计算机科学 ›› 2019, Vol. 46 ›› Issue (11A): 433-437.
王婷婷, 朱江
WGAN Ting-ting, ZHU Jiang
摘要: 文中提出了一种基于差分WGAN(Wasserstein-GAN)的网络安全态势预测机制,该机制利用生成对抗网络(Generative Adversarial Network,GAN)来模拟态势的发展过程,从时间维度实现态势预测。为了解决GAN具有的网络难以训练、collapse mode及梯度不稳定的问题,提出了利用Wasserstein距离作为GAN的损失函数,并采用在损失函数中添加差分项的方法来提高态势值的分类精度,同时还证明了差分WGAN网络的稳定度。实验结果与分析表明,该机制相比其他机制而言,在收敛性、预测精度和复杂度方面具有优势。
中图分类号:
[1]谢丽霞,王亚超,于巾博.基于神经网络的网络安全态势感知[J].清华大学学报(自然科学版),2013(12):1750-1760. [2]石波,谢小权.基于D-S证据理论的网络安全态势预测方法研究[J].计算机工程与设计,2013,34(3):821-825. [3]陈善学,杨政,朱江,等.一种基于累加PSO-SVM的网络安全态势预测模型[J].计算机应用研究,2015,32(6):1778-1781. [4]田庆安,郭玉锦,王文涛.基于小波与DBN的负荷预测模型[J].兰州理工大学学报,2017,43(2):110-114. [5]ZHANG H,XU T,LI H.StackGAN:Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks[C]∥IEEE International Confernece on Computer Vision(ICCV),2016:5908-5916. [6]吴昊.随机森林预测与纳什均衡策略的高职英语教学模式研究[J].佳木斯职业学院学报,2017(2). [7]CHANG J,SCHERER S.Learning representations of emotional speech with deep convolutional generative adversarial networks[C]∥IEEE International Conference on Acoustics,Speech and Signal Processing.IEEE,2017:2746-2750. [8]ZHAO Y,TAKAKI S,LUONG H T,et al.Wasserstein GAN Waveform Loss-based acoustic model training form Multi-speaker Text-toSpeechsynthesis systems using a wav Net roco-der[J].IEEE Access,2017:7(1):1-10. [9]王峰,何俊.博弈论在通信对抗态势预测中的应用[J].运筹与管理,2011,20(2):132-136. [10]RADFORD A,METZ L,CHINTALA S.Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[J].Computer Science,2015. [11]朱红春,黄伟,刘海英,等.基于KL散度的面向对象遥感变化检测[J].国土资源遥感,2017,29(2):46-52. [12]张妍,韩光威,陆宁云,等.基于JS散度的轨道车辆门系统健康状态评估方法[J].机械设计与制造工程,2017,46(11):122-127. [13]SRIVASTAVA A,VALKOV L,RUSSELL C,et al.VEEGAN:Reducing Mode Collapse in GANs using Implicit Variational Learning[J].arXiv:1705.07761,2017. [14]王群,董文略,杨莉.基于Wasserstein距离和改进K-medoids聚类的风电/光伏经典场景集生成算法[J].中国电机工程学报,2015,35(11):2654-2661. [15]ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein GAN[J].2017. [16]NAKAJO K.Improved gradient method for monotone and lipschitz continuous mappings in banach spaces[J].Acta Mathematica Scientia(English Series),2017,37(2):342-354. [17]李南星,盛益强,倪宏.基于LM算法的MLP模型及其应用[J].网络新媒体技术,2018,7(1):59-63. [18]MUKKAMALA M C,HEIN M.Variants of RMSProp and Adagrad with Logarithmic Regret Bounds[J].IEEE Transactions Biomed Engineering,2017,5(6):1220-1228. [19]QIU Z,YAN Z,FEI Y,et al.RGB-DI Images and Fall Convolution Nuernal Network-Based Outdoor Scene Understanding for Mobile Robots.IEEE Transactions on Instrumentation & Measurement,2018,1(99):1-11. [20]IOFFE S,SZEGEDY C.Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[J].arXiv:1502.03167,2015. [21]陈秀真,郑庆华,管晓宏,等.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. |
[1] | 张佳, 董守斌. 基于评论方面级用户偏好迁移的跨领域推荐算法 Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer 计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131 |
[2] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[3] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[4] | 黄觉, 周春来. 基于本地化差分隐私的频率特征提取 Frequency Feature Extraction Based on Localized Differential Privacy 计算机科学, 2022, 49(7): 350-356. https://doi.org/10.11896/jsjkx.210900229 |
[5] | 赵冬梅, 吴亚星, 张红斌. 基于IPSO-BiLSTM的网络安全态势预测 Network Security Situation Prediction Based on IPSO-BiLSTM 计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103 |
[6] | 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮. 基于DNGAN的磁共振图像超分辨率重建算法 Super-resolution Reconstruction of MRI Based on DNGAN 计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105 |
[7] | 李丹丹, 吴宇翔, 朱聪聪, 李仲康. 基于多种改进策略的改进麻雀搜索算法 Improved Sparrow Search Algorithm Based on A Variety of Improved Strategies 计算机科学, 2022, 49(6A): 217-222. https://doi.org/10.11896/jsjkx.210700032 |
[8] | 刘宝宝, 杨菁菁, 陶露, 王贺应. 基于DE-LSTM模型的教育统计数据预测研究 Study on Prediction of Educational Statistical Data Based on DE-LSTM Model 计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120 |
[9] | 吕鹏鹏, 王少影, 周文芳, 连阳阳, 高丽芳. 基于进化神经网络的电力信息网安全态势量化方法 Quantitative Method of Power Information Network Security Situation Based on Evolutionary Neural Network 计算机科学, 2022, 49(6A): 588-593. https://doi.org/10.11896/jsjkx.210200151 |
[10] | 尹文兵, 高戈, 曾邦, 王霄, 陈怡. 基于时频域生成对抗网络的语音增强算法 Speech Enhancement Based on Time-Frequency Domain GAN 计算机科学, 2022, 49(6): 187-192. https://doi.org/10.11896/jsjkx.210500114 |
[11] | 徐辉, 康金梦, 张加万. 基于特征感知的数字壁画复原方法 Digital Mural Inpainting Method Based on Feature Perception 计算机科学, 2022, 49(6): 217-223. https://doi.org/10.11896/jsjkx.210500105 |
[12] | 高志宇, 王天荆, 汪悦, 沈航, 白光伟. 基于生成对抗网络的5G网络流量预测方法 Traffic Prediction Method for 5G Network Based on Generative Adversarial Network 计算机科学, 2022, 49(4): 321-328. https://doi.org/10.11896/jsjkx.210300240 |
[13] | 王美珊, 姚兰, 高福祥, 徐军灿. 面向医疗集值数据的差分隐私保护技术研究 Study on Differential Privacy Protection for Medical Set-Valued Data 计算机科学, 2022, 49(4): 362-368. https://doi.org/10.11896/jsjkx.210300032 |
[14] | 黎思泉, 万永菁, 蒋翠玲. 基于生成对抗网络去影像的多基频估计算法 Multiple Fundamental Frequency Estimation Algorithm Based on Generative Adversarial Networks for Image Removal 计算机科学, 2022, 49(3): 179-184. https://doi.org/10.11896/jsjkx.201200081 |
[15] | 李建, 郭延明, 于天元, 武与伦, 王翔汉, 老松杨. 基于生成对抗网络的多目标类别对抗样本生成算法 Multi-target Category Adversarial Example Generating Algorithm Based on GAN 计算机科学, 2022, 49(2): 83-91. https://doi.org/10.11896/jsjkx.210800130 |
|