[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Drug delivery

Learning what keeps nanomedicines in tumours

An analysis of histopathological data from mouse and human tumours via machine learning reveals that the densities of blood vessels and tumour-associated macrophages are predictive features of the degree of tumoural accumulation of polymeric and liposomal nanomedicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Leveraging machine learning to identify tissue biomarkers that predict the accumulation of nanomedicines in tumours.

References

  1. Blanco, E. et al. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilhelm, S. et al. Nat. Rev. Mater. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  3. Ouyang, B. et al. Nat. Mater. 19, 1362 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Tavares, A. J. et al. Proc. Natl Acad. Sci. USA 114, E10871–E10880 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, Y. et al. Adv. Sci. 6, 1802070 (2019).

    Article  Google Scholar 

  6. Ouyang, B. et al. Mol. Pharm. 19, 1917–1925 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Lin, Z. P. et al. ACS Nano 16, 6080–6092 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Jumper, J. et al. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watson, J. L. et al. Nature 620, 1089–1100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu, M. et al. Nat. Nanotechnol. 18, 657–666 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Hsueh, H. T. et al. Nat. Commun. 14, 2509 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. May, J.-N. et al. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01197-4 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dai, L. et al. Nat. Med. 30, 584–594 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doudesis, D. et al. Nat. Med. 29, 1201–1210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y. et al. Nat. Nanotechnol. 19, 255–263 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty Y. S. Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Schrank, B.R., Jiang, W. et al. Learning what keeps nanomedicines in tumours. Nat. Biomed. Eng 8, 1330–1331 (2024). https://doi.org/10.1038/s41551-024-01251-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-024-01251-1

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer