[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A golden age of muscarinic acetylcholine receptor modulation in neurological diseases

Abstract

Over the past 40 years, the muscarinic acetylcholine receptor family, particularly the M1-receptor and M4-receptor subtypes, have emerged as validated targets for the symptomatic treatment of neurological diseases such as schizophrenia and Alzheimer disease. However, despite considerable effort and investment, no drugs have yet gained clinical approval. This is largely attributable to cholinergic adverse effects that have halted the majority of programmes and resulted in a waning of interest in these G-protein-coupled receptor targets. Recently, this trend has been reversed. Driven by advances in structure-based drug design and an appreciation of the optimal pharmacological properties necessary to deliver clinical efficacy while minimizing adverse effects, a new generation of M1-receptor and M4-receptor orthosteric agonists and positive allosteric modulators are now entering the clinic. These agents offer the prospect of novel therapeutic solutions for ‘hard to treat’ neurological diseases, heralding a new era of muscarinic drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signalling downstream of the mAChR family.
Fig. 2: Mapping of in vivo bimodal signalling and downstream responses.
Fig. 3: Positive allosteric modulation of the M1-receptor.
Fig. 4: Structure-based drug design of the M1/M4-receptor orthosteric agonist HTL0009936.
Fig. 5: Building selectivity through agonist efficacy.

Similar content being viewed by others

References

  1. Ellul-Micallef, R. History of Bronchial Asthma (Lippincott Raven, 1997).

  2. Moulton, B. C. & Fryer, A. D. Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD. Br. J. Pharmacol. 163, 44–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh, A., Dikshit, R. & Chaturvedi, P. Betel nut use: the South Asian story. Subst. Use Misuse 55, 1545–1551 (2020).

    Article  PubMed  Google Scholar 

  4. Sullivan, R. J., Allen, J. S., Otto, C., Tiobech, J. & Nero, K. Effects of chewing betel nut (Areca catechu) on the symptoms of people with schizophrenia in Palau, Micronesia. Br. J. Psychiatry 177, 174–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Feldberg, W. & Gaddum, J. H. The chemical transmitter at synapses in a sympathetic ganglion. J. Physiol. 81, 305–319 (1934).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lopez-Munoz, F. & Alamo, C. Historical evolution of the neurotransmission concept. J. Neural Transm. 116, 515–533 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Felder, C. C. et al. Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology 136, 449–458 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Bender, A. M., Jones, C. K. & Lindsley, C. W. Classics in chemical neuroscience: xanomeline. ACS Chem. Neurosci. 8, 435–443 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Budzik, B. et al. Novel N-substituted benzimidazolones as potent, selective, CNS-penetrant, and orally active M1 mAChR agonists. ACS Med. Chem. Lett. 1, 244–248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Viberg, A., Martino, G., Lessard, E. & Laird, J. M. Evaluation of an innovative population pharmacokinetic-based design for behavioral pharmacodynamic endpoints. AAPS J. 14, 657–663 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Okada, H. et al. Alterations in α4β2 nicotinic receptors in cognitive decline in Alzheimer’s aetiopathology. Brain 136, 3004–3017 (2013).

    Article  PubMed  Google Scholar 

  12. Caulfield, M. P. Muscarinic receptors–characterization, coupling and function. Pharmacol. Ther. 58, 319–379 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Burford, N. T., Tobin, A. B. & Nahorski, S. R. Differential coupling of m1, m2 and m3 muscarinic receptor subtypes to inositol 1,4,5-trisphosphate and adenosine 3′,5′-cyclic monophosphate accumulation in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther. 274, 134–142 (1995).

    CAS  PubMed  Google Scholar 

  14. Burford, N. T., Tobin, A. B. & Nahorski, S. R. Coupling of muscarinic m1, m2 and m3 acetylcholine receptors, expressed in Chinese hamster ovary cells, to pertussis toxin-sensitive/insensitive guanine nucleotide-binding proteins. Eur. J. Pharmacol. 289, 343–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Gurevich, V. V. & Gurevich, E. V. GPCR signaling regulation: the role of GRKs and arrestins. Front. Pharmacol. 10, 125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bradley, S. J. et al. Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs. Nat. Chem. Biol. 16, 240–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bradley, S. J. et al. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. Proc. Natl Acad. Sci. USA 113, 4524–4529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Butcher, A. J. et al. Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J. Biol. Chem. 286, 11506–11518 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Budd, D. C., Willars, G. B., McDonald, J. E. & Tobin, A. B. Phosphorylation of the Gq/11-coupled m3-muscarinic receptor is involved in receptor activation of the ERK-1/2 mitogen-activated protein kinase pathway. J. Biol. Chem. 276, 4581–4587 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Lin, A. L. et al. Distinct pathways of ERK activation by the muscarinic agonists pilocarpine and carbachol in a human salivary cell line. Am. J. Physiol. Cell Physiol. 294, C1454–C1464 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Poulin, B. et al. The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc. Natl Acad. Sci. USA 107, 9440–9445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kong, K. C. et al. M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. Proc. Natl Acad. Sci. USA 107, 21181–21186 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reiter, E., Ahn, S., Shukla, A. K. & Lefkowitz, R. J. Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52, 179–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Berizzi, A. E. et al. Muscarinic M5 receptors modulate ethanol seeking in rats. Neuropsychopharmacology 43, 1510–1517 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levey, A. I., Edmunds, S. M., Koliatsos, V., Wiley, R. G. & Heilman, C. J. Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J. Neurosci. 15, 4077–4092 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wess, J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu. Rev. Pharmacol. Toxicol. 44, 423–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Mesulam, M., Shaw, P., Mash, D. & Weintraub, S. Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann. Neurol. 55, 815–828 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Davies, P. & Maloney, A. J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2, 1403 (1976).

    Article  CAS  PubMed  Google Scholar 

  30. Mufson, E. J., Counts, S. E., Perez, S. E. & Ginsberg, S. D. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev. Neurother. 8, 1703–1718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bartus, R. T., Dean, R. L. 3rd, Beer, B. & Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408–414 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. Hampel, H. et al. Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. J. Prev. Alzheimers Dis. 6, 2–15 (2019).

    CAS  PubMed  Google Scholar 

  33. Bartus, R. T. Physostigmine and recent memory: effects in young and aged nonhuman primates. Science 206, 1087–1089 (1979).

    Article  CAS  PubMed  Google Scholar 

  34. Bartus, R. T., Dean, R. L., Pontecorvo, M. J. & Flicker, C. The cholinergic hypothesis: a historical overview, current perspective, and future directions. Ann. N. Y. Acad. Sci. 444, 332–358 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Douchamps, V. & Mathis, C. A second wind for the cholinergic system in Alzheimer’s therapy. Behav. Pharmacol. 28, 112–123 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Courtney, C. et al. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet 363, 2105–2115 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Inglis, F. The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int. J. Clin. Pract. Suppl. 127, 45–63 (2002).

    CAS  Google Scholar 

  38. Thompson, S., Lanctot, K. L. & Herrmann, N. The benefits and risks associated with cholinesterase inhibitor therapy in Alzheimer’s disease. Expert Opin. Drug Saf. 3, 425–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. May, L. T., Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Chan, W. Y. et al. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc. Natl Acad. Sci. USA 105, 10978–10983 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Conn, P. J., Christopoulos, A. & Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 8, 41–54 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bradley, S. J. et al. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. J. Clin. Invest. 127, 487–499 (2017).

    Article  PubMed  Google Scholar 

  43. Anagnostaras, S. G., Maren, S., Sage, J. R., Goodrich, S. & Fanselow, M. S. Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. Neuropsychopharmacology 21, 731–744 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Brown, A. J. H. et al. From structure to clinic: design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer’s disease. Cell 184, 5886–5901 e5822 (2021). Bench-to-bedside report using structure-based drug design to rationally generate a M1/M4-receptor agonist activating memory centres in elderly volunteers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Digby, G. J. et al. Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond with behavioral effects in animal models. J. Neurosci. 32, 8532–8544 (2012). Study showing that M1 receptors in different brain regions are differentially affected by M1-receptor PAMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghoshal, A. et al. Potentiation of M1 muscarinic receptor reverses plasticity deficits and negative and cognitive symptoms in a schizophrenia mouse model. Neuropsychopharmacology 41, 598–610 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Moran, S. P. et al. M1-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology 43, 1763–1771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rook, J. M. et al. A novel M1 PAM VU0486846 exerts efficacy in cognition models without displaying agonist activity or cholinergic toxicity. ACS Chem. Neurosci. 9, 2274–2285 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Shirey, J. K. et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J. Neurosci. 29, 14271–14286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Conley, A. C. et al. Cognitive performance effects following a single dose of the M1 muscarinic positive allosteric modulator VU319. Alzheimers Dement.16, e045339 (2020).

    Article  Google Scholar 

  51. Ma, L. et al. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc. Natl Acad. Sci. USA 106, 15950–15955 (2009). Early demonstration of the cognitive properties of M1-receptor PAMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Anagnostaras, S. G. et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat. Neurosci. 6, 51–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Lebois, E. P. et al. Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M(1) receptor function in the central nervous system. ACS Chem. Neurosci. 1, 104–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Lebois, E. P. et al. Development of a highly selective, orally bioavailable and CNS penetrant M1 agonist derived from the MLPCN probe ML071. Bioorg. Med. Chem. Lett. 21, 6451–6455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scheiderer, C. L. et al. Sympathetic sprouting drives hippocampal cholinergic reinnervation that prevents loss of a muscarinic receptor-dependent long-term depression at CA3-CA1 synapses. J. Neurosci. 26, 3745–3756 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shinoe, T., Matsui, M., Taketo, M. M. & Manabe, T. Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J. Neurosci. 25, 11194–11200 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miyakawa, T., Yamada, M., Duttaroy, A. & Wess, J. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J. Neurosci. 21, 5239–5250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gerber, D. J. et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc. Natl Acad. Sci. USA 98, 15312–15317 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Salah-Uddin, H. et al. Altered M(1) muscarinic acetylcholine receptor (CHRM1)-Galpha(q/11) coupling in a schizophrenia endophenotype. Neuropsychopharmacology 34, 2156–2166 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Foster, D. J., Choi, D. L., Conn, P. J. & Rook, J. M. Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia. Neuropsychiatr. Dis. Treat. 10, 183–191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Foster, D. J. et al. Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine release. Neuron 91, 1244–1252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gogliotti, R. G. et al. Total RNA sequencing of Rett syndrome autopsy samples identifies the M4 muscarinic receptor as a novel therapeutic target. J. Pharmacol. Exp. Ther. 365, 291–300 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tarr, J. C. et al. Challenges in the development of an M4 PAM preclinical candidate: the discovery, SAR, and in vivo characterization of a series of 3-aminoazetidine-derived amides. Bioorg. Med. Chem. Lett. 27, 2990–2995 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Woolley, M. L., Carter, H. J., Gartlon, J. E., Watson, J. M. & Dawson, L. A. Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur. J. Pharmacol. 603, 147–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Yohn, S. E. & Conn, P. J. Positive allosteric modulation of M1 and M4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology 136, 438–448 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Felder, C. C. et al. Elucidating the role of muscarinic receptors in psychosis. Life Sci. 68, 2605–2613 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Thomsen, M., Wess, J., Fulton, B. S., Fink-Jensen, A. & Caine, S. B. Modulation of prepulse inhibition through both M1 and M4 muscarinic receptors in mice. Psychopharmacology 208, 401–416 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Tzavara, E. T. et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J. 18, 1410–1412 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Foster, D. J., Bryant, Z. K. & Conn, P. J. Targeting muscarinic receptors to treat schizophrenia. Behav. Brain Res. 405, 113201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Paul, S. M., Yohn, S. E., Popiolek, M., Miller, A. C. & Felder, C. C. Muscarinic acetylcholine receptor agonists as novel treatments for schizophrenia. Am. J. Psychiatry 179, 611–627 (2022).

    Article  PubMed  Google Scholar 

  71. Lange, H. S. et al. Effects of a novel M4 muscarinic positive allosteric modulator on behavior and cognitive deficits relevant to Alzheimer’s disease and schizophrenia in rhesus monkey. Neuropharmacology 197, 108754 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Bubser, M. et al. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents. ACS Chem. Neurosci. 5, 920–942 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Gould, R. W. et al. Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154. Neuropharmacology 128, 492–502 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Jeon, J. et al. A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J. Neurosci. 30, 2396–2405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bymaster, F. P., Felder, C., Ahmed, S. & McKinzie, D. Muscarinic receptors as a target for drugs treating schizophrenia. Curr. Drug Targets CNS Neurol. Disord. 1, 163–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Conn, P. J., Jones, C. K. & Lindsley, C. W. Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol. Sci. 30, 148–155 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Heinrich, J. N. et al. Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur. J. Pharmacol. 605, 53–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Shannon, H. E. et al. Xanomeline: a novel muscarinic receptor agonist with functional selectivity for M1 receptors. J. Pharmacol. Exp. Ther. 269, 271–281 (1994).

    CAS  PubMed  Google Scholar 

  79. Bodick, N. C. et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch. Neurol. 54, 465–473 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Bodick, N. C. et al. The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 11 (Suppl. 4), S16–S22 (1997).

    CAS  PubMed  Google Scholar 

  81. Shekhar, A. et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am. J. Psychiatry 165, 1033–1039 (2008).

    Article  PubMed  Google Scholar 

  82. Andersen, M. B. et al. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys. Neuropsychopharmacology 28, 1168–1175 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Sramek, J. J. et al. The safety and tolerance of xanomeline tartrate in patients with Alzheimer’s disease. J. Clin. Pharmacol. 35, 800–806 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Burger, W. A. C. et al. Xanomeline displays concomitant orthosteric and allosteric binding modes at the M(4) mAChR. Nat. Commun. 14, 5440 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thal, D. M. et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531, 335–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vuckovic, Z. et al. Crystal structure of the M5 muscarinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 116, 26001–26007 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaul, I. et al. Efficacy and safety of xanomeline-trospium chloride in schizophrenia: a randomized clinical trial. JAMA Psychiatry https://doi.org/10.1001/jamapsychiatry.2024.0785 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kaul, I. et al. Efficacy and safety of the muscarinic receptor agonist KarXT (xanomeline-trospium) in schizophrenia (EMERGENT-2) in the USA: results from a randomised, double-blind, placebo-controlled, flexible-dose phase 3 trial. Lancet 403, 160–170 (2024). Phase III clinical trial of KarXT, a combination therapy containing the partial muscarinic agonist xanomeline with the peripherally restricted antagonist trospium marking a breakthrough medicine in the treatment of SZ.

    Article  CAS  PubMed  Google Scholar 

  89. Bradley, S. J. et al. Bitopic binding mode of an M1 muscarinic acetylcholine receptor agonist associated with adverse clinical trial outcomes. Mol. Pharm. 93, 645–656 (2018).

    Article  CAS  Google Scholar 

  90. Keov, P., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology 60, 24–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Langmead, C. J. & Christopoulos, A. Allosteric agonists of 7TM receptors: expanding the pharmacological toolbox. Trends Pharmacol. Sci. 27, 475–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Canals, M. et al. A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. J. Biol. Chem. 287, 650–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Wootten, D., Christopoulos, A. & Sexton, P. M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat. Rev. Drug Discov. 12, 630–644 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Rasmussen, S. G. et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007). First atomic-level strucutre of a non-visual GPCR launching the prospect of structure-based drug design for GPCR ligands.

    Article  CAS  PubMed  Google Scholar 

  95. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Noble, M. E., Endicott, J. A. & Johnson, L. N. Protein kinase inhibitors: insights into drug design from structure. Science 303, 1800–1805 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Haga, K. et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547–551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Warne, T. et al. Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bakker, C. et al. Safety and pharmacokinetics of HTL0018318, a novel M1 receptor agonist, given in combination with donepezil at steady state: a randomized trial in healthy elderly subjects. Drugs R D 21, 295–304 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nathan, P. J. et al. A phase 1b/2a multicenter study of the safety and preliminary pharmacodynamic effects of selective muscarinic M1 receptor agonist HTL0018318 in patients with mild-to-moderate Alzheimer’s disease. Alzheimers Dement. 8, e12273 (2022).

    Google Scholar 

  103. Vuckovic, Z. et al. Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. eLife 12, e83477 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thal, D. M., Glukhova, A., Sexton, P. M. & Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. Nature 559, 45–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Burger, W. A. C., Sexton, P. M., Christopoulos, A. & Thal, D. M. Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. J. Gen. Physiol. 150, 1360–1372 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nawaratne, V., Leach, K., Felder, C. C., Sexton, P. M. & Christopoulos, A. Structural determinants of allosteric agonism and modulation at the M4 muscarinic acetylcholine receptor: identification of ligand-specific and global activation mechanisms. J. Biol. Chem. 285, 19012–19021 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013). Breakthrough study describing the co-crystal structure of a mAChR complexed with an orthosteric and allosteric modulator.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Valant, C., Felder, C. C., Sexton, P. M. & Christopoulos, A. Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol. Pharmacol. 81, 41–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Foster, D. J. & Conn, P. J. Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron 94, 431–446 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nickols, H. H. & Conn, P. J. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol. Dis. 61, 55–71 (2014).

    Article  PubMed  Google Scholar 

  111. Beshore, D. C. et al. MK-7622: a first-in-class M1 positive allosteric modulator development candidate. ACS Med. Chem. Lett. 9, 652–656 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Davoren, J. E. et al. Design and synthesis of gamma- and delta-lactam M1 positive allosteric modulators (PAMs): convulsion and cholinergic toxicity of an M1-selective PAM with weak agonist activity. J. Med. Chem. 60, 6649–6663 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Davoren, J. E. et al. Discovery of the potent and selective M1 PAM-agonist N-[(3 R,4 S)-3-hydroxytetrahydro-2H-pyran-4-yl]-5-methyl-4-[4-(1,3-thiazol-4-yl)ben zyl]pyridine-2-carboxamide (PF-06767832): evaluation of efficacy and cholinergic side effects. J. Med Chem. 59, 6313–6328 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Davoren, J. E. et al. Design and optimization of selective azaindole amide M1 positive allosteric modulators. Bioorg. Med. Chem. Lett. 26, 650–655 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Voss, T. et al. Randomized, controlled, proof-of-concept trial of MK-7622 in Alzheimer’s disease. Alzheimers Dement. 4, 173–181 (2018).

    Google Scholar 

  116. Rook, J. M. et al. Diverse effects on M1 signaling and adverse effect liability within a series of M1 Ago-PAMs. ACS Chem. Neurosci. 8, 866–883 (2017). Demonstration of differential adverse effects of M1-receptor PAMs with various levels of intrinsic activity.

    Article  CAS  PubMed  Google Scholar 

  117. Newhouse, P. A. et al. Development of the muscarinic cholinergic PAM VU319 for cognitive enhencement: phase 1 tests of safety and target engagement. Alzheimers Dement. 15, P574 (2019).

    Article  Google Scholar 

  118. Digby, G. J., Shirey, J. K. & Conn, P. J. Allosteric activators of muscarinic receptors as novel approaches for treatment of CNS disorders. Mol. BioSyst. 6, 1345–1354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Melancon, B. J. et al. Optimization of M4 positive allosteric modulators (PAMs): the discovery of VU0476406, a non-human primate in vivo tool compound for translational pharmacology. Bioorg. Med. Chem. Lett. 27, 2296–2301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wood, M. R. et al. Discovery of VU0467485/AZ13713945: an M4 PAM evaluated as a preclinical candidate for the treatment of schizophrenia. ACS Med. Chem. Lett. 8, 233–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Marlo, J. E. et al. Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol. Pharmacol. 75, 577–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Shirey, J. K. et al. An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat. Chem. Biol. 4, 42–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Brady, A. E. et al. Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J. Pharmacol. Exp. Ther. 327, 941–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Wood, M. R. et al. Challenges in the development of an M4 PAM in vivo tool compound: the discovery of VU0467154 and unexpected DMPK profiles of close analogs. Bioorg. Med. Chem. Lett. 27, 171–175 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Engers, D. W. et al. VU6005806/AZN-00016130, an advanced M4 positive allosteric modulator (PAM) profiled as a potential preclinical development candidate. Bioorg. Med. Chem. Lett. 29, 1714–1718 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Krystal, J. H. et al. Emraclidine, a novel positive allosteric modulator of cholinergic M4 receptors, for the treatment of schizophrenia: a two-part, randomised, double-blind, placebo-controlled, phase 1b trial. Lancet 400, 2210–2220 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Urban, D. J. & Roth, B. L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007). First description of the widely used muscarinic receptor chemogenetic variant called a DREADD.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Alt, A. et al. Evidence for classical cholinergic toxicity associated with selective activation of m1 muscarinic receptors. J. Pharmacol. Exp. Ther. 356, 293–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Kenakin, T. & Christopoulos, A. Analytical pharmacology: the impact of numbers on pharmacology. Trends Pharmacol. Sci. 32, 189–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Kenakin, T., Watson, C., Muniz-Medina, V., Christopoulos, A. & Novick, S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 3, 193–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Porter, A. C. et al. M1 muscarinic receptor signaling in mouse hippocampus and cortex. Brain Res. 944, 82–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Lebois, E. P., Thorn, C., Edgerton, J. R., Popiolek, M. & Xi, S. Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer’s disease. Neuropharmacology 136, 362–373 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Potter, P. E. et al. Pre- and post-synaptic cortical cholinergic deficits are proportional to amyloid plaque presence and density at preclinical stages of Alzheimer’s disease. Acta Neuropathol. 122, 49–60 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kenakin, T. & Christopoulos, A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12, 205–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Donthamsetti, P. et al. Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Mol. Psychiatry 25, 2086–2100 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Bradley, S. J. & Tobin, A. B. Design of next-generation G protein-coupled receptor drugs: linking novel pharmacology and in vivo animal models. Annu. Rev. Pharmacol. Toxicol. 56, 535–559 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Barch, D. M. et al. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch. Gen. Psychiatry 58, 280–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Allen, G. et al. Reduced hippocampal functional connectivity in Alzheimer disease. Arch. Neurol. 64, 1482–1487 (2007).

    Article  PubMed  Google Scholar 

  140. Nitsch, R. M., Slack, B. E., Wurtman, R. J. & Growdon, J. H. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258, 304–307 (1992).

    Article  CAS  PubMed  Google Scholar 

  141. Farber, S. A., Nitsch, R. M., Schulz, J. G. & Wurtman, R. J. Regulated secretion of beta-amyloid precursor protein in rat brain. J. Neurosci. 15, 7442–7451 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hock, C. et al. Treatment with the selective muscarinic m1 agonist talsaclidine decreases cerebrospinal fluid levels of Aβ 42 in patients with Alzheimer’s disease. Amyloid 10, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Nitsch, R. M., Deng, M., Tennis, M., Schoenfeld, D. & Growdon, J. H. The selective muscarinic M1 agonist AF102B decreases levels of total Aβ in cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol. 48, 913–918 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Davis, A. A., Fritz, J. J., Wess, J., Lah, J. J. & Levey, A. I. Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J. Neurosci. 30, 4190–4196 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Medeiros, R. et al. Loss of muscarinic M1 receptor exacerbates Alzheimer’s disease-like pathology and cognitive decline. Am. J. Pathol. 179, 980–991 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jones, C. K. et al. Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J. Neurosci. 28, 10422–10433 (2008). Early demonstration that M1 receptors can regulate the processing of APP and thereby potentially slow the progression of neurodegenerative disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Caccamo, A. et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49, 671–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Lebois, E. P. et al. Disease-modifying effects of M1 muscarinic acetylcholine receptor activation in an Alzheimer’s disease mouse model. ACS Chem. Neurosci. 8, 1177–1187 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  150. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  151. Karran, E. & De Strooper, B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat. Rev. Drug Discov. 21, 306–318 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Jansen, W. J. et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313, 1924–1938 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yiannopoulou, K. G., Anastasiou, A. I., Zachariou, V. & Pelidou, S. H. Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicines 7, 97 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lowe, V. J. et al. Cross-sectional associations of tau-PET signal with cognition in cognitively unimpaired adults. Neurology 93, e29–e39 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 19, 687–700 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pontecorvo, M. J. et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain 140, 748–763 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Halliday, M., Radford, H. & Mallucci, G. R. Prions: generation and spread versus neurotoxicity. J. Biol. Chem. 289, 19862–19868 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mallucci, G. Spreading proteins in neurodegeneration: where do they take us? Brain 136, 994–995 (2013).

    Article  PubMed  Google Scholar 

  161. Dwomoh, L. et al. M1 muscarinic receptor activation reduces the molecular pathology and slows the progression of prion-mediated neurodegenerative disease. Sci. Signal. 15, eabm3720 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Scarpa, M. et al. Biased M1 muscarinic receptor mutant mice show accelerated progression of prion neurodegenerative disease. Proc. Natl Acad. Sci. USA 118, e2107389118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gunter, B. W. et al. Selective inhibition of M5 muscarinic acetylcholine receptors attenuates cocaine self-administration in rats. Addict. Biol. 23, 1106–1116 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Basile, A. S. et al. Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc. Natl Acad. Sci. USA 99, 11452–11457 (2002). Study describing the potential for M5-receptor inhibitors to prevent the acquisition of addiction to substances of abuse, including opioids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Steidl, S., Miller, A. D., Blaha, C. D. & Yeomans, J. S. M5 muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PloS ONE 6, e27538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Teal, L. B. et al. Selective M(5) muscarinic acetylcholine receptor negative allosteric modulator VU6008667 blocks acquisition of opioid self-administration. Neuropharmacology 227, 109424 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Gould, R. W. et al. Acute negative allosteric modulation of M5 muscarinic acetylcholine receptors inhibits oxycodone self-administration and cue-induced reactivity with no effect on antinociception. ACS Chem. Neurosci. 10, 3740–3750 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. McGowan, K. M. et al. Continued optimization of the M5 NAM ML375: discovery of VU6008667, an M5 NAM with high CNS penetration and a desired short half-life in rat for addiction studies. Bioorg. Med. Chem. Lett. 27, 1356–1359 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Garrison, A. T. et al. Development of VU6019650: a potent, highly selective, and systemically active orthosteric antagonist of the M5 muscarinic acetylcholine receptor for the treatment of opioid use disorder. J. Med. Chem. 65, 6273–6286 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Nunes, E. J. et al. Examining the role of muscarinic M5 receptors in VTA cholinergic modulation of depressive-like and anxiety-related behaviors in rats. Neuropharmacology 171, 108089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Nunes, E. J. et al. Ventral tegmental area M5 muscarinic receptors mediate effort-choice responding and nucleus accumbens dopamine in a sex-specific manner. J. Pharmacol. Exp. Ther. 385, 146–156 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dulawa, S. C. & Janowsky, D. S. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol. Psychiatry 24, 694–709 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Janowsky, D. S., el-Yousef, M. K. & Davis, J. M. Acetylcholine and depression. Psychosom. Med. 36, 248–257 (1974).

    Article  CAS  PubMed  Google Scholar 

  174. Leach, K. et al. Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35, 855–869 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Black, J. W. & Leff, P. Operational models of pharmacological agonism. Proc. R. Soc. Lond. B 220, 141–162 (1983).

    Article  CAS  PubMed  Google Scholar 

  176. Brannan, S. K. et al. Muscarinic cholinergic receptor agonist and peripheral antagonist for schizophrenia. N. Engl. J. Med. 384, 717–726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks the Wellcome Trust, who provided a Collaborative Award (201529/Z/16/Z) to A.B.T., and the generous donations of the Rice family, and Alan and Ann Boyd. Thanks also to C. Jones (Vanderbilt University) for proofreading and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Tobin.

Ethics declarations

Competing interests

A.T. is fully employed by the University of Glasgow but is also co-founder and CEO of the spin-out company Keltic Pharma Therapeutics Ltd, which has an interest in targeting muscarinic receptors in neurological disease.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Jan Jakubik, Daniel Foster and Christian Felder for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobin, A.B. A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. Nat Rev Drug Discov 23, 743–758 (2024). https://doi.org/10.1038/s41573-024-01007-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-024-01007-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing