[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Super- and subradiant dynamics of quantum emitters mediated by atomic matter waves

Abstract

The cooperative modification of spontaneous radiative decay exemplifies a many-emitter effect in quantum optics. So far, its experimental realizations have relied on interactions mediated by rapidly escaping photons, which do not play an active role in the emitter dynamics. Here we use a platform of ultracold atoms in a one-dimensional optical lattice geometry to explore cooperative non-Markovian dynamics of synthetic quantum emitters that decay by radiating slow atomic matter waves. By preparing and manipulating arrays of emitters hosting weakly and strongly interacting many-body phases of excitations, we demonstrate directional collective emission and study the interplay between retardation and super- and subradiant dynamics. Moreover, we directly observe the spontaneous buildup of coherence among emitters. Our results on collective radiative dynamics establish ultracold matter waves as a versatile tool for studying many-body quantum optics in spatially extended and ordered systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experiments.
Fig. 2: Phase control of emission characteristics in the SF regime.
Fig. 3: Super- and subradiant dynamics in the SF regime.
Fig. 4: Spontaneous coherence formation in the MI regime.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  Google Scholar 

  2. Rehler, N. E. & Eberly, J. H. Superradiance. Phys. Rev. A 3, 1735–1751 (1971).

    Article  ADS  Google Scholar 

  3. Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article  ADS  Google Scholar 

  4. Benedict, M. Super-Radiance: Multiatomic Coherent Emission (Taylor & Francis, 1996).

  5. Brandes, T. Coherent and collective quantum optical effects in mesoscopic systems. Phys. Rep. 408, 315–474 (2005).

    Article  ADS  Google Scholar 

  6. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-Photon Interactions (John Wiley & Sons, 1998).

  7. Arecchi, F. T. & Courtens, E. Cooperative phenomena in resonant electromagnetic propagation. Phys. Rev. A 2, 1730–1737 (1970).

    Article  ADS  Google Scholar 

  8. Scully, M. O., Fry, E. S., Ooi, C. H. R. & Wódkiewicz, K. Directed spontaneous emission from an extended ensemble of N atoms: timing is everything. Phys. Rev. Lett. 96, 010501 (2006).

    Article  ADS  Google Scholar 

  9. Porras, D. & Cirac, J. I. Collective generation of quantum states of light by entangled atoms. Phys. Rev. A 78, 053816 (2008).

    Article  ADS  Google Scholar 

  10. González-Tudela, A. & Cirac, J. I. Quantum emitters in two-dimensional structured reservoirs in the nonperturbative regime. Phys. Rev. Lett. 119, 143602 (2017).

    Article  ADS  Google Scholar 

  11. Asenjo-Garcia, A., Moreno-Cardoner, M., Albrecht, A., Kimble, H. & Chang, D. Exponential improvement in photon storage fidelities using subradiance and ‘selective radiance’ in atomic arrays. Phys. Rev. X 7, 031024 (2017).

    Google Scholar 

  12. Zhang, Y.-X. & Mølmer, K. Theory of subradiant states of a one-dimensional two-level atom chain. Phys. Rev. Lett. 122, 203605 (2019).

    Article  ADS  Google Scholar 

  13. Zhong, J. et al. Photon-mediated localization in two-level qubit arrays. Phys. Rev. Lett. 124, 093604 (2020).

    Article  ADS  Google Scholar 

  14. Sinha, K. et al. Non-Markovian collective emission from macroscopically separated emitters. Phys. Rev. Lett. 124, 043603 (2020).

    Article  ADS  Google Scholar 

  15. Masson, S. J. & Asenjo-Garcia, A. Universality of Dicke superradiance in arrays of quantum emitters. Nat. Commun. 13, 2285 (2022).

    Article  ADS  Google Scholar 

  16. Sheremet, A. S., Petrov, M. I., Iorsh, I. V., Poshakinskiy, A. V. & Poddubny, A. N. Waveguide quantum electrodynamics: collective radiance and photon-photon correlations. Rev. Mod. Phys. 95, 015002 (2023).

    Article  ADS  Google Scholar 

  17. DeVoe, R. G. & Brewer, R. G. Observation of superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Lett. 76, 2049–2052 (1996).

    Article  ADS  Google Scholar 

  18. Guerin, W., Rouabah, M. T. & Kaiser, R. Light interacting with atomic ensembles: collective, cooperative and mesoscopic effects. J. Mod. Opt. 64, 895–907 (2017).

    Article  ADS  Google Scholar 

  19. Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).

    Article  ADS  Google Scholar 

  20. Masson, S. J., Ferrier-Barbut, I., Orozco, L. A., Browaeys, A. & Asenjo-Garcia, A. Many-body signatures of collective decay in atomic chains. Phys. Rev. Lett. 125, 263601 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  21. Araújo, M. O., Krešić, I., Kaiser, R. & Guerin, W. Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime. Phys. Rev. Lett. 117, 073002 (2016).

    Article  ADS  Google Scholar 

  22. Roof, S. J., Kemp, K. J., Havey, M. D. & Sokolov, I. M. Observation of single-photon superradiance and the cooperative Lamb shift in an extended sample of cold atoms. Phys. Rev. Lett. 117, 073003 (2016).

    Article  ADS  Google Scholar 

  23. Guerin, W., Araújo, M. O. & Kaiser, R. Subradiance in a large cloud of cold atoms. Phys. Rev. Lett. 116, 083601 (2016).

    Article  ADS  Google Scholar 

  24. Ferioli, G., Glicenstein, A., Henriet, L., Ferrier-Barbut, I. & Browaeys, A. Storage and release of subradiant excitations in a dense atomic cloud. Phys. Rev. X 11, 021031 (2021).

    Google Scholar 

  25. Goban, A. et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015).

    Article  ADS  Google Scholar 

  26. Solano, P., Barberis-Blostein, P., Fatemi, F. K., Orozco, L. A. & Rolston, S. L. Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nat. Commun. 8, 1857 (2017).

    Article  ADS  Google Scholar 

  27. Corzo, N. V. et al. Waveguide-coupled single collective excitation of atomic arrays. Nature 566, 359–362 (2019).

    Article  ADS  Google Scholar 

  28. Pennetta, R. et al. Collective radiative dynamics of an ensemble of cold atoms coupled to an optical waveguide. Phys. Rev. Lett. 128, 073601 (2022).

    Article  ADS  Google Scholar 

  29. Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  30. Liedl, C. et al. Observation of superradiant bursts in a cascaded quantum system. Phys. Rev. X 14, 011020 (2024).

    Google Scholar 

  31. van Loo, A. F. et al. Photon-mediated interactions between distant artificial atoms. Science 342, 1494 (2013).

    Article  ADS  Google Scholar 

  32. Mirhosseini, M. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692–697 (2019).

    Article  ADS  Google Scholar 

  33. Zanner, M. et al. Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics. Nat. Phys. 18, 538–543 (2022).

    Article  Google Scholar 

  34. Kannan, B. et al. On-demand directional microwave photon emission using waveguide quantum electrodynamics. Nat. Phys. 19, 394–400 (2023).

    Article  Google Scholar 

  35. Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).

    Article  ADS  Google Scholar 

  36. Zheng, H. & Baranger, H. U. Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. Phys. Rev. Lett. 110, 113601 (2013).

    Article  ADS  Google Scholar 

  37. Pichler, H. & Zoller, P. Photonic circuits with time delays and quantum feedback. Phys. Rev. Lett. 116, 093601 (2016).

    Article  ADS  Google Scholar 

  38. Sinha, K., González-Tudela, A., Lu, Y. & Solano, P. Collective radiation from distant emitters. Phys. Rev. A 102, 043718 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  39. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article  ADS  Google Scholar 

  40. Chen, C., Yang, C.-J. & An, J.-H. Exact decoherence-free state of two distant quantum systems in a non-Markovian environment. Phys. Rev. A 93, 062122 (2016).

    Article  ADS  Google Scholar 

  41. Leonforte, L., Carollo, A. & Ciccarello, F. Vacancy-like dressed states in topological waveguide QED. Phys. Rev. Lett. 126, 063601 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  42. Bykov, V. P. Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861 (1975).

    Article  ADS  Google Scholar 

  43. Calajó, G., Ciccarello, F., Chang, D. & Rabl, P. Atom-field dressed states in slow-light waveguide QED. Phys. Rev. A 93, 033833 (2016).

    Article  ADS  Google Scholar 

  44. Sánchez-Burillo, E., Zueco, D., Martín-Moreno, L. & García-Ripoll, J. J. Dynamical signatures of bound states in waveguide QED. Phys. Rev. A 96, 023831 (2017).

    Article  ADS  Google Scholar 

  45. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    Article  ADS  Google Scholar 

  46. Ferreira, V. S. et al. Collapse and revival of an artificial atom coupled to a structured photonic reservoir. Phys. Rev. X 11, 041043 (2021).

    Google Scholar 

  47. de Vega, I., Porras, D. & Ignacio Cirac, J. Matter-wave emission in optical lattices: single particle and collective effects. Phys. Rev. Lett. 101, 260404 (2008).

    Article  Google Scholar 

  48. Navarrete-Benlloch, C., Vega, I. D., Porras, D. & Cirac, J. I. Simulating quantum-optical phenomena with cold atoms in optical lattices. New J. Phys. 13, 023024 (2011).

    Article  ADS  Google Scholar 

  49. Krinner, L., Stewart, M., Pazmiño, A., Kwon, J. & Schneble, D. Spontaneous emission of matter waves from a tunable open quantum system. Nature 559, 589–592 (2018).

    Article  ADS  Google Scholar 

  50. Stewart, M., Kwon, J., Lanuza, A. & Schneble, D. Dynamics of matter-wave quantum emitters in a structured vacuum. Phys. Rev. Res. 2, 043307 (2020).

    Article  Google Scholar 

  51. Lanuza, A., Kwon, J., Kim, Y. & Schneble, D. Multiband and array effects in matter-wave-based waveguide QED. Phys. Rev. A 105, 023703 (2022).

  52. Stewart, M., Krinner, L., Pazmiño, A. & Schneble, D. Analysis of non-Markovian coupling of a lattice-trapped atom to free space. Phys. Rev. A 95, 013626 (2017).

    Article  ADS  Google Scholar 

  53. Gadway, B., Pertot, D., Reeves, J. & Schneble, D. Probing an ultracold-atom crystal with matter waves. Nat. Phys. 8, 544–549 (2012).

    Article  Google Scholar 

  54. Kwon, J., Kim, Y., Lanuza, A. & Schneble, D. Formation of matter-wave polaritons in an optical lattice. Nat. Phys. 18, 657–661 (2022).

    Article  Google Scholar 

  55. Reeves, J., Krinner, L., Stewart, M., Pazmiño, A. & Schneble, D. Nonadiabatic diffraction of matter waves. Phys. Rev. A 92, 023628 (2015).

    Article  ADS  Google Scholar 

  56. Cardenas-Lopez, S., Masson, S. J., Zager, Z. & Asenjo-Garcia, A. Many-body superradiance and dynamical mirror symmetry breaking in waveguide QED. Phys. Rev. Lett. 131, 033605 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  57. Dicke, R. H. The coherence brightened laser. In QUANTUM ELECTRONICS Proc. Third International Congress 1, 35 (1964).

  58. Dinc, F. & Brańczyk, A. M. Non-Markovian super-superradiance in a linear chain of up to 100 qubits. Phys. Rev. Res. 1, 032042 (2019).

    Article  Google Scholar 

  59. Lanuza, A. & Schneble, D. Exact solution for the collective non-Markovian decay of two fully excited quantum emitters. Phys. Rev. Res. 6, 033196 (2024).

    Article  Google Scholar 

  60. González-Tudela, A., Paulisch, V., Chang, D., Kimble, H. & Cirac, J. Deterministic generation of arbitrary photonic states assisted by dissipation. Phys. Rev. Lett. 115, 163603 (2015).

    Article  ADS  Google Scholar 

  61. Fayard, N., Henriet, L., Asenjo-Garcia, A. & Chang, D. E. Many-body localization in waveguide quantum electrodynamics. Phys. Rev. Res. 3, 033233 (2021).

    Article  Google Scholar 

  62. Windt, B., Bello, M., Demler, E. & Cirac, J. I. Fermionic matter-wave quantum optics with cold-atom impurity models. Phys. Rev. A 109, 023306 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  63. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  64. Grimm, R., Weidemuller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

    Article  ADS  Google Scholar 

  65. Krinner, L., Stewart, M., Pazmino, A. & Schneble, D. In situ magnetometry for experiments with atomic quantum gases. Rev. Sci. Instrum. 89, 013108 (2018).

  66. Gadway, B., Pertot, D., Reimann, R., Cohen, M. G. & Schneble, D. Analysis of Kapitza-Dirac diffraction patterns beyond the Raman-Nath regime. Opt. Express 17, 19173–19180 (2009).

    Article  ADS  Google Scholar 

  67. Kollath, C., Schollwöck, U., von Delft, J. & Zwerger, W. Spatial correlations of trapped one-dimensional bosons in an optical lattice. Phys. Rev. A 69, 031601 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Kwon and H. Huang for experimental assistance; M. G. Cohen for discussions; and J. Kwon, H. Huang and M. G. Cohen for a critical reading of the manuscript. This work was supported by the US National Science Foundation, through grants PHY-1912546 and PHY-2208050. Y.K. acknowledges additional partial support from Stony Brook University’s Center for Distributed Quantum Processing.

Author information

Authors and Affiliations

Authors

Contributions

Y.K., A.L. and D.S. conceived the experiments. Y.K. took the measurements and analysed the data. Numerical simulations and analytical descriptions were developed by Y.K. and A.L., respectively. The results were discussed and interpreted by all authors. D.S. supervised the project. The manuscript was written by Y.K. and D.S. with critical contributions from A.L.

Corresponding author

Correspondence to Dominik Schneble.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Alejandro González-Tudela and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Collective emission versus coherence.

a, Coherence of the initial array population characterized by the width σ of the phase distribution at various transverse lattice depths s as seen in ToF images. b, Excited fraction at a fixed decay time 300 μs as a function of s for two distinct excitation energies \(\hslash \Delta =4\hslash {\omega }_{{\mathsf{r}}},\hslash {\omega }_{{\mathsf{r}}}\) with coupling strength \(\Omega /{\omega }_{{\mathsf{r}}}=1.00(7),0.48(3)\). The z-lattice depth is fixed at sz = 15 throughout.

Extended Data Fig. 2 Numerical simulations of an M-well array containing a single excitation.

a,χ2 vs. M evaluated with respect to the data shown in Fig. 2d and Fig. 3a. In (i), the data at the phases \(\phi \in \left(0,2\uppi \right]\) and the coupling parameters \(\Delta /{\omega }_{{\mathsf{r}}}\in \{2,4\}\) are used (with \(\Omega /{\omega }_{{\mathsf{r}}}=0.6\) and t = 200 μs). In (ii), the data at the coupling times t [0, 0.25] ms for \((\Delta ,\Omega )/{\omega }_{{\mathsf{r}}}=(4,1)\) and at t [0, 0.5] ms for \((\Delta ,\Omega )/{\omega }_{{\mathsf{r}}}=(1,0.42)\) are used. The normalization \({\chi }_{0}^{2}\) is the value at which the cumulative χ2 distribution reaches 95%. The lines are guides to the eye. b, Simulated population versus time for \((\Delta ,\Omega )/{\omega }_{{\mathsf{r}}}=(4,1)\) and (1, 0.42) (with sz = 8, ϕ = 0) shown as solid and dashed lines, with M varying from one to five (lightest to darkest colors; red for M = 3, the case also shown in Fig. 3a).

Extended Data Fig. 3 Spectral contributions to the simulated dynamics of 3 emitters.

The domain coloring plots of \(\det {\mathcal{G}}\) (with a brightness of 1, a hue proportional to the argument of \(\det {\mathcal{G}}\), and a saturation inversely dependent on its absolute value) are represented on Riemann surfaces, along with their analytic continuations, for sz = 8 and \((\Delta ,\Omega )/{\omega }_{{\mathsf{r}}}=(0,0.6)\), (1,0.42) and (4,1) from left to right (the vertical bars represent the dispersion \(\bar{k}(\Delta )\), to which the origin of the imaginary axis for each Δ is aligned). The zeroes and branch cut of this function define the decay dynamics of the emitters, which are presented in the bottom panels. The black lines represent the simulated dynamics, while the red lines account for the various spectral contributions; with the main ones coming from superradiant (SR), subradiant (sR) and bound states (BS).

Extended Data Fig. 4 Collective dynamics at the continuum edge in the SF regime.

a, Excited fraction as a function of time for (sz, s) = (8, 8), ϕ = 0 with strong coupling \(\Omega =0.60(4){\omega }_{{\mathsf{r}}}\) at Δ = 0 (red points). The solid line simulates a 3-well array with a coherently distributed excitation, as opposed to scenarios in which the excitation is located in an isolated well (dotted line) or in the central one of 3 wells (dashed-dotted). Shaded areas represent the uncertainty in Ω. The red dashed line is a fit to the beating of a dissipative and a bound state with the decay rate fixed by our analytic model. b, (i) Momentum distribution of the emitted matter waves versus time. The lineout plot shows the data at 0.3 ms (blue points) along with our simulation and bound-state contributions from our analytic model (gray solid and black dashed lines). (ii) Simulated position and momentum distributions of the matter waves versus time, with a lineout plot at 0.3 ms. The dashed vertical lines are the positions of the emitters. All data are averages of at least 3 measurements; the error bars show the standard error of the mean.

Extended Data Fig. 5 Supplementary data and simulation for Fig. 4.

a, Time evolution of the array populations (\(\left\vert r\right\rangle ,\left\vert g\right\rangle\)) initially prepared in a superposition \((\left\vert r\right\rangle +\left\vert g\right\rangle )/\sqrt{2}\) corresponding to the measurements shown in Fig. 4b,c. The solid and dashed lines are our two-well model without and with an additional empty well (scaled by 1.05). b, Time evolution of the visibility defined as c0c1 (c1c0) for \(\Delta =4{\omega }_{{\mathsf{r}}}({\omega }_{{\mathsf{r}}})\), where c0 and c1 are the integration of the change of the phase distributions (PD) over \(| q| \in [0,0.5{k}_{{\mathsf{r}}}]\) and \(| q| \in \left(0.5{k}_{{\mathsf{r}}},1.5{k}_{{\mathsf{r}}}\right]\) (cf. Fig. 4c). The solid and dashed lines are calculated from our model as in a.

Extended Data Fig. 6 Radiative decay of thermal excitations.

a, Excited fraction for \(\Delta =4{\omega }_{{\mathsf{r}}}\) and \({\omega }_{{\mathsf{r}}}\) (red points and circles), with coupling strength set to \(\Omega /{\omega }_{{\mathsf{r}}}=1.00(7)\) and 0.60(4). A thermal gas of \(\left\vert r\right\rangle\) atoms in the SF regime, (sz, s) = (8, 8), is prepared by heating via periodic modulation of the lattice depths sz and s with an average amplitude ≈ 30% and a frequency 500 Hz for a duration of 40 ms. The solid and dashed lines are simulations of single-well decay for the corresponding parameters. We plot time in terms of Γ1 = 2π × 0.24 kHz (0.49 kHz) for \(\Delta =4{\omega }_{{\mathsf{r}}}({\omega }_{{\mathsf{r}}})\), phase distributions of the array population (\(\left\vert r\right\rangle\) atoms) are shown at t = 0 and 300 μs (150 μs). The top-right inset shows the same data including longer times. Also shown is the heating of the array population versus the lattice modulation time characterized by the momentum peak width54; the solid line is a sigmoidal fit. b, (i) Change in the normalized PD of the emitter array (\(\left\vert r\right\rangle\)) after 300 μs for \(\Delta =4{\omega }_{{\mathsf{r}}}\). (ii) Same but after 150 μs for \(\Delta ={\omega }_{{\mathsf{r}}}\). All data are averages of at least 3 measurements with the error bars from the standard error of the mean (gray points and circles are raw data).

Extended Data Table 1 Complex frequencies ωp (in units of ωr) and initial amplitudes \({\overrightarrow{\boldsymbol{A}}}_{{\boldsymbol{p}},{\bf{0}}}\) of the bound (BS), subradiant (sR), and superradiant (SR) states impacting the dynamics of 3 quantum emitters, for the parameters tested in the experiment (see Fig. 3 and Extended Data Fig. 4)

Source data

Source Data Fig. 2

Numerical source data files (in .csv format).

Source Data Fig. 3

Numerical source data files (in .csv format).

Source Data Fig. 4

Numerical source data files (in .csv format).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Lanuza, A. & Schneble, D. Super- and subradiant dynamics of quantum emitters mediated by atomic matter waves. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02676-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02676-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing