[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gradual exacerbation of obstetric constraints during hominoid evolution implied by re-evaluation of cephalopelvic fit in chimpanzees

Abstract

Under the obstetrical dilemma hypothesis, sexual dimorphism in pelvic shape is a solution to accommodate high fetopelvic constraints. It is therefore unclear why chimpanzees display a human-like pattern of pelvic sexual dimorphism despite having easier births enabled by small neonates and capacious pelvic canals. Here we reassessed chimpanzee fetopelvic fit using three-dimensional simulations, revealing a similarly constricted midpelvis as in humans, with even narrower outlet dimensions. Geometric morphometric analyses confirm that female chimpanzees have larger pelvic canals than males despite a smaller body size and a morphology that maximizes pelvic dimensions favourable for parturition, particularly in smaller-bodied individuals. Together with evidence for increased neurological immaturity at birth relative to monkeys, our findings imply substantial obstetric constraints in chimpanzees and possibly other apes. We therefore propose that difficult birth did not arise abruptly in Homo with increasing encephalization but evolved gradually through a series of obstetric compromises from an already constricted birth canal shared across anthropoid primates. Specifically, we propose that obstetric selection pressures exacerbated incrementally with the stiffening of the symphysis that accompanied body size increase in hominoids, while subsequent adaptations to bipedalism shortened the ilium. The resulting contorted birth canal required obligatory fetal rotation, thus greatly increasing birth difficulty.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cephalopelvic fit for chimpanzees versus modern humans.
Fig. 2: Quantification of the cephalopelvic fit in chimpanzees.
Fig. 3: Sexual dimorphism in pelvic shape in chimpanzees (n = 29, 16 females and 13 males).
Fig. 4: Female chimpanzee pelvic shape differences driven by size.
Fig. 5: Hominins and apes are neurologically more immature at birth than other primates.
Fig. 6: Adaptations leading to birth difficulty in humans over time.

Similar content being viewed by others

Data availability

The data supporting the manuscript are available in the Supplementary Information or via GitHub at https://github.com/NicoleWebb/Pan-Cephalopelvic-Fit-Paper.

Code availability

The source code for all analyses included in the paper are available via GitHub at https://github.com/NicoleWebb/Pan-Cephalopelvic-Fit-Paper.

References

  1. Nissen, H. & Yerkes, R. Reproduction in the chimpanzee: report on forty‐nine births. Anat. Rec. 86, 567–578 (1943).

    Article  Google Scholar 

  2. Hirata, S., Fuwa, K., Sugama, K., Kusunoki, K. & Takeshita, H. Mechanism of birth in chimpanzees: humans are not unique among primates. Biol. Lett. 7, 686–688 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  3. Trevathan, W. R. Human Birth: An Evolutionary Perspective (Aldine de Gruyter, 1987).

  4. Trevathan, W. Primate pelvic anatomy and implications for birth. Philos. Trans. R. Soc. B 370, 20140065 (2015).

    Article  Google Scholar 

  5. Nakamichi, M. Non-human primate birth and human birth. Primates 64, 551–556 (2023).

    Article  PubMed  Google Scholar 

  6. Schultz, A. H. Sex differences in the pelves of primates. Am. J. Phys. Anthropol. 7, 401–423 (1949).

    Article  CAS  PubMed  Google Scholar 

  7. Leutenegger, W. Beziehungen zwischen der neugeborenengrösse und sexualdimorphismus am becken bei simischen primaten. Folia Primatol. 12, 224–235 (1970).

    Article  CAS  Google Scholar 

  8. Leutenegger, W. in Primate Brain Evolution, Methods and Concepts (eds Armstrong, E. & Falk, D.) 86–95 (Plenum, 1982).

  9. Dudenhausen, J. W., Obladen, M. & Pschyrembel, W. Practical Obstetrics (De Gruyter, 2014).

  10. Frémondière, P. et al. Dynamic finite-element simulations reveal early origin of complex human birth pattern. Commun. Biol. 5, 377 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  11. Washburn, S. L. Tools and human evolution. Sci. Am. 203, 63–75 (1960).

    Article  CAS  PubMed  Google Scholar 

  12. Haeusler, M. et al. The obstetrical dilemma hypothesis: there’s life in the old dog yet. Biol. Rev. 96, 2031–2057 (2021).

    Article  PubMed  Google Scholar 

  13. Rosenberg, K. R. The evolution of modern human childbirth. Yearb. Phys. Anthropol. 35, 89–124 (1992).

    Article  Google Scholar 

  14. Rosenberg, K. & Trevathan, W. Birth, obstetrics and human evolution. Br. J. Obstet. Gynaecol. 109, 1199–1206 (2002).

    Article  Google Scholar 

  15. Portmann, A. Die tragzeiten der primaten und die dauer der schwangerschaft beim menschen: ein problem der vergleichenden biologie. Rev. Suisse Zool. 48, 511–518 (1941).

    Google Scholar 

  16. Kurismaa, A. in Adolf Portmann: A Thinker of Self-Expressing Life (ed. Jaroš, F.) 1–22 (Springer, 2021).

  17. Mitteroecker, P., Huttegger, S. M., Fischer, B. & Pavlicev, M. Cliff-edge model of obstetric selection in humans. Proc. Natl Acad. Sci. USA 113, 14680–14685 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wells, J. C. K., DeSilva, J. M. & Stock, J. T. The obstetric dilemma: an ancient game of Russian roulette, or a variable dilemma sensitive to ecology? Yearb. Phys. Anthropol. 55, 40–71 (2012).

    Article  Google Scholar 

  19. Wells, J. C. K., Wibaek, R. & Poullas, M. The dual burden of malnutrition increases the risk of cesarean delivery: evidence from India. Front. Public Health 6, 292 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  20. Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T. & Pontzer, H. Metabolic hypothesis for human altriciality. Proc. Natl Acad. Sci. USA 109, 15212–15216 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Warrener, A. G., Lewton, K. L., Pontzer, H. & Lieberman, D. E. A wider pelvis does not increase locomotor cost in humans, with implications for the evolution of childbirth. PLoS ONE 10, e0118903 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Dunsworth, H. in The Routledge Handbook of Anthropology and Reproduction (eds Tomori, C. & Han, S.) 441–453 (Routledge, 2021).

  23. Betti, L. & Manica, A. Human variation in the shape of the birth canal is significant and geographically structured. Proc. R. Soc. B. 285, 20181807 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  24. Grunstra, N. D. S. et al. There is an obstetrical dilemma: misconceptions about the evolution of human childbirth and pelvic form. Am. J. Biol. Anthropol. 181, 535–544 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cordey, C., Webb, N. M. & Haeusler, M. Take it to the limit: the limitations of energetic explanations for birth timing in humans. Evol. Med. Public Health 11, 415–428 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  26. Fischer, B., Grunstra, N. D. S., Zaffarini, E. & Mitteroecker, P. Sex differences in the pelvis did not evolve de novo in modern humans. Nat. Ecol. Evol. 5, 625–630 (2021).

    Article  PubMed  Google Scholar 

  27. Huseynov, A., Ponce de León, M. S. & Zollikofer, C. P. E. Development of modular organization in the chimpanzee pelvis. Anat. Rec. 300, 675–686 (2017).

    Article  Google Scholar 

  28. Dunsworth, H. M. Expanding the evolutionary explanations for sex differences in the human skeleton. Evol. Anthropol. 29, 108–116 (2020).

    Article  PubMed  Google Scholar 

  29. Zollikofer, C. P. E., Scherrer, M. & Ponce de León, M. S. Development of pelvic sexual dimorphism in hylobatids: testing the obstetric constraints hypothesis. Anat. Rec. 300, 859–869 (2017).

    Article  Google Scholar 

  30. Stoller, M. K. The Obstetric Pelvis and Mechanism of Labor in Nonhuman Primates. PhD thesis, Univ. of Chicago (1995).

  31. Chor, C. M., Chan, W. Y. W., Tse, W. T. A. & Sahota, D. S. Measurement of retropubic tissue thickness using intrapartum transperineal ultrasound to assess cephalopelvic disproportion. Ultrasonography 37, 211–216 (2018).

    Article  PubMed  Google Scholar 

  32. Borell, U. & Fernström, I. The movements at the sacro-iliac joints and their importance to changes in the pelvic dimensions during paturition. Acta Obstet. Gynecol. Scand. 36, 42–57 (1957).

    Article  CAS  PubMed  Google Scholar 

  33. Lovejoy, C. O., Meindl, R. S., Tague, R. G. & Latimer, B. The senescent biology of the hominoid pelvis. Its bearing on the pubic symphysis and auricular surface as age-at-death indicators in the human skeleton. Riv. Antropol. 73, 31–49 (1995).

    Google Scholar 

  34. Moffett, E. A. Dimorphism in the size and shape of the birth canal across anthropoid primates. Anat. Rec. 300, 870–889 (2017).

    Article  Google Scholar 

  35. Fischer, B. & Mitteroecker, P. Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma. Proc. Natl Acad. Sci. USA 112, 5655–5660 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kawada, M., Nakatsukasa, M., Nishimura, T., Kaneko, A. & Morimoto, N. Covariation of fetal skull and maternal pelvis during the perinatal period in rhesus macaques and evolution of childbirth in primates. Proc. Natl Acad. Sci. USA 117, 21251–21257 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Becker, I., Woodley, S. J. & Stringer, M. D. The adult human pubic symphysis: a systematic review. J. Anat. 217, 475–487 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ami, O. et al. Three-dimensional magnetic resonance imaging of fetal head molding and brain shape changes during the second stage of labor. PLoS ONE 14, e0215721 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Laudicina, N. M. Comparative Primate Birth Mechanics and the Evolution of Human Childbirth. DPhil. thesis, Boston Univ. (2019).

  40. Gauss, C. F. Über ein neues allgemeines grundgesetz der mechanik. J. Reine Angew. Math. 4, 232–235 (1829).

    Google Scholar 

  41. Bumm, E. Grundriss zum Studium der Geburtshilfe in achtundzwanzig Vorlesungen (Bergmann, 1921).

  42. Rydberg, E. The Mechanism of Labour (Thomas, 1954).

  43. Häusler, M. & Schmid, P. Comparison of the pelves of Sts 14 and AL 288-1: implications for birth and sexual dimorphism in australopithecines. J. Hum. Evol. 29, 363–383 (1995).

    Article  Google Scholar 

  44. Berge, C. & Goularas, D. A new reconstruction of Sts 14 pelvis (Australopithecus africanus) from computed tomography and three-dimensional modeling techniques. J. Hum. Evol. 58, 262–272 (2010).

    Article  PubMed  Google Scholar 

  45. Martin, R. D. Human Brain Evolution in an Ecological Context (American Museum of Natural History, 1983).

  46. Gould, S. J. Dollo on Dollo’s law: irreversibility and the status of evolutionary laws. J. Hist. Biol. 3, 189–212 (1970).

    Article  CAS  PubMed  Google Scholar 

  47. Gómez-Robles, A., Nicolaou, C., Smaers, J. B. & Sherwood, C. C. The evolution of human altriciality and brain development in comparative context. Nat. Ecol. Evol. 8, 133–146 (2024).

    Article  PubMed  Google Scholar 

  48. Sherwood, C. C. & Gómez-Robles, A. Brain plasticity and human evolution. Ann. Rev. Anthropol. 46, 399–419 (2017).

    Article  Google Scholar 

  49. Halley, A. C. Minimal variation in eutherian brain growth rates during fetal neurogenesis. Proc. R. Soc. B 284, 20170219 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  50. Charvet, C. J., Ofori, K., Falcone, C. & Rigby Dames, B. A. Transcription, structure, and organoids translate time across the lifespan of humans and great apes. Proc. Natl Acad. Sci. USA Nexus 2, pgad230 (2023).

    Google Scholar 

  51. Tague, R. G. Commonalities in dimorphism and variability in the anthropoid pelvis, with implications for the fossil record. J. Hum. Evol. 21, 153–176 (1991).

    Article  Google Scholar 

  52. Lande, R. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34, 292–305 (1980).

    Article  PubMed  Google Scholar 

  53. Abitbol, M. M. Evolution of the ischial spine and of the pelvic floor in the Hominoidea. Am. J. Phys. Anthropol. 75, 53–67 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Grunstra, N. D. S. et al. Humans as inverted bats: a comparative approach to the obstetric conundrum. Am. J. Hum. Biol. 31, e23227 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  55. Pavličev, M., Romero, R. & Mitteroecker, P. Evolution of the human pelvis and obstructed labor: new explanations of an old obstetrical dilemma. Am. J. Obstet. Gynecol. 222, 3–16 (2020).

    Article  PubMed  Google Scholar 

  56. Tardieu, C., Hasegawa, K. & Haeusler, M. How the pelvis and vertebral column became a functional unit in human evolution during the transition from occasional to permanent bipedalism? Anat. Rec. 300, 912–931 (2017).

    Article  Google Scholar 

  57. Smit, T. H. The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur. Spine J. 11, 137–144 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  58. Gensch, W. Die Geburt eines Orang-Utans im Zoo Dresden. Freund. Kölner Zoo. 8, 133–134 (1965).

    Google Scholar 

  59. Ullrich, W. Geburt und natürliche Geburtshilfe beim Orang Utan. Zool. Gart. 39, 284–289 (1970).

    Google Scholar 

  60. Torres‐Tamayo, N., Rae, T. C., Hirasaki, E. & Betti, L. Testing the reliability of the rearticulation of osteological primate pelves in comparative morphological studies. Anat. Rec. 307, 2816–2833 (2024).

    Article  Google Scholar 

  61. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  62. Schlager, S. in Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217–256 (Academic, 2017).

  63. Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K. & Bookstein, F. L. Comparison of cranial ontogenetic trajectories among great apes and humans. J. Hum. Evol. 46, 679–698 (2004).

    Article  PubMed  Google Scholar 

  64. Krenn, V. A., Fornai, C., Webb, N. M. & Haeusler, M. Sex classification using the human sacrum: geometric morphometrics vs. conventional approaches. PLoS ONE 17, e0264770 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  65. von Bischoff, T. L. W. Das Hirngewicht des Menschen: Eine Studie (Neusser, 1880).

  66. Marchand, F. Über das Hirngewicht des Menschen. Abh. Sachs. Akad. Wiss. Leipzig Math.-Nat. Wiss. Kl 27, 393–482 (1902).

    Google Scholar 

  67. Kent, E. et al. Correlation between birth weight and maternal body composition. Obstet. Gynecol. 121, 46–50 (2013).

    Article  PubMed  Google Scholar 

  68. Rosenberg, M. Birth weights in three Norwegian cities, 1860–1984. Secular trends and influencing factors. Ann. Hum. Biol. 15, 275–288 (1988).

    Article  CAS  PubMed  Google Scholar 

  69. Ward, W. P. in The Biological Standard of Living in Comparative Perspective (eds Komlos, J. & Baten, J.) 302–320 (Steiner, 1998).

  70. Floud, R., Fogel, R. W., Harris, B. & Hong, S. C. The Changing Body: Health, Nutrition, and Human Development in the Western World Since 1700 (Cambridge Univ. Press, 2011).

  71. Garwicz, M., Christensson, M. & Psouni, E. A unifying model for timing of walking onset in humans and other mammals. Proc. Natl Acad. Sci. USA 106, 21889–21893 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Welker, C. Zur postnatalen entwicklung und zur frühen mutter-kind-beziehung der primaten. Anthropol. Anz. 39, 261–304 (1981).

    Google Scholar 

  73. Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).

    Article  PubMed Central  PubMed  Google Scholar 

  74. Orme, D. et al. caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.3 https://github.com/davidorme/caper (2023).

  75. Sokal, R. R. & Rohlf, F. J. Biometry: The Principles and Practice of Statistics in Biological Research 4th edn (Freeman, 2012).

  76. Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).

    Article  Google Scholar 

  77. Martin, R. D. Primate origins: plugging the gaps. Nature, 363, 223–234 (1993).

Download references

Acknowledgements

We thank K. Isler for discussion on neurological development and compiling the data on brain mass of newborn and adult anthropoid primates. We also extend our gratitude to F. Mazelis, G. Bravo Morante and N. Torres-Tamayo for their technical input. The following institutions provided curatorial assistance and access to their skeletal and digital collections: the Anthropological Institute and Museum, University of Zurich; the Natural History Museum, Vienna; the University of California, San Diego; the Zoological Museum, University of Zurich; the Natural History Museum, Basel; the KUPRI Digital Museum Collection; and the Smithsonian National Museum of Natural History, Washington. This work was funded by the Swiss National Science Foundation grant nos. 31003A_156299 (M.H.) and 31003A_176319 (M.H.) and is part of the Leibniz-Kooperative Exzellenz Project K438/2022 (N.M.W.).

Author information

Authors and Affiliations

Authors

Contributions

N.M.W., C.F. and M.H. conceived and designed the study. C.F., V.A.K., N.M.W. and M.H. collected data used in the analyses. N.M.W., C.F., E.C.H., V.A.K. and M.H. performed analyses. N.M.W., V.A.K., C.F. and M.H. prepared the figures and publication materials. N.M.W., C.F., V.A.K., E.C.H. and M.H. drafted the initial manuscript version. All authors discussed results/interpretations and edited subsequent versions of the manuscript, with L.M.W. contributing to later drafts.

Corresponding authors

Correspondence to Nicole M. Webb, Cinzia Fornai or Martin Haeusler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Steven Churchill, Aida Gomez-Robles and Caroline VanSickle for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The birth canal of chimpanzees.

a, The birth canal can be approximated by a cylinder. The pelvic inlet represents an oblique cylinder section and since the inlet anteroposterior diameter I–I´ is not the smallest diameter of the cylinder it is not obstetrically relevant, in contrast to the pelvic midpelvis, whose anteroposterior diameter M–M´ is perpendicular to the longitudinal axis of the birth canal. When the fetus reaches the pelvic outlet O–O´, the tip of the sacrum together with the coccyx has to nutate backwards to enlarge the space of the bony birth canal. b, The fetal head in a fully extended position, which is the typical head orientation for monkeys. c, The fetal head in a fully flexed position, which is the usual head orientation for humans. Both head orientations occur in chimpanzees and are obstetrically equivalent. The neck is only schematically visualised.

Extended Data Fig. 2 Recreation of Schultz’s (1949) popular cephalopelvic fit diagram showing the differences between pelvic inlet dimensions and fetal head sizes across primates.

Note the ample space of the anteroposterior pelvic inlet diameters relative to the fetal head for the great apes which contrasts with that of humans in which the fetal head dimensions exceed that of the birth canal in these particular dimensions. Adapted with permission from ref. 6, John Wiley & Sons.

Extended Data Fig. 3 Landmark configuration in anterior (left) and posterior view (right) used in the 3D geometric morphometric analyses.

The 52 fixed landmarks are depicted in light blue and the 38 curve semilandmarks on six curves are in dark blue.

Extended Data Fig. 4 Thin-plate-spline warpings based on shape changes observed at the extremes of the first three PC axes.

From left to right: anterior, inferior and lateral views based on the complete landmark configuration (see the PCA of Fig. 3).

Extended Data Fig. 5 Phylogenetic reduced major axis regressions for Old and New World monkeys and apes.

The red line signifies the actual slope for the regression whereas the dashed grey line represents the null hypothesis for the relationship between the observed traits where the slope is set to the default of 1. All pRMA regressions assume a Brownian evolution model variance-covariance structure.

Supplementary information

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Table 1. Landmark descriptions included in 3DGM analyses; Table 2. Regression raw data and related sources; and Table 3. Results of phylogenetic regression analyses.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, N.M., Fornai, C., Krenn, V.A. et al. Gradual exacerbation of obstetric constraints during hominoid evolution implied by re-evaluation of cephalopelvic fit in chimpanzees. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02558-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing