[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nishimori transition across the error threshold for constant-depth quantum circuits

Abstract

Quantum computing involves the preparation of entangled states across many qubits. This requires efficient preparation protocols that are stable to noise and gate imperfections. Here we demonstrate the generation of the simplest long-range order—Ising order—using a measurement-based protocol on 54 system qubits in the presence of coherent and incoherent errors. We implement a constant-depth preparation protocol that uses classical decoding of measurements to identify long-range order that is otherwise hidden by the randomness of quantum measurements. By experimentally tuning the error rates, we demonstrate the stability of this decoded long-range order in two spatial dimensions, up to a critical phase transition belonging to the unusual Nishimori universality class. Although in classical systems Nishimori physics requires fine-tuning multiple parameters, here it arises as a direct result of the Born rule for measurement probabilities. Our study demonstrates the emergent phenomena that can be explored on quantum processors beyond a hundred qubits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Circuit protocol, decoder and phase diagram under coherent and incoherent errors.
Fig. 2: Decoded fidelity estimation by randomly sampling GHZ stabilizers.
Fig. 3: Experimentally measured local observables used to generate the state.
Fig. 4: Nishimori transition by tuning coherent errors.
Fig. 5: Decoding transition out of the long-range ordered phase by increasing auxiliary errors before decoding.

Similar content being viewed by others

Data availability

The data supporting the findings of this study can be found via figshare at https://doi.org/10.6084/m9.figshare.24293524 (ref. 55).

Code availability

Simulation and data analysis code may be made available upon reasonable request.

References

  1. Bravyi, S., Hastings, M. B. & Verstraete, F. Lieb–Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006).

    Article  ADS  Google Scholar 

  2. Hastings, M. B. in Quantum Theory from Small to Large Scales: Lecture Notes of the Les Houches Summer School: Volume 95, August 2010 (eds Frohlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W. & Cugliandolo, L. F.) 171–212 (Oxford Univ. Press, 2012).

  3. Chen, X., Gu, Z.-C. & Wen, X.-G. Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011).

    Article  ADS  Google Scholar 

  4. Chen, X., Gu, Z.-C. & Wen, X.-G. Complete classification of one-dimensional gapped quantum phases in interacting spin systems. Phys. Rev. B 84, 235128 (2011).

    Article  ADS  Google Scholar 

  5. Zeng, B. & Wen, X.-G. Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity. Phys. Rev. B 91, 125121 (2015).

    Article  ADS  Google Scholar 

  6. Huang, Y. & Chen, X. Quantum circuit complexity of one-dimensional topological phases. Phys. Rev. B 91, 195143 (2015).

    Article  ADS  Google Scholar 

  7. Haah, J. An invariant of topologically ordered states under local unitary transformations. Commun. Math. Phys. 342, 771–801 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  8. Mooney, G. J., White, G. A. L., Hill, C. D. & Hollenberg, L. C. L. Whole-device entanglement in a 65-qubit superconducting quantum computer. Adv. Quantum Technol. 4, 2100061 (2021).

    Article  Google Scholar 

  9. Mooney, G. J., White, G. A. L., Hill, C. D. & Hollenberg, L. C. L. Generation and verification of 27-qubit Greenberger–Horne–Zeilinger states in a superconducting quantum computer. J. Phys. Commun. 5, 095004 (2021).

    Article  Google Scholar 

  10. Wei, K. X. et al. Verifying multipartite entangled Greenberger–Horne–Zeilinger states via multiple quantum coherences. Phys. Rev. A 101, 032343 (2020).

    Article  ADS  Google Scholar 

  11. Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).

    Article  ADS  Google Scholar 

  12. Raussendorf, R., Bravyi, S. & Harrington, J. Long-range quantum entanglement in noisy cluster states. Phys. Rev. A 71, 062313 (2005).

    Article  ADS  Google Scholar 

  13. Piroli, L., Styliaris, G. & Cirac, J. I. Quantum circuits assisted by local operations and classical communication: transformations and phases of matter. Phys. Rev. Lett. 127, 220503 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  14. Tantivasadakarn, N., Thorngren, R., Vishwanath, A. & Verresen, R. Long-range entanglement from measuring symmetry-protected topological phases. Phys. Rev. X 14, 021040 (2024).

    Google Scholar 

  15. Verresen, R., Tantivasadakarn, N. & Vishwanath, A. Efficiently preparing Schrödinger’s cat, fractons and non-Abelian topological order in quantum devices. Preprint at https://arxiv.org/abs/2112.03061 (2021).

  16. Bravyi, S., Kim, I., Kliesch, A. & Koenig, R., Adaptive constant-depth circuits for manipulating non-abelian anyons. Preprint at https://arxiv.org/abs/2205.01933 (2022).

  17. Lu, T.-C., Lessa, L. A., Kim, I. H. & Hsieh, T. H. Measurement as a shortcut to long-range entangled quantum matter. PRX Quantum 3, 040337 (2022).

    Article  ADS  Google Scholar 

  18. Zhu, G.-Y., Tantivasadakarn, N., Vishwanath, A., Trebst, S. & Verresen, R. Nishimori’s cat: stable long-range entanglement from finite-depth unitaries and weak measurements. Phys. Rev. Lett. 131, 200201 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  19. Tantivasadakarn, N., Vishwanath, A. & Verresen, R. Hierarchy of topological order from finite-depth unitaries, measurement, and feedforward. PRX Quantum 4, 020339 (2023).

    Article  ADS  Google Scholar 

  20. Tantivasadakarn, N., Verresen, R. & Vishwanath, A. Shortest route to non-abelian topological order on a quantum processor. Phys. Rev. Lett. 131, 060405 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  21. Lee, J. Y., Ji, W., Bi, Z. & Fisher, M. P. A. Decoding measurement-prepared quantum phases and transitions: from ising model to gauge theory, and beyond. Preprint at https://arxiv.org/abs/2208.11699 (2022).

  22. Li, Y., Sukeno, H., Mana, A. P., Nautrup, H. P. & Wei, T.-C. Symmetry-enriched topological order from partially gauging symmetry-protected topologically ordered states assisted by measurements. Phys. Rev. B 108, 115144 (2023).

  23. Buhrman, H., Folkertsma, M., Loff, B. & Neumann, N. M. P. State preparation by shallow circuits using feed forward. Preprint at https://arxiv.org/abs/2307.14840 (2023).

  24. Lu, T.-C., Zhang, Z., Vijay, S. & Hsieh, T. H. Mixed-state long-range order and criticality from measurement and feedback. PRX Quantum 4, 030318 (2023).

    Article  ADS  Google Scholar 

  25. Friedman, A. J., Yin, C., Hong, Y. & Lucas, A. Locality and error correction in quantum dynamics with measurement. Preprint at https://arxiv.org/abs/2206.09929 (2023).

  26. Moses, S. A. et al. A race track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).

    Google Scholar 

  27. Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  28. Nishimori, H. Internal energy, specific heat and correlation function of the bond-random Ising model. Progress Theor. Phys. 66, 1169–1181 (1981).

    Article  ADS  Google Scholar 

  29. Nishimori, H. Optimum decoding temperature for error-correcting codes. J. Phys. Soc. Jpn 62, 2973–2975 (1993).

    Article  ADS  Google Scholar 

  30. Garratt, S. J., Weinstein, Z. & Altman, E. Measurements conspire nonlocally to restructure critical quantum states. Phys. Rev. X 13, 021026 (2023).

    Google Scholar 

  31. Lee, J. Y., You, Y.-Z. & Xu, C. Symmetry protected topological phases under decoherence. Preprint at https://arxiv.org/abs/2210.16323 (2023).

  32. Garratt, S. J. & Altman, E. Probing postmeasurement entanglement without post-selection. PRX Quantum 5, 030311 (2024).

    Article  Google Scholar 

  33. Chow, J. M. et al. Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys. Rev. Lett. 107, 080502 (2011).

    Article  ADS  Google Scholar 

  34. Sheldon, S., Magesan, E., Chow, J. M. & Gambetta, J. M. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A 93, 060302 (2016).

    Article  ADS  Google Scholar 

  35. Malekakhlagh, M., Magesan, E. & McKay, D. C. First-principles analysis of cross-resonance gate operation. Phys. Rev. A 102, 042605 (2020).

    Article  ADS  Google Scholar 

  36. Sundaresan, N. et al. Reducing unitary and spectator errors in cross resonance with optimized rotary echoes. PRX Quantum 1, 020318 (2020).

    Article  Google Scholar 

  37. de Queiroz, S. L. A. Multicritical point of Ising spin glasses on triangular and honeycomb lattices. Phys. Rev. B 73, 064410 (2006).

    Article  ADS  Google Scholar 

  38. Flammia, S. T. & Liu, Y.-K. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011).

    Article  ADS  Google Scholar 

  39. da Silva, M. P., Landon-Cardinal, O. & Poulin, D. Practical characterization of quantum devices without tomography. Phys. Rev. Lett. 107, 210404 (2011).

    Article  Google Scholar 

  40. Cao, S. et al. Generation of genuine entanglement up to 51 superconducting qubits. Nature 619, 738–742 (2023).

    Article  Google Scholar 

  41. Higgott, O. Pymatching: A python package for decoding quantum codes with minimum-weight perfect matching. ACM Trans. Quantum Comput. 3, 1–16 (2022).

    Article  MathSciNet  Google Scholar 

  42. Morvan, A. et al. Phase transitions in random circuit sampling. Nature 634, 328–333 (2024).

    Article  Google Scholar 

  43. Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986).

    Article  ADS  Google Scholar 

  44. Iqbal, M. et al. Topological order from measurements and feed-forward on a trapped ion quantum computer. Commun. Phys. 7, 205 (2024).

    Article  Google Scholar 

  45. Foss-Feig, M. et al. Experimental demonstration of the advantage of adaptive quantum circuits. Preprint at https://arxiv.org/abs/2302.03029 (2023).

  46. Iqbal, M. et al. Non-abelian topological order and anyons on a trapped-ion processor. Nature 626, 505–511 (2024).

    Article  Google Scholar 

  47. Bäumer, E. et al. Efficient long-range entanglement using dynamic circuits. PRX Quantum 5, 030339 (2024).

    Article  Google Scholar 

  48. Hastings, M. B. & Haah, J. Dynamically generated logical qubits. Quantum 5, 564 (2021).

    Article  Google Scholar 

  49. Magesan, E., Gambetta, J. M. & Emerson, J. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A 85, 042311 (2012).

    Article  ADS  Google Scholar 

  50. Helsen, J., Roth, I., Onorati, E., Werner, A. H. & Eisert, J. General framework for randomized benchmarking. PRX Quantum 3, 020357 (2022).

    Article  ADS  Google Scholar 

  51. Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article  ADS  Google Scholar 

  52. Earnest, N., Tornow, C. & Egger, D. J. Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware. Phys. Rev. Res. 3, 043088 (2021).

    Article  Google Scholar 

  53. Kim, Y. et al. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys. 19, 752–759 (2023).

    Article  Google Scholar 

  54. van den Berg, E., Minev, Z. K. & Temme, K. Model-free readout-error mitigation for quantum expectation values. Phys. Rev. A 105, 032620 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  55. Chen, E. et al. Realizing the Nishimori transition across the error threshold for constant-depth quantum circuits. figshare https://doi.org/10.6084/m9.figshare.24293524 (2024).

Download references

Acknowledgements

We thank M. Ware, P. Jurcevic, Y. Kim, A. Eddins, H. Nayfeh, I. Lauer, D. McKay, G. Jones and J. Summerour for assistance with performing experiments and B. Mitchell, D. Zajac, J. Wootton, L. Govia, X. Wei, R. Gupta, T. Yoder, T. Soejima, K. Siva, M. Motta, Z. Minev, S. Pappalardi, S. Garratt, E. Altman, F. Valenti and H. Nishimori for thoughtful discussions. We thank H. Nishimori for careful reading of the paper. The Cologne group was partially funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy – Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1 – 390534769 and within the CRC network TR 183 (project grant no. 277101999: G.-Y.Z. and S.T.) as part of projects A04 and B01. The classical simulations were performed on the JUWELS cluster at the Forschungszentrum Juelich. R.V. is supported by the Harvard Quantum Initiative Postdoctoral Fellowship in Science and Engineering. A.V. is supported by a Simons Investigator grant and by NSF-DMR 2220703. A.V. and R.V. are supported by the Simons Collaboration on Ultra-Quantum Matter, which is a grant from the Simons Foundation (618615, A.V.). G.Z. is supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage (C2QA) under contract number DE-SC0012704. We acknowledge the use of IBM Quantum services for this work.

Author information

Authors and Affiliations

Authors

Contributions

E.H.C. led the execution and analysis of the experimental data. G.-Y.Z. and R.V. led the theoretical developments; G.-Y.Z. developed all numerical simulations and additional experimental analysis code. A.S., E.B. and D.L. contributed technical insights and code related to characterizing the states. N.T., G.Z., A.V. and S.T. contributed theoretical insights related to the critical transition; S.T. provided additional insights related to entanglement generation and verification. S.S. and A.K. provided experimental support and access, and contributed to the design of the experiments. E.H.C., G.-Y.Z. and R.V. drafted the paper and supplementary material; all authors contributed to revising both.

Corresponding authors

Correspondence to Edward H. Chen, Guo-Yi Zhu or Ruben Verresen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Matteo Ippoliti, Morten Kjaergaard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Typical device error rates.

Plotted in cumulative format, for Echoed Cross Resonance (ECR, blue), square-root of Pauli-X (SX, red), and measurement (Meas, black) gates. Dashed lines represent medians of distributions.

Extended Data Fig. 2 Absence of finite threshold in one-dimensional protocol.

As discussed in the main text, the 2D protocol exhibited robustness over the 1D protocol (seen here); the key signature being based on the scaling of the average of two-point correlations, f, as a function of system size. For comparison with Fig. 4 in the main text. (a) f grows with increasing system size but converges to finite value that depends on tA. (b) The peak of g converges to tA = π/4 indicative of absence of finite threshold for coherent error. For both (a) and (b), the three system sizes were measured with 20,000 experimental samples giving rise to the small standard deviations (bars).

Extended Data Fig. 3 Magnetization of 1D experiments with and without decoding at different tA values.

Plotting the same data set from Extended Data Fig. 2, we observe that the 1D behavior exhibited no growth in f with system size from 28 to 54 and had peak variances at the GHZ value of tA = π/4. (a) Two-point correlations in 1D experiments for sweeps of tA. The histograms at values of tA where variances were maximized for undecoded (b) and decoded (c). Although the bimodal distribution persisted up to a system size of 28, at 54 the distribution became uniform. And as expected, both the undecoded (d) and decoded (e) exhibited a binomial distribution in the trivial state (tA = 0). The error bars in (a) are standard deviations based on 20,000 experimental samples, while the histograms in the other subplots are based on the same data sets.

Extended Data Fig. 4 Magnetization of 2D experiments with and without decoding at different tA values.

(a) Two-point correlations in 2D experiments for sweeps of tA. The histograms at values of tA where variances were maximized for undecoded (b) and decoded (c). In contrast to the 1D cases (Extended Data Fig. 3), the bimodal distribution persisted up to a system size of 54. And similarly to the 1D case, both the undecoded (d) and decoded (e) exhibited a binomial distribution in the trivial state (tA = 0). The error bars in (a) are standard deviations based on 20,000 experimental samples, while the histograms in the other subplots are based on the same data sets.

Supplementary information

Supplementary Information

Supplemental Figs. 1–13, Discussion and Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, E.H., Zhu, GY., Verresen, R. et al. Nishimori transition across the error threshold for constant-depth quantum circuits. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02696-6

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics