Abstract
Under the obstetrical dilemma hypothesis, sexual dimorphism in pelvic shape is a solution to accommodate high fetopelvic constraints. It is therefore unclear why chimpanzees display a human-like pattern of pelvic sexual dimorphism despite having easier births enabled by small neonates and capacious pelvic canals. Here we reassessed chimpanzee fetopelvic fit using three-dimensional simulations, revealing a similarly constricted midpelvis as in humans, with even narrower outlet dimensions. Geometric morphometric analyses confirm that female chimpanzees have larger pelvic canals than males despite a smaller body size and a morphology that maximizes pelvic dimensions favourable for parturition, particularly in smaller-bodied individuals. Together with evidence for increased neurological immaturity at birth relative to monkeys, our findings imply substantial obstetric constraints in chimpanzees and possibly other apes. We therefore propose that difficult birth did not arise abruptly in Homo with increasing encephalization but evolved gradually through a series of obstetric compromises from an already constricted birth canal shared across anthropoid primates. Specifically, we propose that obstetric selection pressures exacerbated incrementally with the stiffening of the symphysis that accompanied body size increase in hominoids, while subsequent adaptations to bipedalism shortened the ilium. The resulting contorted birth canal required obligatory fetal rotation, thus greatly increasing birth difficulty.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
24,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
133,45 € per year
only 11,12 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data supporting the manuscript are available in the Supplementary Information or via GitHub at https://github.com/NicoleWebb/Pan-Cephalopelvic-Fit-Paper.
Code availability
The source code for all analyses included in the paper are available via GitHub at https://github.com/NicoleWebb/Pan-Cephalopelvic-Fit-Paper.
References
Nissen, H. & Yerkes, R. Reproduction in the chimpanzee: report on forty‐nine births. Anat. Rec. 86, 567–578 (1943).
Hirata, S., Fuwa, K., Sugama, K., Kusunoki, K. & Takeshita, H. Mechanism of birth in chimpanzees: humans are not unique among primates. Biol. Lett. 7, 686–688 (2011).
Trevathan, W. R. Human Birth: An Evolutionary Perspective (Aldine de Gruyter, 1987).
Trevathan, W. Primate pelvic anatomy and implications for birth. Philos. Trans. R. Soc. B 370, 20140065 (2015).
Nakamichi, M. Non-human primate birth and human birth. Primates 64, 551–556 (2023).
Schultz, A. H. Sex differences in the pelves of primates. Am. J. Phys. Anthropol. 7, 401–423 (1949).
Leutenegger, W. Beziehungen zwischen der neugeborenengrösse und sexualdimorphismus am becken bei simischen primaten. Folia Primatol. 12, 224–235 (1970).
Leutenegger, W. in Primate Brain Evolution, Methods and Concepts (eds Armstrong, E. & Falk, D.) 86–95 (Plenum, 1982).
Dudenhausen, J. W., Obladen, M. & Pschyrembel, W. Practical Obstetrics (De Gruyter, 2014).
Frémondière, P. et al. Dynamic finite-element simulations reveal early origin of complex human birth pattern. Commun. Biol. 5, 377 (2022).
Washburn, S. L. Tools and human evolution. Sci. Am. 203, 63–75 (1960).
Haeusler, M. et al. The obstetrical dilemma hypothesis: there’s life in the old dog yet. Biol. Rev. 96, 2031–2057 (2021).
Rosenberg, K. R. The evolution of modern human childbirth. Yearb. Phys. Anthropol. 35, 89–124 (1992).
Rosenberg, K. & Trevathan, W. Birth, obstetrics and human evolution. Br. J. Obstet. Gynaecol. 109, 1199–1206 (2002).
Portmann, A. Die tragzeiten der primaten und die dauer der schwangerschaft beim menschen: ein problem der vergleichenden biologie. Rev. Suisse Zool. 48, 511–518 (1941).
Kurismaa, A. in Adolf Portmann: A Thinker of Self-Expressing Life (ed. Jaroš, F.) 1–22 (Springer, 2021).
Mitteroecker, P., Huttegger, S. M., Fischer, B. & Pavlicev, M. Cliff-edge model of obstetric selection in humans. Proc. Natl Acad. Sci. USA 113, 14680–14685 (2016).
Wells, J. C. K., DeSilva, J. M. & Stock, J. T. The obstetric dilemma: an ancient game of Russian roulette, or a variable dilemma sensitive to ecology? Yearb. Phys. Anthropol. 55, 40–71 (2012).
Wells, J. C. K., Wibaek, R. & Poullas, M. The dual burden of malnutrition increases the risk of cesarean delivery: evidence from India. Front. Public Health 6, 292 (2018).
Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T. & Pontzer, H. Metabolic hypothesis for human altriciality. Proc. Natl Acad. Sci. USA 109, 15212–15216 (2012).
Warrener, A. G., Lewton, K. L., Pontzer, H. & Lieberman, D. E. A wider pelvis does not increase locomotor cost in humans, with implications for the evolution of childbirth. PLoS ONE 10, e0118903 (2015).
Dunsworth, H. in The Routledge Handbook of Anthropology and Reproduction (eds Tomori, C. & Han, S.) 441–453 (Routledge, 2021).
Betti, L. & Manica, A. Human variation in the shape of the birth canal is significant and geographically structured. Proc. R. Soc. B. 285, 20181807 (2018).
Grunstra, N. D. S. et al. There is an obstetrical dilemma: misconceptions about the evolution of human childbirth and pelvic form. Am. J. Biol. Anthropol. 181, 535–544 (2023).
Cordey, C., Webb, N. M. & Haeusler, M. Take it to the limit: the limitations of energetic explanations for birth timing in humans. Evol. Med. Public Health 11, 415–428 (2023).
Fischer, B., Grunstra, N. D. S., Zaffarini, E. & Mitteroecker, P. Sex differences in the pelvis did not evolve de novo in modern humans. Nat. Ecol. Evol. 5, 625–630 (2021).
Huseynov, A., Ponce de León, M. S. & Zollikofer, C. P. E. Development of modular organization in the chimpanzee pelvis. Anat. Rec. 300, 675–686 (2017).
Dunsworth, H. M. Expanding the evolutionary explanations for sex differences in the human skeleton. Evol. Anthropol. 29, 108–116 (2020).
Zollikofer, C. P. E., Scherrer, M. & Ponce de León, M. S. Development of pelvic sexual dimorphism in hylobatids: testing the obstetric constraints hypothesis. Anat. Rec. 300, 859–869 (2017).
Stoller, M. K. The Obstetric Pelvis and Mechanism of Labor in Nonhuman Primates. PhD thesis, Univ. of Chicago (1995).
Chor, C. M., Chan, W. Y. W., Tse, W. T. A. & Sahota, D. S. Measurement of retropubic tissue thickness using intrapartum transperineal ultrasound to assess cephalopelvic disproportion. Ultrasonography 37, 211–216 (2018).
Borell, U. & Fernström, I. The movements at the sacro-iliac joints and their importance to changes in the pelvic dimensions during paturition. Acta Obstet. Gynecol. Scand. 36, 42–57 (1957).
Lovejoy, C. O., Meindl, R. S., Tague, R. G. & Latimer, B. The senescent biology of the hominoid pelvis. Its bearing on the pubic symphysis and auricular surface as age-at-death indicators in the human skeleton. Riv. Antropol. 73, 31–49 (1995).
Moffett, E. A. Dimorphism in the size and shape of the birth canal across anthropoid primates. Anat. Rec. 300, 870–889 (2017).
Fischer, B. & Mitteroecker, P. Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma. Proc. Natl Acad. Sci. USA 112, 5655–5660 (2015).
Kawada, M., Nakatsukasa, M., Nishimura, T., Kaneko, A. & Morimoto, N. Covariation of fetal skull and maternal pelvis during the perinatal period in rhesus macaques and evolution of childbirth in primates. Proc. Natl Acad. Sci. USA 117, 21251–21257 (2020).
Becker, I., Woodley, S. J. & Stringer, M. D. The adult human pubic symphysis: a systematic review. J. Anat. 217, 475–487 (2010).
Ami, O. et al. Three-dimensional magnetic resonance imaging of fetal head molding and brain shape changes during the second stage of labor. PLoS ONE 14, e0215721 (2019).
Laudicina, N. M. Comparative Primate Birth Mechanics and the Evolution of Human Childbirth. DPhil. thesis, Boston Univ. (2019).
Gauss, C. F. Über ein neues allgemeines grundgesetz der mechanik. J. Reine Angew. Math. 4, 232–235 (1829).
Bumm, E. Grundriss zum Studium der Geburtshilfe in achtundzwanzig Vorlesungen (Bergmann, 1921).
Rydberg, E. The Mechanism of Labour (Thomas, 1954).
Häusler, M. & Schmid, P. Comparison of the pelves of Sts 14 and AL 288-1: implications for birth and sexual dimorphism in australopithecines. J. Hum. Evol. 29, 363–383 (1995).
Berge, C. & Goularas, D. A new reconstruction of Sts 14 pelvis (Australopithecus africanus) from computed tomography and three-dimensional modeling techniques. J. Hum. Evol. 58, 262–272 (2010).
Martin, R. D. Human Brain Evolution in an Ecological Context (American Museum of Natural History, 1983).
Gould, S. J. Dollo on Dollo’s law: irreversibility and the status of evolutionary laws. J. Hist. Biol. 3, 189–212 (1970).
Gómez-Robles, A., Nicolaou, C., Smaers, J. B. & Sherwood, C. C. The evolution of human altriciality and brain development in comparative context. Nat. Ecol. Evol. 8, 133–146 (2024).
Sherwood, C. C. & Gómez-Robles, A. Brain plasticity and human evolution. Ann. Rev. Anthropol. 46, 399–419 (2017).
Halley, A. C. Minimal variation in eutherian brain growth rates during fetal neurogenesis. Proc. R. Soc. B 284, 20170219 (2017).
Charvet, C. J., Ofori, K., Falcone, C. & Rigby Dames, B. A. Transcription, structure, and organoids translate time across the lifespan of humans and great apes. Proc. Natl Acad. Sci. USA Nexus 2, pgad230 (2023).
Tague, R. G. Commonalities in dimorphism and variability in the anthropoid pelvis, with implications for the fossil record. J. Hum. Evol. 21, 153–176 (1991).
Lande, R. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34, 292–305 (1980).
Abitbol, M. M. Evolution of the ischial spine and of the pelvic floor in the Hominoidea. Am. J. Phys. Anthropol. 75, 53–67 (1988).
Grunstra, N. D. S. et al. Humans as inverted bats: a comparative approach to the obstetric conundrum. Am. J. Hum. Biol. 31, e23227 (2019).
Pavličev, M., Romero, R. & Mitteroecker, P. Evolution of the human pelvis and obstructed labor: new explanations of an old obstetrical dilemma. Am. J. Obstet. Gynecol. 222, 3–16 (2020).
Tardieu, C., Hasegawa, K. & Haeusler, M. How the pelvis and vertebral column became a functional unit in human evolution during the transition from occasional to permanent bipedalism? Anat. Rec. 300, 912–931 (2017).
Smit, T. H. The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur. Spine J. 11, 137–144 (2002).
Gensch, W. Die Geburt eines Orang-Utans im Zoo Dresden. Freund. Kölner Zoo. 8, 133–134 (1965).
Ullrich, W. Geburt und natürliche Geburtshilfe beim Orang Utan. Zool. Gart. 39, 284–289 (1970).
Torres‐Tamayo, N., Rae, T. C., Hirasaki, E. & Betti, L. Testing the reliability of the rearticulation of osteological primate pelves in comparative morphological studies. Anat. Rec. 307, 2816–2833 (2024).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).
Schlager, S. in Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217–256 (Academic, 2017).
Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K. & Bookstein, F. L. Comparison of cranial ontogenetic trajectories among great apes and humans. J. Hum. Evol. 46, 679–698 (2004).
Krenn, V. A., Fornai, C., Webb, N. M. & Haeusler, M. Sex classification using the human sacrum: geometric morphometrics vs. conventional approaches. PLoS ONE 17, e0264770 (2022).
von Bischoff, T. L. W. Das Hirngewicht des Menschen: Eine Studie (Neusser, 1880).
Marchand, F. Über das Hirngewicht des Menschen. Abh. Sachs. Akad. Wiss. Leipzig Math.-Nat. Wiss. Kl 27, 393–482 (1902).
Kent, E. et al. Correlation between birth weight and maternal body composition. Obstet. Gynecol. 121, 46–50 (2013).
Rosenberg, M. Birth weights in three Norwegian cities, 1860–1984. Secular trends and influencing factors. Ann. Hum. Biol. 15, 275–288 (1988).
Ward, W. P. in The Biological Standard of Living in Comparative Perspective (eds Komlos, J. & Baten, J.) 302–320 (Steiner, 1998).
Floud, R., Fogel, R. W., Harris, B. & Hong, S. C. The Changing Body: Health, Nutrition, and Human Development in the Western World Since 1700 (Cambridge Univ. Press, 2011).
Garwicz, M., Christensson, M. & Psouni, E. A unifying model for timing of walking onset in humans and other mammals. Proc. Natl Acad. Sci. USA 106, 21889–21893 (2009).
Welker, C. Zur postnatalen entwicklung und zur frühen mutter-kind-beziehung der primaten. Anthropol. Anz. 39, 261–304 (1981).
Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).
Orme, D. et al. caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.3 https://github.com/davidorme/caper (2023).
Sokal, R. R. & Rohlf, F. J. Biometry: The Principles and Practice of Statistics in Biological Research 4th edn (Freeman, 2012).
Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).
Martin, R. D. Primate origins: plugging the gaps. Nature, 363, 223–234 (1993).
Acknowledgements
We thank K. Isler for discussion on neurological development and compiling the data on brain mass of newborn and adult anthropoid primates. We also extend our gratitude to F. Mazelis, G. Bravo Morante and N. Torres-Tamayo for their technical input. The following institutions provided curatorial assistance and access to their skeletal and digital collections: the Anthropological Institute and Museum, University of Zurich; the Natural History Museum, Vienna; the University of California, San Diego; the Zoological Museum, University of Zurich; the Natural History Museum, Basel; the KUPRI Digital Museum Collection; and the Smithsonian National Museum of Natural History, Washington. This work was funded by the Swiss National Science Foundation grant nos. 31003A_156299 (M.H.) and 31003A_176319 (M.H.) and is part of the Leibniz-Kooperative Exzellenz Project K438/2022 (N.M.W.).
Author information
Authors and Affiliations
Contributions
N.M.W., C.F. and M.H. conceived and designed the study. C.F., V.A.K., N.M.W. and M.H. collected data used in the analyses. N.M.W., C.F., E.C.H., V.A.K. and M.H. performed analyses. N.M.W., V.A.K., C.F. and M.H. prepared the figures and publication materials. N.M.W., C.F., V.A.K., E.C.H. and M.H. drafted the initial manuscript version. All authors discussed results/interpretations and edited subsequent versions of the manuscript, with L.M.W. contributing to later drafts.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Steven Churchill, Aida Gomez-Robles and Caroline VanSickle for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 The birth canal of chimpanzees.
a, The birth canal can be approximated by a cylinder. The pelvic inlet represents an oblique cylinder section and since the inlet anteroposterior diameter I–I´ is not the smallest diameter of the cylinder it is not obstetrically relevant, in contrast to the pelvic midpelvis, whose anteroposterior diameter M–M´ is perpendicular to the longitudinal axis of the birth canal. When the fetus reaches the pelvic outlet O–O´, the tip of the sacrum together with the coccyx has to nutate backwards to enlarge the space of the bony birth canal. b, The fetal head in a fully extended position, which is the typical head orientation for monkeys. c, The fetal head in a fully flexed position, which is the usual head orientation for humans. Both head orientations occur in chimpanzees and are obstetrically equivalent. The neck is only schematically visualised.
Extended Data Fig. 2 Recreation of Schultz’s (1949) popular cephalopelvic fit diagram showing the differences between pelvic inlet dimensions and fetal head sizes across primates.
Note the ample space of the anteroposterior pelvic inlet diameters relative to the fetal head for the great apes which contrasts with that of humans in which the fetal head dimensions exceed that of the birth canal in these particular dimensions. Adapted with permission from ref. 6, John Wiley & Sons.
Extended Data Fig. 3 Landmark configuration in anterior (left) and posterior view (right) used in the 3D geometric morphometric analyses.
The 52 fixed landmarks are depicted in light blue and the 38 curve semilandmarks on six curves are in dark blue.
Extended Data Fig. 4 Thin-plate-spline warpings based on shape changes observed at the extremes of the first three PC axes.
From left to right: anterior, inferior and lateral views based on the complete landmark configuration (see the PCA of Fig. 3).
Extended Data Fig. 5 Phylogenetic reduced major axis regressions for Old and New World monkeys and apes.
The red line signifies the actual slope for the regression whereas the dashed grey line represents the null hypothesis for the relationship between the observed traits where the slope is set to the default of 1. All pRMA regressions assume a Brownian evolution model variance-covariance structure.
Supplementary information
Supplementary Tables
Supplementary Table 1. Landmark descriptions included in 3DGM analyses; Table 2. Regression raw data and related sources; and Table 3. Results of phylogenetic regression analyses.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Webb, N.M., Fornai, C., Krenn, V.A. et al. Gradual exacerbation of obstetric constraints during hominoid evolution implied by re-evaluation of cephalopelvic fit in chimpanzees. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02558-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41559-024-02558-7