetic iron oxide nanoparticles with enhanced colloidal stability for magnetic resonance imaging. Biomacromolecules 15, 2146–2156 (2014).

    Article  Google Scholar 

  87. Li, Q. et al. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894 (2017).

    Article  Google Scholar 

  88. Liu, X. L. et al. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv. Mater. 27, 1939–1944 (2015).

    Article  Google Scholar 

  89. Yang, Y. et al. Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc. Adv. Funct. Mater. 25, 812–820 (2015).

    Article  Google Scholar 

  90. Guardia, P. et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6, 3080–3091 (2012).

    Article  Google Scholar 

  91. Alphandéry, E. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology 13, 573–596 (2019).

    Article  Google Scholar 

  92. Nakamura, Y., Mochida, A., Choyke, P. L. & Kobayashi, H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 27, 2225–2238 (2016).

    Article  Google Scholar 

  93. Huynh, N. T., Roger, E., Lautram, N., Benoît, J.-P. & Passirani, C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine 5, 1415–1433 (2010).

    Article  Google Scholar 

  94. Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article  Google Scholar 

  95. Bulte, J. W. et al. Specific MR imaging of human lymphocytes by monoclonal antibody‐guided dextran‐magnetite particles. Magn. Reson. Med. 25, 148–157 (1992).

    Article  Google Scholar 

  96. Yu, N. et al. Transferrin-conjugated manganese dioxide/semiconducting polymer hybrid nanoparticles for targeted dual-model imaging of orthotopic glioblastoma. ACS Appl. Polym. Mater. 5, 4596–4603 (2023).

    Article  Google Scholar 

  97. He, S., Du, Y., Tao, H. & Duan, H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int. J. Biol. Macromol. 124173 (2023).

  98. Hashemian, A., Eshghi, H., Mansoori, G., Shakeri-Zadeh, A. & Mehdizadeh, A. Folate-conjugated gold nanoparticles (synthesis, characterization and design for cancer cells nanotechnology-based targeting). Int. J. Nanosci. Nanotechnol. 5, 25–34 (2009).

    Google Scholar 

  99. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article  Google Scholar 

  100. Schleich, N., Danhier, F. & Préat, V. Iron oxide-loaded nanotheranostics: major obstacles to in vivo studies and clinical translation. J. Control. Rel. 198, 35–54 (2015).

    Article  Google Scholar 

  101. Shapiro, B. et al. Open challenges in magnetic drug targeting. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 7, 446–457 (2015).

    Article  Google Scholar 

  102. Almaki, J. H. et al. Trastuzumab-decorated nanoparticles for in vitro and in vivo tumor-targeting hyperthermia of HER2+ breast cancer. J. Mater. Chem. B 5, 7369–7383 (2017).

    Article  Google Scholar 

  103. Sangnier, A. P. et al. Targeted thermal therapy with genetically engineered magnetite magnetosomes@ RGD: photothermia is far more efficient than magnetic hyperthermia. J. Control. Rel. 279, 271–281 (2018).

    Article  Google Scholar 

  104. Mohammad, F., Raghavamenon, A. C., Claville, M. O., Kumar, C. S. & Uppu, R. M. Targeted hyperthermia-induced cancer cell death by superparamagnetic iron oxide nanoparticles conjugated to luteinizing hormone-releasing hormone. Nanotechnol. Rev. 3, 389–400 (2014).

    Article  Google Scholar 

  105. Zhang, H. et al. Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer. J. Ovarian Res. 9, 19 (2016).

    Article  Google Scholar 

  106. Soleymani, M. et al. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Sci. Rep. 10, 1695 (2020).

    Article  Google Scholar 

  107. Yoo, M.-K. et al. Folate–PEG–superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomater. 8, 3005–3013 (2012).

    Article  Google Scholar 

  108. Ngen, E. J. et al. MRI assessment of prostate-specific membrane antigen (PSMA) targeting by a PSMA-targeted magnetic nanoparticle: potential for image-guided therapy. Mol. Pharm. 16, 2060–2068 (2019).

    Article  Google Scholar 

  109. Majd, M. H. et al. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf. B 106, 117–125 (2013).

    Article  Google Scholar 

  110. Wang, W. et al. M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy. J. Mater. Sci. Technol. 81, 77–87 (2021).

    Article  Google Scholar 

  111. Zhu, N. et al. Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8, 810 (2018).

    Article  Google Scholar 

  112. Dobrovolskaia, M. A., Shurin, M. & Shvedova, A. A. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 299, 78–89 (2016).

    Article  Google Scholar 

  113. Lee, J. H. et al. Rod‐shaped iron oxide nanoparticles are more toxic than sphere‐shaped nanoparticles to murine macrophage cells. Environ. Toxicol. Chem. 33, 2759–2766 (2014).

    Article  Google Scholar 

  114. Kedziorek, D. A. et al. Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn. Reson. Med. 63, 1031–1043 (2010).

    Article  Google Scholar 

  115. Liu, Y. et al. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. Nanotechnology 25, 425101 (2014).

    Article  Google Scholar 

  116. Weissleder, R. Liver MR imaging with iron oxides: toward consensus and clinical practice. Radiology 193, 593–595 (1994).

    Article  Google Scholar 

  117. Nowak-Jary, J. & Machnicka, B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J. Nanobiotechnol. 20, 305 (2022).

    Article  Google Scholar 

  118. Wang, Y.-X. J. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant. Imag. Med. Surg. 1, 35–40 (2011).

    Google Scholar 

  119. Solomon, S. B. & Silverman, S. G. Imaging in interventional oncology. Radiology 257, 624–640 (2010).

    Article  Google Scholar 

  120. Cho, S., Park, W. & Kim, D.-H. Silica-coated metal chelating-melanin nanoparticles as a dual-modal contrast enhancement imaging and therapeutic agent. ACS Appl. Mater. Interf. 9, 101–111 (2017).

    Article  Google Scholar 

  121. Tomitaka, A. et al. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale 9, 764–773 (2017).

    Article  Google Scholar 

  122. Tay, Z. W. et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano 12, 3699–3713 (2018).

    Article  Google Scholar 

  123. Detappe, A. et al. Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance–computed tomography image guided radiation therapy. Nano Lett. 17, 1733–1740 (2017).

    Article  Google Scholar 

  124. Li, Y. et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 5, 4712 (2014).

    Article  Google Scholar 

  125. Park, W. et al. Immunomodulatory magnetic microspheres for augmenting tumor-specific infiltration of natural killer (NK) cells. ACS Appl. Mater. Interf. 9, 13819–13824 (2017).

    Article  Google Scholar 

  126. Huang, P.-C. et al. Interstitial magnetic thermotherapy dosimetry based on shear wave magnetomotive optical coherence elastography. Biomed. Opt. Express 10, 539–551 (2019).

    Article  Google Scholar 

  127. Mason, E. E. et al. Design analysis of an MPI human functional brain scanner. Int. J. Magn. Part. Imag. 3, 1703008 (2017).

    Google Scholar 

  128. Thieben, F. et al. System characterization of a human-sized 3D real-time magnetic particle imaging scanner for cerebral applications. Commun. Eng. 3, 47 (2024).

    Article  Google Scholar 

  129. Senpan, A. et al. Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano 3, 3917–3926 (2009).

    Article  Google Scholar 

  130. Park, S., Jang, J., Kim, J., Kim, Y. S. & Kim, C. Real-time triple-modal photoacoustic, ultrasound, and magnetic resonance fusion imaging of humans. IEEE Trans. Med. Imaging 36, 1912–1921 (2017).

    Article  Google Scholar 

  131. Chan, M.-H., Hsieh, M.-R., Liu, R.-S., Wei, D.-H. & Hsiao, M. Magnetically guided theranostics: optimizing magnetic resonance imaging with sandwich-like kaolinite-based iron/platinum nanoparticles for magnetic fluid hyperthermia and chemotherapy. Chem. Mater. 32, 697–708 (2019).

    Article  Google Scholar 

  132. Buchholz, O. et al. In situ theranostic platform combining highly localized magnetic fluid hyperthermia, magnetic particle imaging, and thermometry in 3D. Theranostics 14, 324–340 (2024).

    Article  Google Scholar 

  133. Behrends, A. et al. Integrable magnetic fluid hyperthermia systems for 3D magnetic particle imaging. Nanotheranostics 8, 163–178 (2024).

    Article  Google Scholar 

  134. Nakamura, H., Ito, N., Kotake, F., Mizokami, Y. & Matsuoka, T. Tumor-detecting capacity and clinical usefulness of SPIO-MRI in patients with hepatocellular carcinoma. J. Gastroenterol. 35, 849–855 (2000).

    Article  Google Scholar 

  135. Asadi, M. et al. MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Phys. Med. 66, 124–132 (2019).

    Article  Google Scholar 

  136. Lin, Y. et al. Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives. J. Mater. Chem. B 8, 5973–5991 (2020).

    Article  Google Scholar 

  137. Chu, W. et al. Magnetic resonance-guided high-intensity focused ultrasound hyperthermia for recurrent rectal cancer: MR thermometry evaluation and preclinical validation. Int. J. Radiat. Oncol. Biol. Phys. 95, 1259–1267 (2016).

    Article  Google Scholar 

  138. Wang, X., Pan, F., Xiang, Z., Jia, W. & Lu, W. Magnetic Fe3O4@PVP nanotubes with high heating efficiency for MRI-guided magnetic hyperthermia applications. Mater. Lett. 262, 127187 (2020).

    Article  Google Scholar 

  139. Beik, J. et al. Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. J. Photochem. Photobiol. B 199, 111599 (2019).

    Article  Google Scholar 

  140. Lozano-Pedraza, C. et al. Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation. Nanoscale Adv. 3, 6490–6502 (2021).

    Article  Google Scholar 

  141. Rieke, V. in Interventional Magnetic Resonance Imaging (eds Kahn, T. & Busse, H.) 271–288 (Springer, 2011).

  142. Shakeri-Zadeh, A. et al. MPI of SuperSPIO20-labeled ALS patient-derived, genome-edited iPSCs and iPSC-derived motor neurons. Int. J. Magn. Part. Imag. 8, 203003 (2022).

    Google Scholar 

  143. Shakeri-Zadeh, A., Kuddannaya, S., Bibic, A., Walczak, P. & Bulte, J. Fast dynamic MPI cytometry. Int. J. Magn. Part. Imag. 9, 577 (2023).

    Google Scholar 

  144. Wang, C., Shakeri-Zadeh, A., Kuddannaya, S., Arifin, D. & Bulte, J. Versatile superparamagnetic radiopaque nanocomplex for in vivo MPI, MRI, and CT stem cell tracking. Int. J. Magn. Part. Imag. 9, 576 (2023).

    Google Scholar 

  145. Ghaemi, B. et al. Smart intratumoral delivery of theranostic gold-iron oxide nanoflowers in prostate cancer using tumor-tropic mesenchymal stem cells. Int. J. Magn. Part. Imag. 9, 573 (2023).

    Google Scholar 

  146. Carlton, H. et al. HYPER: pre-clinical device for spatially-confined magnetic particle hyperthermia. Int. J. Hyperth. 40, 2272067 (2023).

    Article  Google Scholar 

  147. Tay, Z. W. et al. A high-throughput, arbitrary-waveform, MPI spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization. Sci. Rep. 6, 34180 (2016).

    Article  Google Scholar 

  148. Lüdtke-Buzug, K. et al. Comparison of commercial iron oxide-based MRI contrast agents with synthesized high-performance MPI tracers. Biomed. Tech. 58, 527–533 (2013).

    Article  Google Scholar 

  149. Kranemann, T. C. et al. An MPI-compatible HIFU transducer: experimental evaluation of interferences. Int. J. Magn. Part. Imag. 4, 1811003 (2018).

    Google Scholar 

  150. Oh, J. et al. Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound. Nanotechnology 17, 4183 (2006).

    Article  Google Scholar 

  151. Mehrmohammadi, M. et al. In vivo pulsed magneto-motive ultrasound imaging using high-performance magnetoactive contrast nanoagents. Nanoscale 5, 11179–11186 (2013).

    Article  Google Scholar 

  152. Mallidi, S., Larson, T., Aaron, J., Sokolov, K. & Emelianov, S. Molecular specific optoacoustic imaging with plasmonic nanoparticles. Opt. Express 15, 6583–6588 (2007).

    Article  Google Scholar 

  153. Mehrmohammadi, M., Yoon, K., Qu, M., Johnston, K. & Emelianov, S. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters. Nanotechnology 22, 045502 (2010).

    Article  Google Scholar 

  154. Kubelick, K. P. & Mehrmohammadi, M. Magnetic particles in motion: magneto-motive imaging and sensing. Theranostics 12, 1783 (2022).

    Article  Google Scholar 

  155. Pope, A. G. et al. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound. Phys. Med. Biol. 58, 7277 (2013).

    Article  Google Scholar 

  156. Ruohonen, J. & Ilmoniemi, R. Focusing and targeting of magnetic brain stimulation using multiple coils. Med. Biol. Eng. Comput. 36, 297–301 (1998).

    Article  Google Scholar 

  157. Qu, M. et al. Magneto-photo-acoustic imaging. Biomed. Opt. Express 2, 385–396 (2011).

    Article  Google Scholar 

  158. Li, J. et al. Magnetically responsive optical modulation: from anisotropic nanostructures to emerging applications. Adv. Funct. Mat. 34, 2308293 (2023).

    Article  Google Scholar 

  159. Fan, Y. et al. The LMIT: light-mediated minimally-invasive theranostics in oncology. Theranostics 14, 341–362 (2024).

    Article  Google Scholar 

  160. Kallumadil, M. et al. Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 321, 1509–1513 (2009).

    Article  Google Scholar 

  161. Bauer, L. M., Situ, S. F., Griswold, M. A. & Samia, A. C. S. Magnetic particle imaging tracers: state-of-the-art and future directions. J. Phys. Chem. Lett. 6, 2509–2517 (2015).

    Article  Google Scholar 

  162. Brandt, C. & Schmidt, C. Modeling magnetic particle imaging for dynamic tracer distributions. Sens. Imag. 22, 45 (2021).

    Article  Google Scholar 

  163. Eberbeck, D., Wiekhorst, F., Wagner, S. & Trahms, L. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl. Phys. Lett. 98, 182502 (2011).

    Article  Google Scholar 

  164. Ferguson, R. M., Khandhar, A. P. & Krishnan, K. M. Tracer design for magnetic particle imaging. J. Appl. Phys. 111, 07B318 (2012).

    Article  Google Scholar 

  165. Khandhar, A. P., Ferguson, R. M., Arami, H. & Krishnan, K. M. Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 34, 3837–3845 (2013).

    Article  Google Scholar 

  166. Du, Y., Lai, P. T., Leung, C. H. & Pong, P. W. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). Int. J. Mol. Sci. 14, 18682–18710 (2013).

    Article  Google Scholar 

  167. Mahdavi, M. et al. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 7533–7548 (2013).

    Article  Google Scholar 

  168. Paysen, H. et al. Towards quantitative magnetic particle imaging: a comparison with magnetic particle spectroscopy. AIP Adv. 8, 056712 (2018).

    Article  Google Scholar 

  169. Riedinger, A. et al. Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. Nano Lett. 13, 2399–2406 (2013).

    Article  Google Scholar 

  170. Dong, J. & Zink, J. I. Taking the temperature of the interiors of magnetically heated nanoparticles. ACS Nano 8, 5199–5207 (2014).

    Article  Google Scholar 

  171. Zhang, J. et al. Magnetic particle imaging deblurring with dual contrastive learning and adversarial framework. Comput. Biol. Med. 165, 107461 (2023).

    Article  Google Scholar 

  172. Csóka, I., Ismail, R., Jójárt-Laczkovich, O. & Pallagi, E. Regulatory considerations, challenges and risk-based approach in nanomedicine development. Curr. Med. Chem. 28, 7461–7476 (2021).

    Article  Google Scholar 

  173. Ali, F., Neha, K. & Parveen, S. Current regulatory landscape of nanomaterials and nanomedicines: a global perspective. J. Drug. Deliv. Sci. Technol. 80, 104118 (2022).

    Article  Google Scholar 

  174. Foulkes, R. et al. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater. Sci. 8, 4653–4664 (2020).

    Article  Google Scholar 

  175. Banala, V. T., Mukherjee, D., Mahajan, S. & Singh, P. K. in Multifunctional Nanocarriers (eds Mehra, N. K. et al.) 501–521 (Elsevier, 2022).

  176. Paradise, J. Regulating nanomedicine at the food and drug administration. AMA J. Ethics 21, E347–355 (2019).

    Article  Google Scholar 

  177. Liu, Y., Zhu, S., Gu, Z., Chen, C. & Zhao, Y. Toxicity of manufactured nanomaterials. Particuology 69, 31–48 (2022).

    Article  Google Scholar 

  178. Dahnke, H. & Schaeffter, T. Limits of detection of SPIO at 3.0 T using T2* relaxometry. Magn. Reson. Med. 53, 1202–1206 (2005).

    Article  Google Scholar 

  179. Yu, E. Y. et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. 17, 1648–1654 (2017).

    Article  Google Scholar 

  180. Ding, N. et al. Sensitive photoacoustic/magnetic resonance dual imaging probe for detection of malignant tumors. J. Pharm. Sci. 109, 3153–3159 (2020).

    Article  Google Scholar 

  181. van Wijk, D. F. et al. Increasing spatial resolution of 3T MRI scanning improves reproducibility of carotid arterial wall dimension measurements. MAGMA 27, 219–226 (2014).

    Article  Google Scholar 

  182. Gleich, B. & Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005).

    Article  Google Scholar 

  183. Qu, M. et al. Contrast-enhanced magneto-photo-acoustic imaging in vivo using dual-contrast nanoparticles. Photoacoustics 2, 55–62 (2014).

    Article  Google Scholar 

  184. Ohgushi, M., Nagayama, K. & Wada, A. Dextran-magnetite: a new relaxation reagent and its application to T2 measurements in gel systems. J. Magn. Reson. 29, 599–601 (1978).

    Google Scholar 

  185. De Vries, I. J. M. et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat. Biotechnol. 23, 1407–1413 (2005).

    Article  Google Scholar 

  186. Carey, R., Newman, D. & Thomas, B. Photo-acoustic detection of magneto-optic absorption (MPAS) in thin iron films. J. Phys. D 15, 343 (1982).

    Article  Google Scholar 

  187. Oldenburg, A. L., Gunther, J. R. & Boppart, S. A. Imaging magnetically labeled cells with magnetomotive optical coherence tomography. Opt. Lett. 30, 747–749 (2005).

    Article  Google Scholar 

  188. Gilchrist, R. et al. Selective inductive heating of lymph nodes. Ann. Surg. 146, 596 (1957).

    Article  Google Scholar 

  189. Jordan, A. et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001).

    Article  Google Scholar 

  190. Sun, Y. et al. Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials 33, 5854–5864 (2012).

    Article  Google Scholar 

  191. Fu, G. et al. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjug. Chem. 25, 1655–1663 (2014).

    Article  Google Scholar 

  192. Song, G. et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat. Biomed. Eng. 4, 325–334 (2020).

    Article  Google Scholar 

  193. Bui, M. P., Le, T.-A. & Yoon, J. A magnetic particle imaging-based navigation platform for magnetic nanoparticles using interactive manipulation of a virtual field free point to ensure targeted drug delivery. IEEE Trans. Industr. Electron. 68, 12493–12503 (2020).

    Article  Google Scholar 

  194. Wang, Q. et al. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7, eabe5914 (2021).

    Article  Google Scholar 

  195. Yang, H. Y., Li, Y. & Lee, D. S. Multifunctional and stimuli‐responsive magnetic nanoparticle‐based delivery systems for biomedical applications. Adv. Ther. 1, 1800011 (2018).

    Article  Google Scholar 

  196. Jalili, N. A., Jaiswal, M. K., Peak, C. W., Cross, L. M. & Gaharwar, A. K. Injectable nanoengineered stimuli-responsive hydrogels for on-demand and localized therapeutic delivery. Nanoscale 9, 15379–15389 (2017).

    Article  Google Scholar 

  197. Castro-Torres, J. L., Méndez, J., Torres-Lugo, M. & Juan, E. Development of handheld induction heaters for magnetic fluid hyperthermia applications and in-vitro evaluation on ovarian and prostate cancer cell lines. Biomed. Phys. Eng. Express 9, 035010 (2023).

    Article  Google Scholar 

  198. Son, S. et al. Cancer therapeutics based on diverse energy sources. Chem. Soc. Rev. 51, 8201–8215 (2022).

    Article  Google Scholar 

  199. Chitnis, P. V., Mamou, J., McLaughlan, J., Murray, T. & Roy, R. A. Photoacoustic thermometry for therapeutic hyperthermia. In IEEE Int. Ultrasonics Symp. (IUS) 1757–1760 (IEEE, 2009).

Download references

Acknowledgements

A.S.-Z. and J.W.M.B. are supported by National Institutes of Health (NIH) grants R01 CA257557 and S10 OD026740.

Author information

Authors and Affiliations

Authors

Contributions

A.S.-Z. composed the initial draft, made illustrations and performed a literature search. J.W.M.B. contributed to the writing, overall outline and revisions. Both authors reviewed and approved all versions of this manuscript.

Corresponding author

Correspondence to Jeff W. M. Bulte.

Ethics declarations

Competing interests

J.W.M.B. declares that he is a paid scientific advisory board member and shareholder of SuperBranche. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict-of-interest policies. A.S-Z. declares no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Joonseok Lee, Xiaoyuan Chen, Mohammad Mehrmohammadi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakeri-Zadeh, A., Bulte, J.W.M. Imaging-guided precision hyperthermia with magnetic nanoparticles. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00257-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00257-3

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer