[go: up one dir, main page]

计算机科学 ›› 2019, Vol. 46 ›› Issue (11A): 433-437.

• 信息安全 • 上一篇    下一篇

基于差分WGAN的网络安全态势预测

王婷婷, 朱江   

  1. (重庆邮电大学通信与信息工程学院 重庆400065)
  • 出版日期:2019-11-10 发布日期:2019-11-20
  • 作者简介:王婷婷(1993-),女,硕士生,主要研究方向为网络安全态势感知,E-mail:1879213049@163.com。;朱江(1977-),男,博士,教授,主要研究方向为认知无线电。

Network Security Situation Forecast Based on Differential WGAN

WGAN Ting-ting, ZHU Jiang   

  1. (School of Communication and Information Engineering,Chongqing University of Post and Telecommunications,Chongqing 400065,China)
  • Online:2019-11-10 Published:2019-11-20

摘要: 文中提出了一种基于差分WGAN(Wasserstein-GAN)的网络安全态势预测机制,该机制利用生成对抗网络(Generative Adversarial Network,GAN)来模拟态势的发展过程,从时间维度实现态势预测。为了解决GAN具有的网络难以训练、collapse mode及梯度不稳定的问题,提出了利用Wasserstein距离作为GAN的损失函数,并采用在损失函数中添加差分项的方法来提高态势值的分类精度,同时还证明了差分WGAN网络的稳定度。实验结果与分析表明,该机制相比其他机制而言,在收敛性、预测精度和复杂度方面具有优势。

关键词: Wasserstein-GAN, 差分, 生成对抗网络, 态势感知, 态势预测

Abstract: A network security posture prediction mechanism based on differential WGAN(Wasserstein- GAN) is presented in this paper.This mechanism uses Generative adversarial network (GAN) to simulate the development process of the situation,and realizes the situation forecast from the time Dimension.In order to solve the problem of difficult network training,collapse mode and gradient instability of GAN,this paper put forward the method by using Wasserstein distance as the loss function of GAN and adding the difference term in the loss function,to improve the classification precision of the situation value.The stability of the differential WGAN network was also proved.Experimental andanalysis results show that this mechanism has advantages over other mechanisms in terms of convergence,accuracy and complexity.

Key words: Difference, Generative adversarial network, Situation forecast, Situational awareness, Wasserstein-GAN

中图分类号: 

  • TN918.1
[1]谢丽霞,王亚超,于巾博.基于神经网络的网络安全态势感知[J].清华大学学报(自然科学版),2013(12):1750-1760.
[2]石波,谢小权.基于D-S证据理论的网络安全态势预测方法研究[J].计算机工程与设计,2013,34(3):821-825.
[3]陈善学,杨政,朱江,等.一种基于累加PSO-SVM的网络安全态势预测模型[J].计算机应用研究,2015,32(6):1778-1781.
[4]田庆安,郭玉锦,王文涛.基于小波与DBN的负荷预测模型[J].兰州理工大学学报,2017,43(2):110-114.
[5]ZHANG H,XU T,LI H.StackGAN:Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks[C]∥IEEE International Confernece on Computer Vision(ICCV),2016:5908-5916.
[6]吴昊.随机森林预测与纳什均衡策略的高职英语教学模式研究[J].佳木斯职业学院学报,2017(2).
[7]CHANG J,SCHERER S.Learning representations of emotional speech with deep convolutional generative adversarial networks[C]∥IEEE International Conference on Acoustics,Speech and Signal Processing.IEEE,2017:2746-2750.
[8]ZHAO Y,TAKAKI S,LUONG H T,et al.Wasserstein GAN Waveform Loss-based acoustic model training form Multi-speaker Text-toSpeechsynthesis systems using a wav Net roco-der[J].IEEE Access,2017:7(1):1-10.
[9]王峰,何俊.博弈论在通信对抗态势预测中的应用[J].运筹与管理,2011,20(2):132-136.
[10]RADFORD A,METZ L,CHINTALA S.Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[J].Computer Science,2015.
[11]朱红春,黄伟,刘海英,等.基于KL散度的面向对象遥感变化检测[J].国土资源遥感,2017,29(2):46-52.
[12]张妍,韩光威,陆宁云,等.基于JS散度的轨道车辆门系统健康状态评估方法[J].机械设计与制造工程,2017,46(11):122-127.
[13]SRIVASTAVA A,VALKOV L,RUSSELL C,et al.VEEGAN:Reducing Mode Collapse in GANs using Implicit Variational Learning[J].arXiv:1705.07761,2017.
[14]王群,董文略,杨莉.基于Wasserstein距离和改进K-medoids聚类的风电/光伏经典场景集生成算法[J].中国电机工程学报,2015,35(11):2654-2661.
[15]ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein GAN[J].2017.
[16]NAKAJO K.Improved gradient method for monotone and lipschitz continuous mappings in banach spaces[J].Acta Mathematica Scientia(English Series),2017,37(2):342-354.
[17]李南星,盛益强,倪宏.基于LM算法的MLP模型及其应用[J].网络新媒体技术,2018,7(1):59-63.
[18]MUKKAMALA M C,HEIN M.Variants of RMSProp and Adagrad with Logarithmic Regret Bounds[J].IEEE Transactions Biomed Engineering,2017,5(6):1220-1228.
[19]QIU Z,YAN Z,FEI Y,et al.RGB-DI Images and Fall Convolution Nuernal Network-Based Outdoor Scene Understanding for Mobile Robots.IEEE Transactions on Instrumentation & Measurement,2018,1(99):1-11.
[20]IOFFE S,SZEGEDY C.Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[J].arXiv:1502.03167,2015.
[21]陈秀真,郑庆华,管晓宏,等.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897.
[1] 张佳, 董守斌.
基于评论方面级用户偏好迁移的跨领域推荐算法
Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer
计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[4] 黄觉, 周春来.
基于本地化差分隐私的频率特征提取
Frequency Feature Extraction Based on Localized Differential Privacy
计算机科学, 2022, 49(7): 350-356. https://doi.org/10.11896/jsjkx.210900229
[5] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
[6] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[7] 李丹丹, 吴宇翔, 朱聪聪, 李仲康.
基于多种改进策略的改进麻雀搜索算法
Improved Sparrow Search Algorithm Based on A Variety of Improved Strategies
计算机科学, 2022, 49(6A): 217-222. https://doi.org/10.11896/jsjkx.210700032
[8] 刘宝宝, 杨菁菁, 陶露, 王贺应.
基于DE-LSTM模型的教育统计数据预测研究
Study on Prediction of Educational Statistical Data Based on DE-LSTM Model
计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120
[9] 吕鹏鹏, 王少影, 周文芳, 连阳阳, 高丽芳.
基于进化神经网络的电力信息网安全态势量化方法
Quantitative Method of Power Information Network Security Situation Based on Evolutionary Neural Network
计算机科学, 2022, 49(6A): 588-593. https://doi.org/10.11896/jsjkx.210200151
[10] 尹文兵, 高戈, 曾邦, 王霄, 陈怡.
基于时频域生成对抗网络的语音增强算法
Speech Enhancement Based on Time-Frequency Domain GAN
计算机科学, 2022, 49(6): 187-192. https://doi.org/10.11896/jsjkx.210500114
[11] 徐辉, 康金梦, 张加万.
基于特征感知的数字壁画复原方法
Digital Mural Inpainting Method Based on Feature Perception
计算机科学, 2022, 49(6): 217-223. https://doi.org/10.11896/jsjkx.210500105
[12] 高志宇, 王天荆, 汪悦, 沈航, 白光伟.
基于生成对抗网络的5G网络流量预测方法
Traffic Prediction Method for 5G Network Based on Generative Adversarial Network
计算机科学, 2022, 49(4): 321-328. https://doi.org/10.11896/jsjkx.210300240
[13] 王美珊, 姚兰, 高福祥, 徐军灿.
面向医疗集值数据的差分隐私保护技术研究
Study on Differential Privacy Protection for Medical Set-Valued Data
计算机科学, 2022, 49(4): 362-368. https://doi.org/10.11896/jsjkx.210300032
[14] 黎思泉, 万永菁, 蒋翠玲.
基于生成对抗网络去影像的多基频估计算法
Multiple Fundamental Frequency Estimation Algorithm Based on Generative Adversarial Networks for Image Removal
计算机科学, 2022, 49(3): 179-184. https://doi.org/10.11896/jsjkx.201200081
[15] 李建, 郭延明, 于天元, 武与伦, 王翔汉, 老松杨.
基于生成对抗网络的多目标类别对抗样本生成算法
Multi-target Category Adversarial Example Generating Algorithm Based on GAN
计算机科学, 2022, 49(2): 83-91. https://doi.org/10.11896/jsjkx.210800130
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!