[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms linking social media use to adolescent mental health vulnerability

Abstract

Research linking social media use and adolescent mental health has produced mixed and inconsistent findings and little translational evidence, despite pressure to deliver concrete recommendations for families, schools and policymakers. At the same time, it is widely recognized that developmental changes in behaviour, cognition and neurobiology predispose adolescents to developing socio-emotional disorders. In this Review, we argue that such developmental changes would be a fruitful focus for social media research. Specifically, we review mechanisms by which social media could amplify the developmental changes that increase adolescents’ mental health vulnerability. These mechanisms include changes to behaviour, such as sharing risky content and self-presentation, and changes to cognition, such as modifications in self-concept, social comparison, responsiveness to social feedback and experiences of social exclusion. We also consider neurobiological mechanisms that heighten stress sensitivity and modify reward processing. By focusing on mechanisms by which social media might interact with developmental changes to increase mental health risks, our Review equips researchers with a toolkit of key digital affordances that enables theorizing and studying technology effects despite an ever-changing social media landscape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Age of onset for different mental disorders.
Fig. 2: Factors contributing to adolescent mental health vulnerability.
Fig. 3: Examples of social media affordances in adolescence.

Similar content being viewed by others

References

  1. Savin-Williams, R. Adolescence: An Ethological Perspective (Springer, 1987).

  2. Sawyer, S. M., Azzopardi, P. S., Wickremarathne, D. & Patton, G. C. The age of adolescence. Lancet Child. Adolesc. Health 2, 223–228 (2018).

    Article  PubMed  Google Scholar 

  3. Paus, T., Keshavan, M. & Giedd, J. N. Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 9, 947–957 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Solmi, M. et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry 27, 281–295 (2022).

    Article  PubMed  Google Scholar 

  5. Orben, A., Lucas, R. E., Fuhrmann, D. & Kievit, R. A. Trajectories of adolescent life satisfaction. R. Soc. Open. Sci. 9, 211808 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rapee, R. M. et al. Adolescent development and risk for the onset of social-emotional disorders: a review and conceptual model. Behav. Res. Ther. 123, 103501 (2019). This review describes why adolescence is a sensitive period for mental health vulnerability.

    Article  PubMed  Google Scholar 

  7. Arango, C. et al. Risk and protective factors for mental disorders beyond genetics: an evidence‐based atlas. World Psychiatry 20, 417–436 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ioannidis, K., Askelund, A. D., Kievit, R. A. & van Harmelen, A.-L. The complex neurobiology of resilient functioning after childhood maltreatment. BMC Med. 18, 32 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kraemer, H. C., Stice, E., Kazdin, A., Offord, D. & Kupfer, D. How do risk factors work together? Mediators, moderators, and independent, overlapping, and proxy risk factors. AJP 158, 848–856 (2001).

    Article  Google Scholar 

  10. Hankin, B. L. & Abramson, L. Y. Development of gender differences in depression: an elaborated cognitive vulnerability–transactional stress theory. Psychol. Bull. 127, 773–796 (2001).

    Article  PubMed  Google Scholar 

  11. Collishaw, S., Maughan, B., Natarajan, L. & Pickles, A. Trends in adolescent emotional problems in England: a comparison of two national cohorts twenty years apart: twenty-year trends in emotional problems. J. Child. Psychol. Psychiatry 51, 885–894 (2010).

    Article  PubMed  Google Scholar 

  12. Pitchforth, J. M., Viner, R. M. & Hargreaves, D. S. Trends in mental health and wellbeing among children and young people in the UK: a repeated cross-sectional study, 2000–14. Lancet 388, S93 (2016).

    Article  Google Scholar 

  13. Coley, R. L., O’Brien, M. & Spielvogel, B. Secular trends in adolescent depressive symptoms: growing disparities between advantaged and disadvantaged schools. J. Youth Adolescence 48, 2087–2098 (2019).

    Article  Google Scholar 

  14. Patalay, P. & Gage, S. H. Changes in millennial adolescent mental health and health-related behaviours over 10 years: a population cohort comparison study. Int. J. Epidemiol. 48, 1650–1664 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pitchforth, J. M. et al. Mental health and well-being trends among children and young people in the UK, 1995–2014: analysis of repeated cross-sectional national health surveys. Psychol. Med. 49, 1275–1285 (2019).

    Article  PubMed  Google Scholar 

  16. Plana‐Ripoll, O. et al. Temporal changes in sex‐ and age‐specific incidence profiles of mental disorders—a nationwide study from 1970 to 2016. Acta Psychiatr. Scand. 145, 604–614 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Twenge, J. M., Cooper, A. B., Joiner, T. E., Duffy, M. E. & Binau, S. G. Age, period, and cohort trends in mood disorder indicators and suicide-related outcomes in a nationally representative dataset, 2005–2017. J. Abnorm. Psychol. 128, 185–199 (2019).

    Article  PubMed  Google Scholar 

  18. van Vuuren, C. L., Uitenbroek, D. G., van der Wal, M. F. & Chinapaw, M. J. M. Sociodemographic differences in 10-year time trends of emotional and behavioural problems among adolescents attending secondary schools in Amsterdam, The Netherlands. Eur. Child. Adolesc. Psychiatry 27, 1621–1631 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Collishaw, S. Annual research review: secular trends in child and adolescent mental health. J. Child. Psychol. Psychiatry 56, 370–393 (2015).

    Article  PubMed  Google Scholar 

  20. Goodwin, R. D. et al. Trends in U.S. depression prevalence from 2015 to 2020: the widening treatment gap. Am. J. Prev. Med. 63, 726–733 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mojtabai, R. & Olfson, M. National trends in mental health care for US adolescents. JAMA Psychiatry 77, 703 (2020).

    Article  PubMed  Google Scholar 

  22. Mojtabai, R., Olfson, M. & Han, B. National trends in the prevalence and treatment of depression in adolescents and young adults. Pediatrics 138, e20161878 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goodwin, R. D., Weinberger, A. H., Kim, J. H., Wu, M. & Galea, S. Trends in anxiety among adults in the United States, 2008–2018: rapid increases among young adults. J. Psychiatr. Res. 130, 441–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Beerten, S. G. et al. Trends in the registration of anxiety in Belgian primary care from 2000 to 2021: a registry-based study. Br. J. Gen. Pract. 73, e460–e467 (2022).

    Article  Google Scholar 

  25. Walrave, R. et al. Trends in the epidemiology of depression and comorbidities from 2000 to 2019 in Belgium. BMC Prim. Care 23, 163 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vuorre, M. & Przybylski, A. K. Global well-being and mental health in the internet age. Clin. Psychol. Sci. https://doi.org/10.1177/21677026231207791 (2023).

  27. Steffen, A., Thom, J., Jacobi, F., Holstiege, J. & Bätzing, J. Trends in prevalence of depression in Germany between 2009 and 2017 based on nationwide ambulatory claims data. J. Affect. Disord. 271, 239–247 (2020).

    Article  PubMed  Google Scholar 

  28. Ford, T. Editorial Perspective: why I am now convinced that emotional disorders are increasingly common among young people in many countries. J. Child. Psychol. Psychiatr. 61, 1275–1277 (2020).

    Article  Google Scholar 

  29. McElroy, E., Tibber, M., Fearon, P., Patalay, P. & Ploubidis, G. B. Socioeconomic and sex inequalities in parent‐reported adolescent mental ill‐health: time trends in four British birth cohorts. J. Child Psychol. Psychiatry 64, 758–767 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. OECD. Society at a Glance 2019: OECD Social Indicators (Organisation for Economic Co-operation and Development, 2019).

  31. Ofcom. Online Nation (2021). Ofcom.org.uk https://www.ofcom.org.uk/research-and-data/online-research/online-nation (2022).

  32. Anderson, M. & Jiang, J. Teens’ Social Media Habits and Experiences (Pew Research Center, 2018).

  33. McFarland, L. A. & Ployhart, R. E. Social media: a contextual framework to guide research and practice. J. Appl. Psychol. 100, 1653–1677 (2015).

    Article  PubMed  Google Scholar 

  34. Büchi, M. Digital well-being theory and research. N. Media Soc. 26, 172–189 (2024).

    Article  Google Scholar 

  35. Nesi, J., Choukas-Bradley, S. & Prinstein, M. J. Transformation of adolescent peer relations in the social media context: part 1—a theoretical framework and application to dyadic peer relationships. Clin. Child. Fam. Psychol. Rev. 21, 267–294 (2018). This landmark paper applies the idea of affordances to understanding the impact of social media on adolescent social relationships.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Taffel, S. Perspectives on the postdigital: beyond rhetorics of progress and novelty. Convergence 22, 324–338 (2016).

    Article  Google Scholar 

  37. Papacharissi, Z. We have always been social. Soc. Media + Society 1, 205630511558118 (2015).

    Google Scholar 

  38. Crone, E. A. & Konijn, E. A. Media use and brain development during adolescence. Nat. Commun. 9, 1–10 (2018). This article describes adolescent cognitive and neural development and its intersection with new types of technology.

    Article  Google Scholar 

  39. Weinstein, E. & James, C. Behind Their Screens: What Teens Are Facing (and Adults Are Missing) (MIT Press, 2022).

  40. Twenge, J. M., Joiner, T. E., Rogers, M. L. & Martin, G. N. Increases in depressive symptoms, suicide-related outcomes, and suicide rates among U.S. adolescents after 2010 and links to increased new media screen time. Clin. Psychol. Sci. 6, 3–17 (2017).

    Article  Google Scholar 

  41. Gunnell, D., Kidger, J. & Elvidge, H. Adolescent mental health in crisis. BMJ 361, k2608 (2018).

    Article  PubMed  Google Scholar 

  42. Odgers, C. L., Schueller, S. M. & Ito, M. Screen time, social media use, and adolescent development. Annu. Rev. Dev. Psychol. 2, 485–502 (2020).

    Article  Google Scholar 

  43. Valkenburg, P. M., Meier, A. & Beyens, I. Social media use and its impact on adolescent mental health: an umbrella review of the evidence. Curr. Opin. Psychol. 44, 58–68 (2022).

    Article  PubMed  Google Scholar 

  44. Kreski, N. et al. Social media use and depressive symptoms among United States adolescents. J. Adolesc. Health 68, 572–579 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Beyens, I., Pouwels, J. L., van Driel, I. I., Keijsers, L. & Valkenburg, P. M. The effect of social media on well-being differs from adolescent to adolescent. Sci. Rep. 10, 10763 (2020). This landmark paper highlights that the impacts of social media on well-being are highly individual.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jensen, M., George, M. J., Russell, M. R. & Odgers, C. L. Young adolescents’ digital technology use and mental health symptoms: little evidence of longitudinal or daily linkages. Clin. Psychol. Sci. 7, 1416–1433 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Orben, A., Dienlin, T. & Przybylski, A. K. Social media’s enduring effect on adolescent life satisfaction. Proc. Natl Acad. Sci. USA 116, 10226–10228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Allcott, H., Braghieri, L., Eichmeyer, S. & Gentzkow, M. The welfare effects of social media. Am. Economic Rev. 110, 629–676 (2020).

    Article  Google Scholar 

  49. Nassen, L.-M., Vandebosch, H., Poels, K. & Karsay, K. Opt-out, abstain, unplug. A systematic review of the voluntary digital disconnection literature. Telemat. Inform. 81, 101980 (2023).

    Article  Google Scholar 

  50. Dienlin, T. & Johannes, N. The impact of digital technology use on adolescent well-being. Dialogues Clin. Neurosci. 22, 135–142 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Odgers, C. L. & Jensen, M. R. Annual research review: adolescent mental health in the digital age: facts, fears, and future directions. J. Child. Psychol. Psychiatry 61, 336–348 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Meier, A. & Reinecke, L. Computer-mediated communication, social media, and mental health: a conceptual and empirical meta-review. Commun. Res. 48, 1182–1209 (2021). This review provides a hierarchical taxonomy of the levels of analysis at which social media can be conceptualized and measured.

    Article  Google Scholar 

  53. Orben, A. Teenagers, screens and social media: a narrative review of reviews and key studies. Soc. Psychiatry Psychiatr. Epidemiol. 55, 407–414 (2020).

    Article  PubMed  Google Scholar 

  54. Bell, V., Bishop, D. V. M. & Przybylski, A. K. The debate over digital technology and young people. BMJ 351, h3064 (2015).

    Article  PubMed  Google Scholar 

  55. Online Safety Act 2023. legislation.gov.uk, https://www.legislation.gov.uk/ukpga/2023/50/enacted (2023).

  56. Hawkes, N. CMO report is unable to shed light on impact of screen time and social media on children’s health. BMJ 364, l643 (2019).

    Article  PubMed  Google Scholar 

  57. US Department of Health and Human Services. Social Media and Youth Mental Health: The U.S. Surgeon General’s Advisory (2023).

  58. Valkenburg, P. M. & Peter, J. The differential susceptibility to media effects model: differential susceptibility to media effects model. J. Commun. 63, 221–243 (2013). This landmark paper examines how the impact of media is influenced by individual differences.

    Article  Google Scholar 

  59. Orben, A., Przybylski, A. K., Blakemore, S.-J. & Kievit, R. A. Windows of developmental sensitivity to social media. Nat. Commun. 13, 1649 (2022). This large-scale data analysis shows that adolescent development potentially influences how social media impacts well-being.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Orben, A. & Blakemore, S.-J. How social media affects teen mental health: a missing link. Nature 614, 410–412 (2023).

    Article  PubMed  Google Scholar 

  61. Shaw, H. et al. Quantifying smartphone “use”: choice of measurement impacts relationships between “usage” and health. Technol. Mind Behav. 1, https://doi.org/10.1037/tmb0000022 (2020).

  62. Parry, D. A. et al. A systematic review and meta-analysis of discrepancies between logged and self-reported digital media use. Nat. Hum. Behav. 5, 1535–1547 (2021).

    Article  PubMed  Google Scholar 

  63. Verduyn, P., Gugushvili, N. & Kross, E. Do social networking sites influence well-being? The extended active-passive model. Curr. Dir. Psychol. Sci. 31, 62–68 (2022).

    Article  Google Scholar 

  64. Davidson, B. I., Shaw, H. & Ellis, D. A. Fuzzy constructs in technology usage scales. Comput. Hum. Behav. 133, 107206 (2022).

    Article  Google Scholar 

  65. Shaw, D. J., Kaye, L. K., Ngombe, N., Kessler, K. & Pennington, C. R. It’s not what you do, it’s the way that you do it: an experimental task delineates among passive, reactive and interactive styles of behaviour on social networking sites. PLoS ONE 17, e0276765 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Griffioen, N., Van Rooij, M., Lichtwarck-Aschoff, A. & Granic, I. Toward improved methods in social media research. Technol. Mind Behav. 1, https://doi.org/10.1037/tmb0000005 (2020).

  67. Valkenburg, P. M. Social media use and well-being: what we know and what we need to know. Curr. Opin. Psychol. 45, 101294 (2022).

    Article  PubMed  Google Scholar 

  68. Yang, C., Holden, S. M. & Ariati, J. Social media and psychological well-being among youth: the multidimensional model of social media use. Clin. Child. Fam. Psychol. Rev. 24, 631–650 (2021).

    Article  PubMed  Google Scholar 

  69. Kelly, Y., Zilanawala, A., Booker, C. & Sacker, A. Social media use and adolescent mental health: findings from the UK Millennium Cohort Study. EClinicalMedicine 6, 59–68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Orben, A. & Przybylski, A. K. The association between adolescent well-being and digital technology use. Nat. Hum. Behav. 3, 173–182 (2019).

    Article  PubMed  Google Scholar 

  71. Sultan, M., Scholz, C. & van den Bos, W. Leaving traces behind: using social media digital trace data to study adolescent wellbeing. Comput. Hum. Behav. Rep. 10, 100281 (2023).

    Article  Google Scholar 

  72. Kaye, L., Orben, A., Ellis, D., Hunter, S. & Houghton, S. The conceptual and methodological mayhem of “screen time”. IJERPH 17, 3661 (2020).

    Article  Google Scholar 

  73. Choukas-Bradley, S., Roberts, S. R., Maheux, A. J. & Nesi, J. The perfect storm: a developmental–sociocultural framework for the role of social media in adolescent girls’ body image concerns and mental health. Clin. Child. Fam. Psychol. Rev. 25, 681–701 (2022). This review focuses on how social media can influence adolescent development of body image.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Moreno, M. A. & Uhls, Y. T. Applying an affordances approach and a developmental lens to approach adolescent social media use. Digital Health 5, 205520761982667 (2019).

    Article  Google Scholar 

  75. Smock, A. D., Ellison, N. B., Lampe, C. & Wohn, D. Y. Facebook as a toolkit: a uses and gratification approach to unbundling feature use. Comput. Hum. Behav. 27, 2322–2329 (2011).

    Article  Google Scholar 

  76. Bayer, J. B., Triêu, P. & Ellison, N. B. Social media elements, ecologies, and effects. Annu. Rev. Psychol. 71, 471–497 (2020).

    Article  PubMed  Google Scholar 

  77. Gibson, J. J. The Scological Approach to Visual Perception (Houghton Mifflin, 1979).

  78. Norman, D. A. The Psychology of Everyday Things (Basic Books, 1988).

  79. Evans, S. K., Pearce, K. E., Vitak, J. & Treem, J. W. Explicating affordances: a conceptual framework for understanding affordances in communication research. J. Comput. Mediat. Commun. 22, 35–52 (2017).

    Article  Google Scholar 

  80. Bayer, J. B., Ellison, N. B., Schoenebeck, S. Y. & Falk, E. B. Sharing the small moments: ephemeral social interaction on Snapchat. Information. Commun. Soc. 19, 956–977 (2016).

    Google Scholar 

  81. Fox, J. & McEwan, B. Distinguishing technologies for social interaction: the perceived social affordances of communication channels scale. Commun. Monogr. 84, 298–318 (2017).

    Article  Google Scholar 

  82. Kreling, R., Meier, A. & Reinecke, L. Feeling authentic on social media: subjective authenticity across instagram stories and posts. Soc. Media + Society 8, 205630512210862 (2022).

    Google Scholar 

  83. Leonardi, P. M. Social media, knowledge sharing, and innovation: toward a theory of communication visibility. Inf. Syst. Res. 25, 796–816 (2014).

    Article  Google Scholar 

  84. Treem, J. W. & Leonardi, P. M. Social media use in organizations: exploring the affordances of visibility, editability, persistence, and association. Ann. Int. Commun. Assoc. 36, 143–189 (2013).

    Google Scholar 

  85. Ellison, N. B., Pyle, C. & Vitak, J. Scholarship on well-being and social media: a sociotechnical perspective. Curr. Opin. Psychol. 46, 101340 (2022).

    Article  PubMed  Google Scholar 

  86. Orben, A. The Sisyphean cycle of technology panics. Perspect. Psychol. Sci. 15, 1143–1157 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Granic, I., Morita, H. & Scholten, H. Beyond screen time: identity development in the digital age. Psychol. Inq. 31, 195–223 (2020). This perspective discusses how adolescent identity development might be impacted by digital platforms including social media and video games.

    Article  Google Scholar 

  88. Lieberman, A. & Schroeder, J. Two social lives: how differences between online and offline interaction influence social outcomes. Curr. Opin. Psychol. 31, 16–21 (2020).

    Article  PubMed  Google Scholar 

  89. Valkenburg, P. M. & Peter, J. Online communication among adolescents: an integrated model of its attraction, opportunities, and risks. J. Adolesc. Health 48, 121–127 (2011).

    Article  PubMed  Google Scholar 

  90. Steinberg, L. et al. Around the world, adolescence is a time of heightened sensation seeking and immature self-regulation. Dev. Sci. 21, e12532 (2018).

    Article  Google Scholar 

  91. Blakemore, S.-J. & Robbins, T. W. Decision-making in the adolescent brain. Nat. Neurosci. 15, 1184–1191 (2012).

    Article  PubMed  Google Scholar 

  92. Steinberg, L. A social neuroscience perspective on adolescent risk-taking. Dev. Rev. 28, 78–106 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chein, J., Albert, D., O’Brien, L., Uckert, K. & Steinberg, L. Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry: peer influence on risk taking. Dev. Sci. 14, F1–F10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Blakemore, S.-J. Avoiding social risk in adolescence. Curr. Dir. Psychol. Sci. 27, 116–122 (2018).

    Article  Google Scholar 

  95. Blakemore, S.-J. & Mills, K. L. Is adolescence a sensitive period for sociocultural processing? Annu. Rev. Psychol. 65, 187–207 (2014). This review presents adolescence as an important stage of development characterized by changes to social cognition.

    Article  PubMed  Google Scholar 

  96. Campbell, R. et al. Multiple risk behaviour in adolescence is associated with substantial adverse health and social outcomes in early adulthood: findings from a prospective birth cohort study. Prev. Med. 138, 106157 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kurten, S. et al. Like to drink: dynamics of liking alcohol posts and effects on alcohol use. Comput. Hum. Behav. 129, 107145 (2022).

    Article  Google Scholar 

  98. Vannucci, A., Simpson, E. G., Gagnon, S. & Ohannessian, C. M. Social media use and risky behaviors in adolescents: a meta‐analysis. J. Adolesc. 79, 258–274 (2020).

    Article  PubMed  Google Scholar 

  99. Eichhorn, K. The End of Forgetting: Growing up with Social Media (Harvard Univ. Press, 2019).

  100. Litt, E. & Hargittai, E. The imagined audience on social network sites. Soc. Media + Society 2, 205630511663348 (2016).

    Google Scholar 

  101. Vitak, J. The impact of context collapse and privacy on social network site disclosures. J. Broadcast. Electron. Media 56, 451–470 (2012).

    Article  Google Scholar 

  102. Livingstone, S. Taking risky opportunities in youthful content creation: teenagers’ use of social networking sites for intimacy, privacy and self-expression. N. Media Soc. 10, 393–411 (2008).

    Article  Google Scholar 

  103. Marciano, L., Schulz, P. J. & Camerini, A.-L. Cyberbullying perpetration and victimization in youth: a meta-analysis of longitudinal studies. J. Comput.-Mediat. Commun. 25, 163–181 (2020).

    Article  Google Scholar 

  104. Mori, C., Temple, J. R., Browne, D. & Madigan, S. Association of sexting with sexual behaviors and mental health among adolescents: a systematic review and meta-analysis. JAMA Pediatr. 173, 770 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Suler, J. The online disinhibition effect. Cyberpsychol. Behav. 7, 321–326 (2004).

    Article  PubMed  Google Scholar 

  106. Wright, M. F., Harper, B. D. & Wachs, S. The associations between cyberbullying and callous-unemotional traits among adolescents: the moderating effect of online disinhibition. Pers. Individ. Differ. 140, 41–45 (2019).

    Article  Google Scholar 

  107. Nitschinsk, L., Tobin, S. J. & Vanman, E. J. The disinhibiting effects of anonymity increase online trolling. Cyberpsychol. Behav. Soc. Netw. 25, 377–383 (2022).

    Article  PubMed  Google Scholar 

  108. Nadkarni, A. & Hofmann, S. G. Why do people use Facebook? Pers. Individ. Differ. 52, 243–249 (2012).

    Article  Google Scholar 

  109. Leary, M. R. & Kowalski, R. M. Impression management: a literature review and two-component model. Psychol. Bull. 107, 34–47 (1990).

    Article  Google Scholar 

  110. Zhao, S., Grasmuck, S. & Martin, J. Identity construction on Facebook: digital empowerment in anchored relationships. Comput. Hum. Behav. 24, 1816–1836 (2008).

    Article  Google Scholar 

  111. Bij de Vaate, N. A. J. D., Veldhuis, J. & Konijn, E. A. How online self-presentation affects well-being and body image: a systematic review. Telemat. Inform. 47, 101316 (2020).

    Article  Google Scholar 

  112. Reinecke, L. & Trepte, S. Authenticity and well-being on social network sites: a two-wave longitudinal study on the effects of online authenticity and the positivity bias in SNS communication. Comput. Hum. Behav. 30, 95–102 (2014).

    Article  Google Scholar 

  113. Twomey, C. & O’Reilly, G. Associations of self-presentation on Facebook with mental health and personality variables: a systematic review. Cyberpsychol. Behav. Soc. Netw. 20, 587–595 (2017).

    Article  PubMed  Google Scholar 

  114. Vanden Abeele, M., Schouten, A. P. & Antheunis, M. L. Personal, editable, and always accessible: an affordance approach to the relationship between adolescents’ mobile messaging behavior and their friendship quality. J. Soc. Personal. Relatsh. 34, 875–893 (2017).

    Article  Google Scholar 

  115. Krause, H.-V., Baum, K., Baumann, A. & Krasnova, H. Unifying the detrimental and beneficial effects of social network site use on self-esteem: a systematic literature review. Media Psychol. 24, 10–47 (2021).

    Article  Google Scholar 

  116. Carr, C. T. & Foreman, A. C. Identity shift III: effects of publicness of feedback and relational closeness in computer-mediated communication. Media Psychol. 19, 334–358 (2016).

    Article  Google Scholar 

  117. Walther, J. B. et al. The effect of feedback on identity shift in computer-mediated communication. Media Psychol. 14, 1–26 (2011).

    Article  Google Scholar 

  118. Gonzales, A. L. & Hancock, J. T. Identity shift in computer-mediated environments. Media Psychol. 11, 167–185 (2008).

    Article  Google Scholar 

  119. Kelly, A. E. & Rodriguez, R. R. Publicly committing oneself to an identity. Basic. Appl. Soc. Psychol. 28, 185–191 (2006).

    Article  Google Scholar 

  120. Petre, C. E. The relationship between Internet use and self-concept clarity: a systematic review and meta-analysis. Cyberpsychology 15, https://doi.org/10.5817/CP2021-2-4 (2021).

  121. Appel, M., Schreiner, C., Weber, S., Mara, M. & Gnambs, T. Intensity of Facebook use is associated with lower self-concept clarity: cross-sectional and longitudinal evidence. J. Media Psychol. 30, 160–172 (2018).

    Article  Google Scholar 

  122. Talaifar, S. & Lowery, B. S. Freedom and constraint in digital environments: implications for the self. Perspect. Psychol. Sci. 18, 544–575 (2022).

    Article  PubMed  Google Scholar 

  123. West, M., Rice, S. & Vella-Brodrick, D. Mid-adolescents’ social media use: supporting and suppressing autonomy. J. Adolesc. Res. https://doi.org/10.1177/07435584231168402 (2023).

  124. Grasmuck, S., Martin, J. & Zhao, S. Ethno-racial identity displays on Facebook. J. Comput.-Mediat. Commun. 15, 158–188 (2009).

    Article  Google Scholar 

  125. DeVito, M. A., Walker, A. M. & Birnholtz, J. ‘Too Gay for Facebook’: presenting LGBTQ+ identity throughout the personal social media ecosystem. Proc. ACM Hum.–Comput. Interact. 2, 1–23 (2018).

    Article  Google Scholar 

  126. Ellison, N., Heino, R. & Gibbs, E. Managing impressions online: self-presentation processes in the online dating environment. J. Comput.-Mediat. Commun. 11, https://doi.org/10.1111/j.1083-6101.2006.00020.x (2006).

  127. Hancock, J. T. in Oxford Handbook of Internet Psychology (eds Joinson, A. et al.) 287–301 (Oxford Univ. Press, 2009).

  128. Davidson, B. I. & Joinson, A. N. Shape shifting across social media. Soc. Media + Society 7, 205630512199063 (2021).

    Google Scholar 

  129. Davis, J. L. Triangulating the self: identity processes in a connected era: triangulating the self. Symbolic Interaction 37, 500–523 (2014).

    Article  Google Scholar 

  130. Allen, B. J., Stratman, Z. E., Kerr, B. R., Zhao, Q. & Moreno, M. A. Associations between psychosocial measures and digital media use among transgender youth: cross-sectional study. JMIR Pediatr. Parent. 4, e25801 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Haimson, O. L. Mapping gender transition sentiment patterns via social media data: toward decreasing transgender mental health disparities. J. Am. Med. Inform. Assoc. 26, 749–758 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Harter, S. The Construction of the Self: Developmental and Sociocultural Foundations (Guilford Press, 2012).

  133. Crone, E. A., Green, K. H., van de Groep, I. H. & van der Cruijsen, R. A neurocognitive model of self-concept development in adolescence. Annu. Rev. Dev. Psychol. 4, 273–295 (2022). This extensive review discusses how adolescence is an important time for self-concept development.

    Article  Google Scholar 

  134. Pfeifer, J. H. & Peake, S. J. Self-development: integrating cognitive, socioemotional, and neuroimaging perspectives. Deve. Cognit. Neurosci. 2, 55–69 (2012).

    Article  Google Scholar 

  135. Sebastian, C., Burnett, S. & Blakemore, S.-J. Development of the self-concept during adolescence. Trends Cognit. Sci. 12, 441–446 (2008).

    Article  Google Scholar 

  136. Crocetti, E., Rubini, M., Luyckx, K. & Meeus, W. Identity formation in early and middle adolescents from various ethnic groups: from three dimensions to five statuses. J. Youth Adolesc. 37, 983–996 (2008).

    Article  Google Scholar 

  137. Morita, H., Griffioen, N. & Granic, I. in Handbook of Adolescent Digital Media Use and Mental Health (eds Nesi, J., Telzer, E. H. & Prinstein, M. J.) 63–84 (Cambridge Univ. Press, 2022).

  138. Dumontheil, I., Apperly, I. A. & Blakemore, S.-J. Online usage of theory of mind continues to develop in late adolescence. Dev. Sci. 13, 331–338 (2010).

    Article  PubMed  Google Scholar 

  139. Weil, L. G. et al. The development of metacognitive ability in adolescence. Conscious. Cogn. 22, 264–271 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Moses-Payne, M. E., Chierchia, G. & Blakemore, S.-J. Age-related changes in the impact of valence on self-referential processing in female adolescents and young adults. Cognit. Dev. 61, 101128 (2022).

    Article  Google Scholar 

  141. Scheuplein, M. et al. Perspective taking and memory for self- and town-related information in male adolescents and young adults. Cognit. Dev. 67, 101356 (2023).

    Article  Google Scholar 

  142. Rodman, A. M., Powers, K. E. & Somerville, L. H. Development of self-protective biases in response to social evaluative feedback. Proc. Natl Acad. Sci. USA 114, 13158–13163 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lee, A. Y., Mieczkowski, H., Ellison, N. B. & Hancock, J. T. The algorithmic crystal: conceptualizing the self through algorithmic personalization on TikTok. Proc. ACM Hum.–Comput. Interact. 6, 1–22 (2022).

    Google Scholar 

  144. Thomaes, S. et al. I like me if you like me: on the interpersonal modulation and regulation of preadolescents’ state self-esteem. Child. Dev. 81, 811–825 (2010).

    Article  PubMed  Google Scholar 

  145. Valkenburg, P. M., Peter, J. & Schouten, A. P. Friend networking sites and their relationship to adolescents’ well-being and social self-esteem. CyberPsychol. Behav. 9, 584–590 (2006).

    Article  PubMed  Google Scholar 

  146. Kwan, I. et al. Cyberbullying and children and young people’s mental health: a systematic map of systematic reviews. Cyberpsychol. Behav. Soc. Netw. 23, 72–82 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Przybylski, A. K. & Bowes, L. Cyberbullying and adolescent well-being in England: a population-based cross-sectional study. Lancet Child. Adolesc. Health 1, 19–26 (2017).

    Article  PubMed  Google Scholar 

  148. Peters, S. et al. Social media use and the not-so-imaginary audience: behavioral and neural mechanisms underlying the influence on self-concept. Dev. Cognit. Neurosci. 48, 100921 (2021).

    Article  Google Scholar 

  149. Wood, J. V. What is social comparison and how should we study it? Pers. Soc. Psychol. Bull. 22, 520–537 (1996).

    Article  Google Scholar 

  150. Dahl, R. E., Allen, N. B., Wilbrecht, L. & Suleiman, A. B. Importance of investing in adolescence from a developmental science perspective. Nature 554, 441–450 (2018).

    Article  PubMed  Google Scholar 

  151. Ferguson, A. M., Turner, G. & Orben, A. Social uncertainty in the digital world. Trends Cognit. Sci. 28, 286–289 (2024).

    Article  Google Scholar 

  152. Blease, C. R. Too many ‘friends,’ too few ‘likes’? Evolutionary psychology and ‘Facebook depression’. Rev. Gen. Psychol. 19, 1–13 (2015).

    Article  Google Scholar 

  153. Lee, H. Y. et al. Getting fewer “likes” than others on social media elicits emotional distress among victimized adolescents. Child. Dev. 91, 2141–2159 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Nesi, J. & Prinstein, M. J. In search of likes: longitudinal associations between adolescents’ digital status seeking and health-risk behaviors. J. Clin. Child. Adolesc. Psychol. 48, 740–748 (2019).

    Article  PubMed  Google Scholar 

  155. Carr, C. T., Hayes, R. A. & Sumner, E. M. Predicting a threshold of perceived Facebook post success via likes and reactions: a test of explanatory mechanisms. Commun. Res. Rep. 35, 141–151 (2018).

    Article  Google Scholar 

  156. Noon, E. J. & Meier, A. Inspired by friends: adolescents’ network homophily moderates the relationship between social comparison, envy, and inspiration on instagram. Cyberpsychol. Behav. Soc. Netw. 22, 787–793 (2019).

    Article  PubMed  Google Scholar 

  157. Schreurs, L., Meier, A. & Vandenbosch, L. Exposure to the positivity bias and adolescents’ differential longitudinal links with social comparison, inspiration and envy depending on social media literacy. Curr. Psychol. https://doi.org/10.1007/s12144-022-03893-3 (2022).

  158. Meier, A. & Krause, H.-V. Does passive social media use harm well-being? An adversarial review. J. Media Psychol. 35, 169–180 (2023).

    Article  Google Scholar 

  159. Nesi, J. & Prinstein, M. J. Using social media for social comparison and feedback-seeking: gender and popularity moderate associations with depressive symptoms. J. Abnorm. Child. Psychol. 43, 1427–1438 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Lindström, B. et al. A computational reward learning account of social media engagement. Nat. Commun. 12, 1311 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Fardouly, J., Diedrichs, P. C., Vartanian, L. R. & Halliwell, E. Social comparisons on social media: the impact of Facebook on young women’s body image concerns and mood. Body Image 13, 38–45 (2015).

    Article  PubMed  Google Scholar 

  162. Scully, M., Swords, L. & Nixon, E. Social comparisons on social media: online appearance-related activity and body dissatisfaction in adolescent girls. Ir. J. Psychol. Med. 40, 31–42 (2023).

    Article  PubMed  Google Scholar 

  163. Appel, H., Gerlach, A. L. & Crusius, J. The interplay between Facebook use, social comparison, envy, and depression. Curr. Opin. Psychol. 9, 44–49 (2016).

    Article  Google Scholar 

  164. Meier, A. & Johnson, B. K. Social comparison and envy on social media: a critical review. Curr. Opin. Psychol. 45, 101302 (2022).

    Article  PubMed  Google Scholar 

  165. Verduyn, P., Gugushvili, N., Massar, K., Täht, K. & Kross, E. Social comparison on social networking sites. Curr. Opin. Psychol. 36, 32–37 (2020).

    Article  PubMed  Google Scholar 

  166. Meier, A., Gilbert, A., Börner, S. & Possler, D. Instagram inspiration: how upward comparison on social network sites can contribute to well-being. J. Commun. 70, 721–743 (2020).

    Article  Google Scholar 

  167. Vaterlaus, J. M., Patten, E. V., Roche, C. & Young, J. A. #Gettinghealthy: the perceived influence of social media on young adult health behaviors. Comput. Hum. Behav. 45, 151–157 (2015).

    Article  Google Scholar 

  168. Valkenburg, P. M., Beyens, I., Pouwels, J. L., Van Driel, I. I. & Keijsers, L. Social media browsing and adolescent well-being: challenging the “passive social media use hypothesis”. J. Comput.-Mediat. Commun. https://doi.org/10.1093/jcmc/zmab015 (2022).

    Article  Google Scholar 

  169. Larson, R. W., Richards, M. H., Moneta, G., Holmbeck, G. & Duckett, E. Changes in adolescents’ daily interactions with their families from ages 10 to 18: disengagement and transformation. Dev. Psychol. 32, 744–754 (1996).

    Article  Google Scholar 

  170. Sebastian, C., Viding, E., Williams, K. D. & Blakemore, S.-J. Social brain development and the affective consequences of ostracism in adolescence. Brain Cogn. 72, 134–145 (2010).

    Article  PubMed  Google Scholar 

  171. Sebastian, C. et al. Developmental influences on the neural bases of responses to social rejection: implications of social neuroscience for education. NeuroImage 57, 686–694 (2011).

    Article  PubMed  Google Scholar 

  172. Somerville, L. H. The teenage brain: sensitivity to social evaluation. Curr. Dir. Psychol. Sci. 22, 121–127 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Larson, R. W. & How, U. S. Children and adolescents spend time: what it does (and doesn’t) tell us about their development. Curr. Dir. Psychol. Sci. 10, 160–164 (2001).

    Article  Google Scholar 

  174. Thomas, L. A., De Bellis, M. D., Graham, R. & LaBar, K. S. Development of emotional facial recognition in late childhood and adolescence. Dev. Sci. 10, 547–558 (2007).

    Article  PubMed  Google Scholar 

  175. Gunther Moor, B., van Leijenhorst, L., Rombouts, S. A. R. B., Crone, E. A. & Van der Molen, M. W. Do you like me? Neural correlates of social evaluation and developmental trajectories. Soc. Neurosci. 5, 461–482 (2010).

    Article  PubMed  Google Scholar 

  176. Silk, J. S. et al. Peer acceptance and rejection through the eyes of youth: pupillary, eyetracking and ecological data from the Chatroom Interact task. Soc. Cognit. Affect. Neurosci. 7, 93–105 (2012).

    Article  Google Scholar 

  177. Gao, S., Assink, M., Cipriani, A. & Lin, K. Associations between rejection sensitivity and mental health outcomes: a meta-analytic review. Clin. Psychol. Rev. 57, 59–74 (2017).

    Article  PubMed  Google Scholar 

  178. Prinstein, M. J., Nesi, J. & Telzer, E. H. Commentary: an updated agenda for the study of digital media use and adolescent development—future directions following Odgers & Jensen (2020). J. Child. Psychol. Psychiatr. 61, 349–352 (2020).

    Article  Google Scholar 

  179. Meshi, D., Morawetz, C. & Heekeren, H. R. Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use. Front. Hum. Neurosci. 7, 1–11 (2013).

    Article  Google Scholar 

  180. Crone, E. A. & Dahl, R. E. Understanding adolescence as a period of social–affective engagement and goal flexibility. Nat. Rev. Neurosci. 13, 636–650 (2012).

    Article  PubMed  Google Scholar 

  181. Platt, B., Kadosh, K. C. & Lau, J. Y. F. The role of peer rejection in adolescent depression. Depress. Anxiety 30, 809–821 (2013).

    Article  PubMed  Google Scholar 

  182. Will, G.-J., Rutledge, R. B., Moutoussis, M. & Dolan, R. J. Neural and computational processes underlying dynamic changes in self-esteem. eLife 6, e28098 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Macrynikola, N. & Miranda, R. Active Facebook use and mood: when digital interaction turns maladaptive. Comput. Hum. Behav. 97, 271–279 (2019).

    Article  Google Scholar 

  184. Grunewald, K., Deng, J., Wertz, J. & Schweizer, S. The effect of online social evaluation on mood and cognition in young people. Sci. Rep. 12, 20999 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Andrews, J. L., Khin, A. C., Crayn, T., Humphreys, K. & Schweizer, S. Measuring online and offline social rejection sensitivity in the digital age. Psychol. Assess. 34, 742–751 (2022).

    Article  PubMed  Google Scholar 

  186. Forest, A. L. & Wood, J. V. When social networking is not working: individuals with low self-esteem recognize but do not reap the benefits of self-disclosure on Facebook. Psychol. Sci. 23, 295–302 (2012).

    Article  PubMed  Google Scholar 

  187. Valkenburg, P. M., Koutamanis, M. & Vossen, H. G. M. The concurrent and longitudinal relationships between adolescents’ use of social network sites and their social self-esteem. Comput. Hum. Behav. 76, 35–41 (2017).

    Article  Google Scholar 

  188. Burrow, A. L. & Rainone, N. How many likes did I get? purpose moderates links between positive social media feedback and self-esteem. J. Exp. Soc. Psychol. 69, 232–236 (2017).

    Article  Google Scholar 

  189. Seo, M., Kim, J. & Yang, H. Frequent interaction and fast feedback predict perceived social support: using crawled and self-reported data of Facebook users. J. Comput.-Mediat. Comm. 21, 282–297 (2016).

    Article  Google Scholar 

  190. Fuhrmann, D., Casey, C. S., Speekenbrink, M. & Blakemore, S.-J. Social exclusion affects working memory performance in young adolescent girls. Dev. Cognit. Neurosci. 40, 100718 (2019).

    Article  Google Scholar 

  191. Blakemore, S.-J. & Choudhury, S. Development of the adolescent brain: implications for executive function and social cognition. J. Child. Psychol. Psychiat 47, 296–312 (2006).

    Article  PubMed  Google Scholar 

  192. Dreyfuss, M. et al. Teens impulsively react rather than retreat from threat. Dev. Neurosci. 36, 220–227 (2014).

    Article  PubMed  Google Scholar 

  193. Guyer, A. E., Choate, V. R., Pine, D. S. & Nelson, E. E. Neural circuitry underlying affective response to peer feedback in adolescence. Soc. Cognit. Affect. Neurosci. 7, 81–92 (2012).

    Article  Google Scholar 

  194. Sherman, L. E., Payton, A. A., Hernandez, L. M., Greenfield, P. M. & Dapretto, M. The power of the like in adolescence: effects of peer influence on neural and behavioral responses to social media. Psychol. Sci. 27, 1027–1035 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. van Harmelen, A.-L. et al. Adolescent friendships predict later resilient functioning across psychosocial domains in a healthy community cohort. Psychol. Med. 47, 2312–2322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Chu, P. S., Saucier, D. A. & Hafner, E. Meta-analysis of the relationships between social support and well-being in children and adolescents. J. Soc. Clin. Psychol. 29, 624–645 (2010).

    Article  Google Scholar 

  197. Schneider, F. M. et al. Social media ostracism: the effects of being excluded online. Comput. Hum. Behav. 73, 385–393 (2017).

    Article  Google Scholar 

  198. Reich, S., Schneider, F. M. & Heling, L. Zero likes—symbolic interactions and need satisfaction online. Comput. Hum. Behav. 80, 97–102 (2018).

    Article  Google Scholar 

  199. Lutz, S. & Schneider, F. M. Is receiving dislikes in social media still better than being ignored? The effects of ostracism and rejection on need threat and coping responses online. Media Psychol. 24, 741–765 (2021).

    Article  Google Scholar 

  200. Lutz, S. Why don’t you answer me? Exploring the effects of (repeated exposure to) ostracism via messengers on users’ fundamental needs, well-being, and coping motivation. Media Psychol. 26, 113–140 (2023).

    Article  Google Scholar 

  201. Rodríguez-Hidalgo, C. T., Tan, E. S. H., Verlegh, P. W. J., Beyens, I. & Kühne, R. Don’t stress me now: assessing the regulatory impact of face-to-face and online feedback prosociality on stress during an important life event. J. Comput.-Mediat. Commun. 25, 307–327 (2020).

    Article  Google Scholar 

  202. Trepte, S., Dienlin, T. & Reinecke, L. Influence of social support received in online and offline contexts on satisfaction with social support and satisfaction with life: a longitudinal study. Media Psychol. 18, 74–105 (2015).

    Article  Google Scholar 

  203. Dredge, R. & Schreurs, L. Social media use and offline interpersonal outcomes during youth: a systematic literature review. Mass. Commun. Soc. 23, 885–911 (2020).

    Article  Google Scholar 

  204. Colasante, T., Lin, L., De France, K. & Hollenstein, T. Any time and place? Digital emotional support for digital natives. Am. Psychol. 77, 186–195 (2022).

    Article  PubMed  Google Scholar 

  205. Pouwels, J. L., Valkenburg, P. M., Beyens, I., Van Driel, I. I. & Keijsers, L. Social media use and friendship closeness in adolescents’ daily lives: an experience sampling study. Dev. Psychol. 57, 309–323 (2021).

    Article  PubMed  Google Scholar 

  206. Mills, K. L. et al. Structural brain development between childhood and adulthood: convergence across four longitudinal samples. NeuroImage 141, 273–281 (2016).

    Article  PubMed  Google Scholar 

  207. Tamnes, C. K. et al. Development of the cerebral cortex across adolescence: a multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J. Neurosci. 37, 3402–3412 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Larsen, B. & Luna, B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci. Biobehav. Rev. 94, 179–195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Cohen, J. R. et al. A unique adolescent response to reward prediction errors. Nat. Neurosci. 13, 669–671 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Ernst, M. et al. Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. NeuroImage 25, 1279–1291 (2005).

    Article  PubMed  Google Scholar 

  212. Galván, A. & McGlennen, K. M. Enhanced striatal sensitivity to aversive reinforcement in adolescents versus adults. J. Cognit. Neurosci. 25, 284–296 (2013).

    Article  Google Scholar 

  213. Braams, B. R., Van Duijvenvoorde, A. C. K., Peper, J. S. & Crone, E. A. Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. J. Neurosci. 35, 7226–7238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Schreuders, E. et al. Contributions of reward sensitivity to ventral striatum activity across adolescence and early adulthood. Child. Dev. 89, 797–810 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Maza, M. T. et al. Association of habitual checking behaviors on social media with longitudinal functional brain development. JAMA Pediatr. 177, 160–167 (2023).

    Article  PubMed  Google Scholar 

  216. Miller, J., Mills, K. L., Vuorre, M., Orben, A. & Przybylski, A. K. Impact of digital screen media activity on functional brain organization in late childhood: evidence from the ABCD study. Cortex 169, 290–308 (2023).

    Article  PubMed  Google Scholar 

  217. Flayelle, M. et al. A taxonomy of technology design features that promote potentially addictive online behaviours. Nat. Rev. Psychol. 2, 136–150 (2023).

    Article  Google Scholar 

  218. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 (2009).

    Article  PubMed  Google Scholar 

  219. Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D. & Griggs, C. Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: normative changes and associations with puberty. Dev. Psychopathol. 21, 69–85 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Somerville, L. H. et al. The medial prefrontal cortex and the emergence of self-conscious emotion in adolescence. Psychol. Sci. 24, 1554–1562 (2013).

    Article  PubMed  Google Scholar 

  221. Stroud, L. R. et al. Stress response and the adolescent transition: performance versus peer rejection stressors. Dev. Psychopathol. 21, 47–68 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Avital, A. & Richter-Levin, G. Exposure to juvenile stress exacerbates the behavioural consequences of exposure to stress in the adult rat. Int. J. Neuropsychopharm. 8, 163–173 (2005).

    Article  Google Scholar 

  223. McCormick, C. M., Mathews, I. Z., Thomas, C. & Waters, P. Investigations of HPA function and the enduring consequences of stressors in adolescence in animal models. Brain Cogn. 72, 73–85 (2010).

    Article  PubMed  Google Scholar 

  224. Eiland, L. & Romeo, R. D. Stress and the developing adolescent brain. Neuroscience 249, 162–171 (2013).

    Article  PubMed  Google Scholar 

  225. Romeo, R. D. The teenage brain. Curr. Direc. Psychol. Sci. 22, 140–145 (2013).

    Article  Google Scholar 

  226. Afifi, T. D., Zamanzadeh, N., Harrison, K. & Acevedo Callejas, M. WIRED: the impact of media and technology use on stress (cortisol) and inflammation (interleukin IL-6) in fast paced families. Comput. Hum. Behav. 81, 265–273 (2018).

    Article  Google Scholar 

  227. Morin-Major, J. K. et al. Facebook behaviors associated with diurnal cortisol in adolescents: is befriending stressful? Psychoneuroendocrinology 63, 238–46 (2016).

    Article  PubMed  Google Scholar 

  228. Ghai, S. It’s time to reimagine sample diversity and retire the WEIRD dichotomy. Nat. Hum. Behav. 5, 971–972 (2021).

    Article  PubMed  Google Scholar 

  229. Munafò, M. R. & Davey Smith, G. Robust research needs many lines of evidence. Nature 553, 399–401 (2018).

    Article  PubMed  Google Scholar 

  230. Dale, R., Warlaumont, A. S. & Johnson, K. L. The fundamental importance of method to theory. Nat. Rev. Psychol. 2, 55–66 (2022).

    Article  Google Scholar 

  231. Parry, D. A., Fisher, J. T., Mieczkowski, H., Sewall, C. J. R. & Davidson, B. I. Social media and well-being: a methodological perspective. Curr. Opin. Psychol. 45, 101285 (2022).

    Article  PubMed  Google Scholar 

  232. Will, G.-J. et al. Neurocomputational mechanisms underpinning aberrant social learning in young adults with low self-esteem. Transl. Psychiatry 10, 96 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Walther, J. B. Affordances, effects, and technology errors. Ann. Int. Commun. Assoc. 36, 190–193 (2013).

    Google Scholar 

  234. Piray, P. & Daw, N. D. A model for learning based on the joint estimation of stochasticity and volatility. Nat. Commun. 12, 6587 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Bronfenbrenner, U. The Ecology of Human Development: Experiments by Nature and Design (Harvard Univ. Press, 1979).

  236. Slater, M. D. Reinforcing spirals: the mutual influence of media selectivity and media effects and their impact on individual behavior and social identity. Commun. Theory 17, 281–303 (2007).

    Article  Google Scholar 

  237. Valkenburg, P. M., Peter, J. & Walther, J. B. Media effects: theory and research. Annu. Rev. Psychol. 67, 315–338 (2016).

    Article  PubMed  Google Scholar 

  238. Aalbers, G., McNally, R. J., Heeren, A., De Wit, S. & Fried, E. I. Social media and depression symptoms: a network perspective. J. Exp. Psychol. Gen. 148, 1454–1462 (2019).

    Article  PubMed  Google Scholar 

  239. Ghai, S., Fassi, L., Awadh, F. & Orben, A. Lack of sample diversity in research on adolescent depression and social media use: a scoping review and meta-analysis. Clin. Psychol. Sci. 11, 759–772 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Cramer, A. O. J. et al. Major depression as a complex dynamic system. PLoS ONE 11, e0167490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Kendler, K. S., Zachar, P. & Craver, C. What kinds of things are psychiatric disorders? Psychol. Med. 41, 1143–1150 (2011).

    Article  PubMed  Google Scholar 

  242. van de Leemput, I. A. et al. Critical slowing down as early warning for the onset and termination of depression. Proc. Natl Acad. Sci. USA. 111, 87–92 (2014).

    Article  PubMed  Google Scholar 

  243. Trepte, S. The social media privacy model: privacy and communication in the light of social media affordances. Commun. Theory 31, 549–570 (2021).

    Article  Google Scholar 

  244. Reinecke, L. et al. Permanently online and permanently connected: development and validation of the Online Vigilance Scale. PLoS ONE 13, e0205384 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Trieu, P., Bayer, J. B., Ellison, N. B., Schoenebeck, S. & Falk, E. Who likes to be reachable? Availability preferences, weak ties, and bridging social capital. Inform. Commun. Soc. 22, 1096–1111 (2019).

    Article  Google Scholar 

  246. Daft, R. L. & Lengel, R. H. Organizational information requirements, media richness and structural design. Manag. Sci. 32, 554–571 (1986).

    Article  Google Scholar 

  247. Rhee, L., Bayer, J. B., Lee, D. S. & Kuru, O. Social by definition: how users define social platforms and why it matters. Telemat. Inform. 59, 101538 (2021).

    Article  Google Scholar 

  248. Valkenburg, P. M. Understanding self-effects in social media: self-effects in social media. Hum. Commun. Res. 43, 477–490 (2017).

    Article  Google Scholar 

  249. Thorson, K. & Wells, C. Curated flows: a framework for mapping media exposure in the digital age: curated flows. Commun. Theor. 26, 309–328 (2016).

    Article  Google Scholar 

  250. Zhao, H. & Wagner, C. How TikTok leads users to flow experience: investigating the effects of technology affordances with user experience level and video length as moderators. INTR 33, 820–849 (2023).

    Article  Google Scholar 

  251. Carr, C. T., Wohn, D. Y. & Hayes, R. A. As social support: relational closeness, automaticity, and interpreting social support from paralinguistic digital affordances in social media. Comput. Hum. Behav. 62, 385–393 (2016).

    Article  Google Scholar 

  252. Rice, R. E. et al. Organizational media affordances: operationalization and associations with media use: organizational media affordances. J. Commun. 67, 106–130 (2017).

    Article  Google Scholar 

  253. Scissors, L., Burke, M. & Wengrovitz, S. in Proc. 19th ACM Conf. Computer-Supported Cooperative Work & Social Computing—CSCW ’16 1499–1508 (ACM Press, 2016).

  254. Boyd, D. M. in A Networked Self: Identity, Community and Culture in Social Networking Sites (ed. Papacharissi, Z.) 35–58 (Routledge, 2011).

  255. Valkenburg, P. M. in Handbook of Adolescent Digital Media Use and Mental Health (eds Nesi, J., Telzer, E. H. & Prinstein, M. J.) 39–60 (Cambridge Univ. Press, 2022).

  256. Dennis, Fuller & Valacich, Media Tasks, and communication processes: a theory of media synchronicity. MIS Q. 32, 575 (2008).

    Article  Google Scholar 

  257. DeAndrea, D. C. Advancing warranting theory: advancing warranting theory. Commun. Theor. 24, 186–204 (2014).

    Article  Google Scholar 

  258. Uhlhaas, P. J. et al. Towards a youth mental health paradigm: a perspective and roadmap. Mol. Psychiatry 28, 3171–3181 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).

    Article  PubMed  Google Scholar 

  260. Weinstein, E. C. & Selman, R. L. Digital stress: adolescents’ personal accounts. N. Media Soc. 18, 391–409 (2016).

    Article  Google Scholar 

  261. Steele, R. G., Hall, J. A. & Christofferson, J. L. Conceptualizing digital stress in adolescents and young adults: toward the development of an empirically based model. Clin. Child. Fam. Psychol. Rev. 23, 15–26 (2020).

    Article  PubMed  Google Scholar 

  262. Nick, E. A. et al. Adolescent digital stress: frequencies, correlates, and longitudinal association with depressive symptoms. J. Adolesc. Health 70, 336–339 (2022).

    Article  PubMed  Google Scholar 

  263. Van Der Schuur, W. A., Baumgartner, S. E. & Sumter, S. R. Social media use, social media stress, and sleep: examining cross-sectional and longitudinal relationships in adolescents. Health Commun. 34, 552–559 (2019).

    Article  PubMed  Google Scholar 

  264. Fabio, S. & Sonja, P. Is cyberbullying worse than traditional bullying? Examining the differential roles of medium, publicity, and anonymity for the perceived severity of bullying. J. Youth Adolesc. 42, 739–750 (2013).

    Article  Google Scholar 

  265. Tokunaga, R. S. Following you home from school: a critical review and synthesis of research on cyberbullying victimization. Comput. Hum. Behav. 26, 277–287 (2010).

    Article  Google Scholar 

  266. Khetawat, D. & Steele, R. G. Examining the association between digital stress components and psychological wellbeing: a meta-analysis. Clin. Child. Fam. Psychol. Rev. 26, 957–974 (2023).

    Article  PubMed  Google Scholar 

  267. Beyens, I., Frison, E. & Eggermont, S. “I don’t want to miss a thing”: adolescents’ fear of missing out and its relationship to adolescents’ social needs, Facebook use, and Facebook related stress. Comput. Hum. Behav. 64, 1–8 (2016).

    Article  Google Scholar 

  268. Wartberg, L., Thomasius, R. & Paschke, K. The relevance of emotion regulation, procrastination, and perceived stress for problematic social media use in a representative sample of children and adolescents. Comput. Hum. Behav. 121, 106788 (2021).

    Article  Google Scholar 

  269. Winstone, L., Mars, B., Haworth, C. M. A. & Kidger, J. Types of social media use and digital stress in early adolescence. J. Early Adolescence 43, 294–319 (2023).

    Article  Google Scholar 

  270. West, M., Rice, S. & Vella-Brodrick, D. Exploring the “social” in social media: adolescent relatedness—thwarted and supported. J. Adolesc. Res. https://doi.org/10.1177/07435584211062158 (2021).

  271. Gilbert, A., Baumgartner, S. E. & Reinecke, L. Situational boundary conditions of digital stress: goal conflict and autonomy frustration make smartphone use more stressful. Mob. Media Commun. https://doi.org/10.1177/20501579221138017 (2022).

  272. Freytag, A. et al. Permanently online—always stressed out? The effects of permanent connectedness on stress experiences. Hum. Commun. Res. 47, 132–165 (2021).

    Article  Google Scholar 

  273. Johannes, N. et al. The relationship between online vigilance and affective well-being in everyday life: combining smartphone logging with experience sampling. Media Psychol. 24, 581–605 (2021).

    Article  Google Scholar 

  274. Reinecke, L. et al. Digital stress over the life span: the effects of communication load and internet multitasking on perceived stress and psychological health impairments in a german probability sample. Media Psychol. 20, 90–115 (2017).

    Article  Google Scholar 

  275. Schönbach, K. in The International Encyclopedia of Media Effects (eds Rössler, P., Hoffner, C. A. & Zoonen, L.) 1–11 (Wiley, 2017).

  276. Mayer, J. D., Gaschke, Y. N., Braverman, D. L. & Evans, T. W. Mood-congruent judgment is a general effect. J. Pers. Soc. Psychol. 63, 119–132 (1992).

    Article  Google Scholar 

  277. Ferster, C. B. A functional analysis of depression. Am. Psychol. 28, 857–870 (1973).

    Article  PubMed  Google Scholar 

  278. Carvalho, J. P. & Hopko, D. R. Behavioral theory of depression: reinforcement as a mediating variable between avoidance and depression. J. Behav. Ther. Exp. Psychiatry 42, 154–162 (2011).

    Article  PubMed  Google Scholar 

  279. Helbig-Lang, S. & Petermann, F. Tolerate or eliminate? A systematic review on the effects of safety behavior across anxiety disorders. Clin. Psychol. Sci. Pract. 17, 218–233 (2010).

    Article  Google Scholar 

  280. Marciano, L., Driver, C. C., Schulz, P. J. & Camerini, A.-L. Dynamics of adolescents’ smartphone use and well-being are positive but ephemeral. Sci. Rep. 12, 1316 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Rao, P. A. et al. Social anxiety disorder in childhood and adolescence: descriptive psychopathology. Behav. Res. Ther. 45, 1181–1191 (2007).

    Article  PubMed  Google Scholar 

  282. Corning, A. F., Krumm, A. J. & Smitham, L. A. Differential social comparison processes in women with and without eating disorder symptoms. J. Couns. Psychol. 53, 338–349 (2006).

    Article  Google Scholar 

  283. Radovic, A., Gmelin, T., Stein, B. D. & Miller, E. Depressed adolescents’ positive and negative use of social media. J. Adolesc. 55, 5–15 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.O. and T.D. were funded by the Medical Research Council (MC_UU_00030/13). A.O. was funded by the Jacobs Foundation and a UKRI Future Leaders Fellowship (MR/X034925/1). S.-J.B. is funded by Wellcome (grant numbers WT107496/Z/15/Z and WT227882/Z/23/Z), the MRC, the Jacobs Foundation, the Wellspring Foundation and the University of Cambridge.

Author information

Authors and Affiliations

Authors

Contributions

A.O. conceptualized the manuscript; A.O and A.M wrote the original draft; A.O., A.M., T.D. and S.-J.B. reviewed and edited the manuscript. All authors contributed substantially to discussion of the content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Amy Orben.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Emily Weinstein, who co-reviewed with Beck Tench; Nastasia Griffioen; and Margarita Panayiotou for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orben, A., Meier, A., Dalgleish, T. et al. Mechanisms linking social media use to adolescent mental health vulnerability. Nat Rev Psychol 3, 407–423 (2024). https://doi.org/10.1038/s44159-024-00307-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-024-00307-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing