Journal of Artificial Intelligence Research Subndt®14; published xxx

Monotone Temporal Planning: Tractability, Extensions and

Applications
Martin C. Cooper COOPER@IRIT.FR
Frédéric Maris MARIS@IRIT.FR
Pierre Régnier REGNIER@IRIT.FR
IRIT
University of Toulouse, France
Abstract

This paper describes a polynomially-solvableslaf temporal planning problems. Polynomiality
follows from two assumptions. Firstly, by supposihgt each sub-goal fluent can be established by
at most one action, we can quickly determine whittions are necessary in any plan. Secondly, the
monotonicity of sub-goal fluents allows us to esgsrglanning as an instance of STBimple
Temporal Problem with difference constraints). Tdi&ss includes temporally-expressive problems
requiring the concurrent execution of actions, vgitiiential applications in the chemical, pharma-
ceutical and construction industries.

We also show that any (temporal) planning problesdmonotone relaxation which can lead to
the polynomial-time detection of its unsolvabilitycertain cases. Indeed we show that our relaxa-
tion is orthogonal to relaxations based on the rigiteletes approach used in classical planning
since it preserves deletes and can also explofideshinformation.

1. Introduction

Planning is a field of Al which is intractable imetgeneral case (Erol, Nau, Subrahmanian, 1995).
In particular, propositional planning is PSPACE-Qxete (Bylander, 1994). Identifying tractable
classes of planning is important for at least te@sons. Firstly, real-world applications may faibi
such classes. Secondly, relaxing an arbitraryriostaso that it falls in the tractable class can previd
useful information concernidgn polynomial time.

Temporal planning is an important extension ofsitas planning in which actions are durative
and may overlap. An important aspect of tempomhiihg is that, unlike classical planning, it per-
mits us to model problems in which the executiotwaf or more actions in parallel is essential in or
der to solve the problem (Cushing, Kambhampati, 8day & Weld 2007). Although planning has
been studied since the beginnings of researchAitificial Intelligence, temporal planning is a el
tively new field of research. Since no tractabbsses have specifically been defined in the terhpora
framework, we review in this section previous wirrkhe identification of tractable classes of dlass
cal planning problems.

A lot of work has been done on the computationalpexity of non-optimal and optimal planning
for classical benchmark domains. In the non-opticaak, Helmert (2003, 2006) proved that most of
these benchmarks can be solved by simple procedumaig in low-order polynomial time. In the
optimal case, finding an optimal plan for the fasidmlocksworld domain is NP-hard (Gupta, Nau,
1992) but Slaney and Thiébaux (2001) proved thsidkbmain is tractable when searching for a non-
optimal plan.

© 2012 Al Access Foundation. All rights reserved.

COOPERMARIS, REGNIER

Moreover, some planners empirically showed thantimaber of benchmark problems that can be
solved without search may be even larger thanuhaber of tractable problems that have been identi-
fied theoretically. The FF planner (Hoffmann, 20@®monstrated that domains with constant-
bounded heuristic plateaus can theoretically beeddh polynomial time using the h+ heuristic. The
eCPT planner (Vidal & Geffner 2005) can solve, bg of inference, many instances of benchmark
domains without backtrack.

Since the work of Backstrom and Klein (1991a) an$AS formulation of planning, several stud-
ies have also been performed to define tractabises of planning problems. Many of these results
(Bylander, 1994; Backstrom & Nebel, 1995; Erol, N&uSubrahmanian, 1995; Jonsson & Back-
strom, 1998) are based on syntactic restrictiorth@set of operators. For example, operators gavin
a single effect, no two operators having the sdfaeteetc.

Another important body of work focused on the uhydley structure of planning problems which
can be highlighted using the causal graph, a dilegraph that describes variable dependencies
(Knoblock, 1994). Jonsson and Backstrom (1995)epttesl a class of planning problems with an
acyclic causal graph and unary operators. In 88 ¢tlass, variables are either Static, Symmeélyical
reversible, or Splitting; plan existence can bermeined in polynomial time while plan generation is
provably intractable. Giménez and Jonsson (2008yded an algorithm that solves these problems
in polynomial time while producing a compact maptan in place of the explicit exponential solu-
tion. They also proved that the problem of plarstexice for planning problems with multi-valued
variables and chain causal graphs is NP-hard. éXiatence for planning problems with binary state
variables and polytree causal graphs was also ptovee NP-complete.

Jonsson and Backstrém (1994, 1998) considered aipdinal non-optimal plan generation and pre-
sented an exhaustive map of complexity resultsdbasesyntactic restrictions (using the SAS+ for-
mulation of planning) together with restrictions twre causal graph structure (interference-safe,
acyclic, prevail-order-preserving). They presemilanning algorithm which is correct and runs in
polynomial time under these restrictions. Williamrsd Nayak (1997) designed a polynomial-time
algorithm for solving planning problems with acgatiausal graphs and reversible actions. Domshlak
and Dinitz (2001) investigated connections betwiberstructure of the causal graph and the complex-
ity of the corresponding problems in the case ofdioation problems for dependent agents with in-
dependent goals acting in the same environmerd. geieral problem is shown to be intractable, but
some significant subclasses are in NP and evenquoiial.

Brafman and Domshlak (2003, 2006) studied the ocexityl of planning in the propositional
STRIPS formalism under the restrictions of unargrafors and acyclic graphs. They give a polyno-
mial planning algorithm for domains whose causabgrinduces a polytree of bounded indegree.
However, they also demonstrated that for singlyneoted causal graphs the problem is NP-complete.
Giménez and Jonsson (2012) gave a polynomial #igoifor the class R) of k-dependent planning
problems with binary variables and polytree cageaphs for any fixed value &f They also showed
that if, in addition, the causal graph has bourtgath, plan generation is linear in the size ofithe
put. Haslum (2008) defines planning problems imseof graph grammars. This method reduces the
original problem to that of graph parsing, whiclm ¢ solved in polynomial time under certain re-
strictions on the grammar. Haslum thus exploresinolasses of restrictions that are distinct from
previously known tractable classes. Katz and Doakst@008) showed that planning problems whose
causal graphs are inverted forks are tractableeifdot variable has a domain of fixed size. Jansso

2

MONOTONETEMPORAL PLANNING

(2007, 2009) introduced the class IR of inverteg ieducible planning problems and gave an algo-
rithm that uses macros to solve problems fromdlaiss. Its complexity depends on the size of the
domain transition graph and it runs in polynoniialet for several subclasses of IR. Chen and Gimé-
nez (2008) gave a unified framework to classifydbmplexity of planning under causal graph restric-
tions. They give a complete complexity classifimatof all sets of causal graphs for reversible plan
ning problems. The graph property that determiraggability is the existence of a constant bound on
the size of strongly connected components.

However, in real application domains, the sequiemgiture of classical plans is often too restretiv
and a temporal plan is required consisting of @figistances of durative actions which may overlap
Whereas classical planning consists in schedutitigrainstances, temporal planning can be seen as
scheduling the events (such as the establishmatgstruction of fluents) of action-instances subjec
to temporal constraints capturing the internalcttme of actions. A temporal planning framework
must therefore be used to formalize temporal miatbetween events within the same or different
actions-instances. In the PDDL 2.1 temporal frantev®@cDermott, 1998; Fox & Long, 2003), the
PSPACE-complete complexity of classical planningloa preserved only when different instances of
the same action cannot overlap. If they do ovetkgiing the existence of a valid plan becomes an
EXPSPACE-complete problem (Rintanen, 2007). In giaiper we present a polynomially-solvable
sub-problem of temporal planning. To our knowledgeprevious work has specifically addressed
this issue. Polynomiality follows from the doubksamption that each sub-goal fluent can be estab-
lished by at most one action and also satisfie®aotonicity condition. This allows us to express
temporal planning as an instance of the polynotiia- solvable problem STRSimple Temporal
Problem with difference constraints). An STistance consists of a set of real-valued varsaihe
a set of constraints of the three following formsy <c, x-y < ¢ or x-y #Z c, wherex,y are any
variables and is any constant. Our tractable class includes ¢eafly-expressive problems requir-
ing the concurrent execution of actions, and hasnpial industrial applications. We also show how
to derive, from an arbitrary (temporal) planninglgem, a relaxed version belonging to this tracta-
ble class. This can lead to the polynomial-timeecidn of unsolvability in certain cases. It also
provides a polynomial-time heuristic for detectangions or fluents satisfying certain properties.

The article is organized as follows: Section 2eed existing temporal planners and their use of
temporal constraints. Section 3 presents our teshframework. Section 4 introduces the notion of
monotonicity of fluents. Section 5 shows how thdiam of monotonicity can be extended to
monotonicity* in order to define a larger tractablass and presents the main theorem. Section 6
demonstrates how to build a tractable relaxatioangftemporal planning problem (or classical plan-
ning problem) based on simple temporal problemstid&e7 shows how to determine whether fluents
are monotone* using this relaxation and describeaaable class of temporal planning problems.
Section 8 describes experimental trials to validaug identify the limits of this temporal relaxatio
Section 9 gives examples of temporal planning problthat can be solved in polynomial time, in-
cluding a detailed example involving concrete nmixidelivery and use. It is worth noting that all so
lutions to the examples discussed in Section 9neeqancurrent actions. Sections 10 and 11 conclude
and discuss avenues of future research. Somesr@stifie present paper have previously been pub-
lished in two conference papers (Cooper, Maris,&éiier, 2012, 2013b). We extend the theoretical
results in these conference papers by considetamg pvith optimal makespan, by relaxing the as-
sumption that two instances of the same actiomtioverlap and by introducing the notion of unitary
actions. We also give previously unpublished resaflexperimental trials on benchmark problems.

3

COOPERMARIS, REGNIER

2. Temporal Constraint Solving in Temporal Planning

After the first temporal planner DEVISER (Vere, 398planners such as FORBIN (Dean, Firby,
Miller, 1988) quite rapidly used an independent mled called Time-Map Manager (Dean &
McDermott, 1987), to handle temporal constrainte HTN (Hierarchical Tasks Network) planners
IXTeT (Ghallab & Alaoui, 1989), (Laborie & Ghallab995), TRIPTIC (Rutten & Hertzberg, 1993)
and TEST (Reichgelt & Shadbolt, 1990) kept thimidéan independent module to manage temporal
data.

Today's temporal planners are essentially basednenof three types of algorithms: plan-space
search, state-space search and GRAPHPLAN (Blumré&t F1995).

The plan-space planners HTN and POP (Partially ©ddelanning) were the first to be extended
to the temporal framework. In general, they useptaal intervals for the representation of actions
and propositions, the causality relation betwediorg being replaced by a temporal order in partial
plans. Conflict handling is then performed by aesysinspired by Time-Map Manager. For example,
the VHPOP planner (Younes & Simmons, 2003) usgstarm of simple temporal constraints (STP:
Simple Temporal Problem) (Dechter, Meiri & Peaf91), whereas DT-POP (Schwartz & Pollack,
2004) is based on a system of disjunctive temmanasgtraints (DTP: Disjunctive Temporal Problem)
(Stergiou & Koubarakis, 2000). The advantage oP<$SIE that they can be solved in polynomial time.
DTPs cannot be solved in polynomial time, but alther user to express temporal constraints such as
"A appears before or after B", which lightens thekwof the planner.

State-space search planners associate a stant iwittaeach world state. Search can be based first
on the instants when an event can occur: eachialeafthe form tvhento perform an action" is then
taken before all decisions of the formHichaction is to be performed". This approach is ddeci-
sion Epoch Planning. Search can also be basediifatding which actions to use before scheduling
these actions in time: all decisions of the formhénto perform an action" are taken only after all
decisions of the formwhich action is to be performed" have been taken. Thscach is called
Temporally Lifted Progression Planning.

GRAPHPLAN has also been extended to temporal dantlhiough the use of solvers, in the plan-
ners LPGP (Long & Fox, 2003), TM-LPSAT (Shin & DswR004) and TLP-GP (Maris & Régnier,
2008).

As we have seen, many temporal planners use tblities of a system of temporal constraints.
However, even when this system of constraints easdbved in polynomial time, as is the case for
simple temporal constraints, the PSPACE complexfitglassical planning remains. Indeed, certain
planners even solve a system of disjunctive tenhgorsstraints, which is known to be NP-hard. The
tractable classes of classical planning (discuss&kction 1) have not been explicitly extended to
temporal planning. In this paper we present whiat @ir knowledge the first tractable class of temp
ral planning problems. Its solution algorithm iséd on solving a system of simple temporal con-
straints.

3. Definitions

We study temporal propositional planning in a laagg based on the temporal aspects of
PDDL2.1 (Fox & Long, 2003). Aluentis a positive or negative atomic propositiés.in PDDL2.1,

4

MONOTONETEMPORAL PLANNING

we consider that changes of the values of flueetingtantaneous but that conditions on the value o
fluents may be imposed over an interval. >ion a is a quadruple <Conal, Add@), Del@),
Constr@)>, where the set of conditions Coapis the set of fluents which are required to be fora

to be executed, the set of additions Ald¢ the set of fluents which are establishedthe set of
deletions Del) is the set of fluents which are destroyedpgind the set of constraints Corgtié a

set of constraints between the relative times efis/awhich occur during the executioraofAn event
corresponds to one of four possibilities: the distatment or destruction of a fluent by an actgror

the beginning or end of an interval over whichueffit is required by an actianln PDDL2.1, events
can only occur at the beginning or end of actibag,we relax this assumption so that events can oc-
cur at any time provided the constraints Coapiafe satisfied. Note that Adij(n Del@ may be
non-empty. Indeed, it is not unusual for a duragigtion to establish a fluent at the beginninghef t
action and destroy it at its end. We can also obstiiat the duration of an action, the time between
the first and last events of the action, does aetinio be explicitly stored.

We represent non-instantaneous actions by a réetdrge duration of an action is given in square
brackets after the name of the action. Conditioasagitten above an action, and effects below. The
action LOAD(m,c) shown in Figure 1 represents logdi batch of concrete ¢ in a mixer m. We have
Cond(LOAD(m,c)) = {Fluid(c), Empty(m), At-factory(Jjh We can see from the figure that the mixer
must be empty at the start of the loading, whetteasoncrete must be fluid and the mixer at the fac
tory during the whole duration of the loading. Wavén Del(LOAD(m,c)) = {Empty(m)} and
Add(LOAD(m,c) = {On(m,c)}. We can see from the figuthat as soon as loading starts, the mixer is
no longer empty and at the end of loading the ntgetains the concrete.

Fl ui d(c)
—
Empty(M o at-factorvim
—

LOAD(m c) [5]

-Enpty(m m m On(m,c)

Figure 1: An example of the representation of aiile action

We use the notatioa — f to denote the event that actiamestablishes fluerff a - —f to denote
the event thaa destroyd, andf |- a andf - | a, respectively, to denote the beginning and ernbleof
interval over whicha requires the conditiofi If f is already true (respectively, false) when theneve
a - f(a - =f) occurs, we still consider thatestablishes (destroys)A temporal plan may contain
several instances of the same action, but sinceafitise temporal plans studied in this paper ¢onta
at most one instance of each action, for notatisimaplicity, we only make the distinction between
actions and action-instances if this is absolutelgessary. We use the notatige) to represent the
time in a plan at which an evembccurs.

For a given action (or action-instaneg)et Eventsd) represent the different events which consti-
tute its definition, namelya(- f) for all f in Add@), (@ — —f) for all f in Del@), (f|- a) and
(f —»]a) for all f in Cond&). The definition of an actioa includes constraints Consfy(on the rela-

5

COOPERMARIS, REGNIER

tive times of events in Even8(For example, the internal structure of the fiethth action
LOAD(m,c) shown in Figure 1 is defined by consttaisuch as

T(Fluid(c) - | LOAD(m,c))- 1(Fluid(c) |- LOAD(m,c)) =5

T(LOAD(m,c) - On(m,c))- 1(Fluid(c) - | LOAD(m,c)) =0
As in PDDL2.1, we consider that the length of tibetween events in Everd$(is not necessarily
fixed and that Consty is a set of interval constraints on pairs of ¢ésvesuch as(f - |a) —1(f |- a)
O [a, B] for some constantsp. We use ¢q(e1, &), Ba(€1, &)] to denote the interval of possible values
for the relative distance between evani® in actiona. A fixed length of time between everis e,
O Eventsg) can, of course, be modelled by settin@;, &) = (€1, &). Similarly, the absence of any

constraint can be modelled by the intervab[+c]. We now introduce two basic constraints that all
temporal plans must satisfy.

inherent constraint®n the set of action-instancAsfor all allA, a satisfies Consta), i.e. for all
pairs of events,, &, (] Eventsg), 1(e)) - 1(&) U [0a(€y, &), a(€r, &)]-

contradictory-effects constraint: the set of action-instancasfor all &, g OA, for all positive
fluentsf U Del(a) n Add(g), t(a — -f) # (g - f).

The inherent constraints define the internal simecof each action-instance, whereas the contradic-
tory-effects constraints ensure that the truthevalfieach fluent never becomes undefined during the
execution of a temporal plan. For example, if angantains an instaneeof the action LOAD(m,c)
shown in Figure 1 and an instand®e of another action CLEAN(mM) with Empty(m)]
Add(CLEAN(mM)), then the temporal plan must sattbiy contradictory-effects constraint

1(a - “EMPTY(m)) # t(b - EMPTY(m)).

Definition 3.1. A temporal planning probleml, A,G> consists of a set of actioAs an initial statd
and a goals, wherel andG are sets of fluents.

Notation: If A is a set of action-instances, then Eveét& the union of the sets Everds(for all
action-instancea [0 A).

Definition 3.2. P = <A;1>, whereA is a finite set of action-instancea,{..,a.} and 1 is a real-valued
function on EventsY), is atemporal plarfor the problem k A, G> if

(LHAOA, and
(2) P satisfies the inherent and contradictory-effecist@ints orh;

and wherP is executed (i.e. fluents are established or algestrat the times given hy starting from
the initial statd:

(3) for alla;d A, each O Condg) is true when it is required, and
(4) all goal fluentgy 0 G are true at the end of the executioPof

(5) P is robust under infinitesimal shifts in the stagttimes of actions.

6

MONOTONETEMPORAL PLANNING

Events are instantaneous, whereas actions arelyaurative but may also be of variable length.
Thus a temporal plaR does not schedule its action-instances directiystliedules all the events in
its action-instances.

Condition (5) in Definition 3.2 means that we disal plans which require perfect synchronisation
between different actions. Fox, Long, and Hals€042 show how this condition can be imposed
within PDDL2.1. We require that in all plans flugratre establishestrictly before the beginning of
the interval over which they are required. The @geption to this rule is when a fludris estab-
lished and required by the same actioWe allow the possibility of perfect synchronizatiwithin an
action, which means that we can hage - f) = 1(f|- a). Similarly, fluents can only be destroyed
strictly after the end of the interval over which they mguired. The only exception to this rule is
when a fluent is required and destroyed by an act&®rin which case we can havéf - |a) =
1(a - —f). For example, the fluent Empty(m) is simultandépusquired and destroyed by the action
LOAD(m,c) shown in Figure 1.

Since a set of actions can be viewed as a setiofhdestances in which each action occurs exactly
once, we can apply constraints, such as the inhanehcontradictory-effects constraints, to a et o
actions rather then a set of action-instances. SMelook in more detail at the type of constraist t
we impose on the relative times of events withimetion-instance.

Definition 3.3. An interval constraintC(x,y) on real-valued variablesy is a binary constraint of the
form x=y [0 [a,b] wherea,b are real constants.

Definition 3.4. (Jeavons & Cooper 1998) binary constraintC(x,y) is min-closedif for all pairs of
values X,¥1), (%.¥2) which satisfyC, (min(x.,X2),min(y.,y2)) also satisfiesC. A binary constraint
C(xy) is max-closedf for all pairs of valuesx,yi), (Xy2) which satisfyC, (max,xz),maxf/,y-))
also satisfie€.

Lemma 3.5.LetA ={a,...,a} be a set of actions amd a set of action-instances in which each action
a (i =1,...,n) occurst=1 times. Letr be a real-valued function on the set of event'irFor each

e [Events§), letd j] (j=1,...1;) represent the occurrence of eventithin instance numbgrof a.
Fori O {1,...,n}, define the real-valued functiong,, Tmax 0N the set of events in the set of actitifsy
Tmin(€) = Min{T(€] j]) |j =1,....t} and Tma(€) = max{t(g]j]) |j =1,...,.t}. If T satisfies the inherent con-
straints orA', then both,;, andt Satisfy the inherent constraints An

Proof. All interval constraints are both min-closed andxralosed (Jeavons & Cooper, 1995). By
applying the definition of min-closedness (respetyi, max-closednesg)-1 times, for each actiam,

we can deduce thatifsatisfies an interval constraint on each ofttliestances of;, thenTyin (Tmay)
satisfies this constraint on the actnin other words, for all pairs of everds e, in Eventsé), if
t(elj]) —tedj]) O [aaer, &), Ba(er,)] for j=1,...1;, thenTmin(€r) — Tmin(€2) U [aa(€y, &), Ba(€1, €2)] and
Tmad€) — Tmad©) O [0a(En, €), Pa(€r, &)]. Hence ift satisfies the inherent constraintsAnthent,
andt. satisfy the inherent constraints An]

COOPERMARIS, REGNIER

Definition 3.6. A temporal planning problem A,G> is positiveif there are no negative fluents in the
conditions of actions nor in the gdal

In this paper, we will only consider positive temmgdglanning problemsIsA,G>. It is well known
that any planning problem can be transformed integuivalent positive problem in linear time by
the introduction, for each positive flueihbf a new fluenhotf to replace occurrences 6f in condi-
tions of actions (Ghallab, Nau, & Traverso, 200dis important to note, however, that this transfo
mation may not conserve other properties of thamete. By the assumption that all problems are
positive,G and Cond{) (for any actiora) are composed of positive fluents. By conventibal(a)
and Del@) are also composed exclusively of positive fluefite initial statd, however, may contain
negative fluents.

For simplicity of presentation, we assume througtiuia paper that the set of actioh&as under-
gone the filtering operation consisting of elimingtthose actiona from A which cannot possibly be
executed since Coraj(is not a subset o] Add(A).

We will need the following notion adstablisher-uniqueneds order to define our tractable class
of temporal planning problems. This is equivalenpost-uniqueness in SABlanning (Jonsson &
Backstrom, 1998) restricted to Boolean variablesspacialised so that it applies to a specific subs
of the positive fluents. In the next section, welgjit to the subset of positive fluents which nimey
required for the realisation of the goal.

Definition 3.7. A set of action®\ = {a,,...a.} is establisher-uniqu€EU) relative to a set of positive
fluentsSif for all i # j, Add(@) n Add@@) n S=0, i.e. no fluent ofS can be established by two dis-
tinct actions ofA.

If a set of actions is establisher-unique relaiivihe set of sub-goals of a problem, then we ean d
termine in polynomial time the set of actions whizh necessarily present in a temporal plan. There
remains the problem of determining how many timasheaction must occur and then scheduling
these action-instances in order to produce a tatighoral plan. Establisher-uniqueness alone cannot
prevent minimal plans being of exponential sizecB&6m & Klein, 1991b).

4. Monotone Planning

In this section, we introduce the notion of mondaty of fluents. Together with establisher-
uniqueness, the monotonicity of fluents is a sigffitcondition for the existence of a polynomiati
algorithm for temporal planning.

Definition 4.1. A fluentf is—monotondrelative to a positive temporal planning probleh\,G>) if,
after being destroyefl is never re-established in any temporal plan foA,&>. A fluent f is
+monotone(relative to 4,A,G>) if, after having been establishieid never destroyed in any temporal

8

MONOTONETEMPORAL PLANNING

plan for 4,A,G>. A fluent ismonotondrelative to £,A,G>) if it is either + or—monotone (relative to
<I,A,G>).

Example 4.2 Consider the two actions shown in Figure 2: LIGMATCH and LIGHT-CANDLE.
The action LIGHT-MATCH requires that the match ive,lin order to light it. The match remains lit
until it is blown out at the end of the action. énstraint in Constr(LIGHT-MATCH) imposes that the
duration of the action, i.@(LIGHT-MATCH - -Match-lit) — T(LIGHT-MATCH - Match-lit), is
between 1 and 10 time units. The second action TKGAANDLE requires that the match be lit dur-
ing two time units for the candle to be lit. Foriaitial statel = {live, =Match-lit} and a set of goals
G = {Candle-lit}, it is clear that all temporal plarfor this problem involve executing the two action
in parallel with the start (respectively, end) dGHT-MATCH being strictly before (after) the start
(end) of LIGHT-CANDLE. There is only one match dable, which means that LIGHT-MATCH
can be executed at most once. This means thalutre Match-lit is-monotone since it cannot be
established after being destroyed. This same fiMatith-lit is not +monotone since it is destroyed
after being established.

Live Match-lit
O []
LI GHT- MATCH L1 GHT- CANDLE][2] |
-]] -]
- Live - Match-lit Candle-lit
]
Match-lit

Figure 2: An example of a set of actions whichvedlais to light a candle using a single match.

Notation: If A is a set of actions, we use the notation Betf represent the union of the sets Bel(
(for all actionsa 0 A). Add(®), Cond@), Constrp) are defined similarly.

The following lemma follows trivially from Definitin 4.1.

Lemma 4.3 If f 0 Add(A) n Del(A), thenf is both—-monotone and +monotone relative to the positive
temporal planning problem A,G>.

Certain physical actions or chemical reactionsimesersible. Examples include bursting a bal-
loon, killing a fly, adding milk to a cup of coffe® burning fuel. Since there can be no actioneto d
stroy the corresponding fluents Burst, Fly-deadkfddded, Fuel-burnt, these fluents are necessarily
both—monotone and +monotone by Lemma 4.3. A similar rkalds for fluents that may be true in
the initial state but for which there is no actignich establishes them, such as Fly-alive, for gotam
In Example 4.2, the fluent Live is botimonotone and +monotone since there is no actiestab-
lish it, and the fluent Candle-lit isnonotone and +monotone since there is no actidastroy it.

COOPERMARIS, REGNIER

We now introduce three other sets of constraihts-authorisation constraints being applied to
—monotone fluentsand the +authorisation constraints to +monotarents. The causality constraints
on fluentf are only valid if there is a unique action-insemtich establishefs

-authorisation constrainten the positive fluent and the set of action-instano&sfor all & # g
OA, if f O Del(@) n Cond&), then 1(f - |&) < 1(g - —f); foralla O A, if f O Del@a) n Condé;),
then1(f - |a) < 1(a - -f).

+authorisation constrainten the positive fluerftand the set of action-instanc&sfor all &,a; [A,
if f 0 Del(®) n Add(&) n (Cond@®) O G), thent(g — —f) <t(a - f).

causality constrainten the positive fluenttand the set of action-instanc&sfor all a # g O A, if
fO(Condg) n Add@))\l, thent(a — f) <1(f |- &); foralla O A, if f O (Cond&) n Add@))\I then
(a - f)<1(f|- &).

Within the same action-instaneg perfect synchronisation is possible between teats f - | &
and g - —f. Indeed, one way of ensuring that an actios executed at most once in any temporal
plan is to create a fluefit 0 Cond@) n Del@) n | which is simultaneously required and deleted at
the start ofa and which is established by no action. For examplena is the action LIGHT-
MATCH in Example 4.2f, is the fluent live. On the other hand, by condit{s) of Definition 3.2 of a
temporal plan, we cannot have perfect synchronisdietween events in distinct action-instances.
This explains why theauthorisation constraints impose the strict inatual(f - | &) <1(g - -f)
whena; # g but only the non-strict inequality(f - |&) <1(g - -f) whena=a. A similar remark
holds for the perfect synchronisation of the eveaits f andf |- g which is only permitted by the
causality constraints whex=g;.

Definition 4.4. A temporal plarcA,1> for a positive temporal planning problerh A,G> is mono-
toneif each pair of action-instances @) satisfies the +authorisation constraints for+aflonotone
fluents and satisfies the —authorisation constgdantall —-monotone fluents.

Definition 4.5. Given a temporal planning problehAG>, theset of sub-goalis the minimum sub-
setSGof Cond@) [0 G satisfying

1. GOSG
2. foralladA, if Add(@ n (SG\I) # O, then Condf) [0 SG

Thereduced set of actioris A'={a 0 A | Add@) n (SG\I) # O}.

We can determin8Gand therA' in polynomial time and the result is unique. Te s consider
the simple algorithm which initialisé8Gto G and then repeatedly adds3& the set of fluent§
which is the union of (Cond)\ SG over all actionsa 00 A such that Add) n (SG\I) # O, until
F=O. This simple algorithm has worst-case time comityléO(n°), wheren is the total number of
events in the actions & and produces a unique result which is clearlyinmah Note that this algo-

10

MONOTONETEMPORAL PLANNING

rithm is similar to the standard method of releadetection used in GRAPHPLAN (Blum, Furst,
1995).

In order to state our theorem, we require a lodsénition of the set of sub-goals and the reduced
set of actions to take into account the case icwfiuents in the initial state are destroyed amd r
established. LeSG’ (the set of possible sub-goals) denote the minsetadf fluents satisfying

1. GOs@
2. forall actiona O A, if Add@) n SG# 0 then Condf) O SG.

Let A® be the set of actionsg[J A | Add@) n SG"# [0 }. The difference betweeN andA’ is that
AP is the set of actions which could occur in a maditemporal plan in which fluents in the initial
state can be destroyed and re-established. AsS@thndA’, SG® andA® are unique and can be de-
termined inO(n°) time.

If each fluent in Cond{) O G is monotone, we say that a pRror the temporal planning prob-
lem d,A,G> satisfies the authorisation constrairiteach—-monotone fluent satisfies theuthorisa-
tion constraints and each +monotone fluent satigfie +authorisation constraints (it is assumed tha
we know, for each flueritt] Cond@’) O G, whetheff is + or —monotone).

The following theorem contains minor improvementd aorrections compared to the conference
version of the present paper (Cooper, Maris, & REgR012). Since it is a corollary of Theorem 5.6
(proved in the following section), we omit its pfoo

Theorem 4.6. Given a positive temporal planning probleip®sG>, let SGandA' be, respectively,
the set of sub-goals and the reduced set of activtisA” defined as above. Suppose that Coff$tr(
are interval constraints, the set of actiéiss establisher-unique relative 8G\ |, each fluent in

Cond@) O G is monotone relative tol A',G> and each fluent ihn (Cond@) O G) is —monotone

relative to 4,A”,G>. Then ¢,A,G> has a temporal pldif and only if

(1) G 0 (1\Del(AY) O Add(A)
(2) Condf) 01 T Add(A)
(3) all fluentsg 0O G n Del(A) n Add(A) are +monotone relative to,A,G>

(4) the set of authorisation, inherent, contradieedfects and causality constraints has a solution
over the set of actions.

5. Extending Monotonicity of Fluents

In this section we introduce the notion of monatityit, thus allowing us to define a larger tracta-
ble class of temporal planning problems.

Definition 5.1. A plan isminimal if removing any non-empty subset of actions preduan invalid
plan. A fluentf is—monotone*{relative to a positive temporal planning probleh\,G>) if, after be-

11

COOPERMARIS, REGNIER

ing destroyed is never re-established in any minimal temporah dtar <,A,G>. A fluent f is
+monotone*(relative to £ A,G>) if, after having been establishieid never destroyed in any minimal
temporal plan for KA,G>. A fluent ismonotone*(relative to ¢ A,G>) if it is either + o-monotone*
(relative to 4,A,G>).

Example 5.2.To give an example of a monotone* fluent whichas monotone, consider the follow-
ing planning problem in which all actions are in&haeous:

Start_vehicle: k- o
Drive: 0 - d,-0
Unload: d- p

with | = {k}, G ={p}. The fluents represent that | have they igmitkey (k), the engine is on (0), the
destination has been reached (d) and that the gmatkes been delivered (p). There is only one mini-
mal plan, namely Start_vehicle, Drive, Unload, tdre is also the non-minimal plan Start_vehicle,
Drive, Start_vehicle, Unload in which the fluentsoestablished, destroyed and then re-established.
Hence o is-monotone* but notmonotone.

A +monotone fmonotone) fluent is clearlymonotone* £monotone*) since in any plan, includ-
ing minimal plans, after having been establishest(dyed) it is never destroyed (re-established). |
order to prove the equivalent of Theorem 4.6 fonatone* fluents, we first require another definitio
and two minor technical results.

Definition 5.3. A minimal temporal plagA1> for a positive temporal planning probler A,G> is
monotone*if each pair of action-instances W satisfies the +authorisation constraints for all
+monotone* fluents and satisfies the —authorisat@rstraints for all -monotone* fluents.

The following lemma follows directly from Definitio5.1 of the monotonicity* of a fluent along
with the fact that a fluent cannot be simultanepastablished and destroyed in a temporal plan.

Lemma 5.4 Suppose that the positive fluéris monotone* relative to a positive temporal plagn
problem 4, A,G>. Let <A, > be a minimal temporal plan foi,<A',G> with actionsa;, g [J A such
that f 0 Add(&) n Del(g). If f is +monotone* relative to this problem, theg, — —~f) <t(a - f). If

f is —monotone* relative to this problem, trga - f) <t(g - -f).

Proposition 5.5 If each fluent in Cond) is monotone* relative to a positive temporal piag prob-
lem d,A,G>, then all minimal temporal plans fot,AG> are monotone*.

Proof: Let P be a minimal temporal plan. Consider firstly aifpos —monotone* fluent. We have to
show that the-authorisation constraints are satisfiedffor P, i.e. thaff is not destroyed before (or at
the same time as) it is requiredR”nBut this must be the case sifiaannot be re-established once it

12

MONOTONETEMPORAL PLANNING

is destroyed. Consider secondly a positive +momdtdinent f. By Lemma 5.4, the +authorisation
constraint is satisfied fdrin P. o

We can now give our main theorem which generalifeorem 4.6 to monotone* fluents.

Theorem 5.6.Given a positive temporal planning problemsG>, let SGandA' be, respectively,
the set of sub-goals and the reduced set of acBumpose that all constraints in Comsjrare inter-
val constraints, the set of actiofds establisher-unigue relative$\ I, each fluent in Con&) O G
is monotone* relative tolsA",G> and each fluent ihn (Cond@) O G) is —monotone* relative to
<I,AP,G>. Then 4,A,G> has a temporal plapif and only if

(1) GO (1\ Deld)) O Add(A)
(2) Condf\) 0 1 0 Add(A)
(3) all fluentsg 0 G n Del(A) n Add(A") are +monotone* relative td, A", G>

(4) the set of authorisation, inherent, contradjedfects and causality constraints (given in Sec-
tions 3 and 4) has a solutiorover the set of actioms (where the +authorisation constraints apply to
each +monotone* fluent and thauthorisation constraints apply to eachonotone* fluent).

Proof: (=) If <I,A,G> has a temporal plan, then it clearly has a mihpiam P. A" is the set of those
actions which establish sub-gofils SG\ I. By definition,SG= Cond@Q") [J G. SinceA' is establisher-
unique relative t&G\ |, each sub-godi] SG\ | has a unigue action which establishes it. Hencle ea
action inA" must occur in the pla. Furthermore, (Add)\ Add(A")) n (Cond@)\I) = O by Defini-
tion 4.5. It follows that (2) is a necessary candifor a temporal plaR to exist.

LetPP be a version dP in which we only keep actions &F. PP is a valid temporal plan since,
by definition ofA?, no fluent in (Cond¥’) O G) can be established by actionsAnA’. Indeed, sinc®
was assumed to be minimal, we must Ha¥%eP. Now letP’ be a version dP in which we only keep
actions inA'. By Definition 4.5, no conditions of actionsRhand no goals i are established by any
of the actions eliminated frof, except possibly if they are alsolinThus to show tha® is also a
valid temporal plan we only need to show that atgi#ishment of a fluerit] | n (Cond@) O G) in
P by an action @1 A’ \ A’ is unnecessary. By hypothediss -monotone* relative to KA’ G> and
hencef cannot be establishedfhafter having been destroyed. Sificél, this means that the estab-
lishment off in P was unnecessary. Hereeis a valid temporal plan. Indeed, sifite/as assumed to
be minimal, we must ha=P.

We have seen thRtcontains exactly the actionsAh Hence, all fluentsdG (which are neces-
sarily positive by our hypothesis of a positiverplimg problem) that are either not present intie i
tial statel or are deleted by an actionAhmust be established by an actiom\inlt follows that (1) is
a necessary condition férto be a valid temporal plan. Considerl G n Del(A) n Add(A). From
Lemma 5.4, we can deduce tgatannot be-monotone*, sincg is true at the end of the execution of
P. Thus (3) holds. Le®,;,=<A',Ti»> be the version of the temporal planr<A',t> in which we only
keep one instance of each act&nl A" (and no instances of the actionsAibA") andt,,, is defined
from T by taking the first instance of each event in Esfgy), for each actiom [A, as described in

13

COOPERMARIS, REGNIER

the statement of Lemma 3.5. We will show tRai, satisfies the authorisation, inherent, contradic-
tory-effects and causality constraints.

We have shown th&t is a temporal plan for the problerhAG>. Hence it is also a temporal
plan for the problem KA ,G>, since it uses only actions froM. By hypothesis, all fluents in
Cond@) are monotone relative td A",G>. Therefore, by Proposition 5.5, the temporal [#da be
monotone*. Sincd® is monotone* and by the definition of a temporanp the authorisation con-
straints are all satisfie®. must also, by definition of a temporal plan, $atike inherent and contra-
dictory-effects constraints. It follows from Lemr@& thatP,,, also satisfies the inherent constraints.
Since the events iR, are simply a subset of the event®jrP.;, necessarily satisfies both the au-
thorisation constraints and the contradictory-éfeonstraints.

Consider a positive flueht] (Condg) n Add@))\ I, wherea, a O A". Sinceg; O A, we know
that Addg) n (SG\ 1) 2 0 and hence that Corgl([] SG by the definition of the set of sub-go8&
Sincef U Condg;) we can deduce tht] SG In fact,f 0 SG\I since we assume tHdt I. It follows
that iff 0 Add(a) for somea [A, thena O A'. But we know thaf\' is establisher-unique (relative to
SG. Hence, sincé] Condg) [Cond@) andf O Add(), f can be established by the single action
a=g in A. Sincef O 1, the first establishment étby an instance af must occur irP beforef is first
required by any instance af It follows that the causality constraint mustsagisfied byf in Pr,.

(O) Suppose that (1) and (2) are satisfiedhby et P be a solution to the set of authorisation, inher-
ent, contradictory-effects and causality constsaierA’. A solution to these constraints uses each
action inA’ (in fact, it uses each action exactly once sihasdigns one start time to each actioA)n
Consider ang [0 G. By (1),g O (1\Del(A)) O Add(A). If g O Del(A), theng is necessarily true at the
end of the execution &. On the other hand, ¢ Del(g) for some actiom; O A, then by (1) there is
necessarily some acti@] A" which establisheg. Then, by (3)g is +monotone*. Sinc® satisfies
the +authorisation constraint fgra; establisheg after all deletions df. It follows thatg is true at the
end of the execution &.

Consider some —monotontf] Condg) whereg [A. Since the —authorisation constraint is
satisfied forf in P, f can only be deleted iR after it is required by. Therefore, it only remains to
show thaff was either true in the initial stater it was established some time before it is reguby
a. By (2),f 0 1 O Add(A), so we only need to consider the case in whidH butf O Add(g) for
some actiora [J A". SinceP satisfies the causality constrair(e — f) <1(f |- a) and hence, during
the execution of, fis true when it is required by actien

Consider somel Condg), where g O A, such thaf is not —monotone*. By the assump-
tions of the theorend,is necessarily +monotone* amd] I. First, consider the cage] Del(A") n
Add(A). By Lemma 4.3f is -monotone (and heneenonotone*) which contradicts our assumption.
Thereforef O Del(@a) n Add(a), for somea;, a, 0 A, and recall that [I. Since the +authorisation
constraint is satisfied fdrin P, any destruction dfoccurs beforéis established bg. It then follows
from the causality constraint that the conditiamill be true when required kg during the execution
of P. o

Themakesparf a temporal plaP = <A, 1> is the time interval between the first and lagtngs of
P, i.e. maxf(e) | elEventsfp)} — min{t(e) | edEventspf)}. The problem of finding a plan with

14

MONOTONETEMPORAL PLANNING

minimum makespan igolytime approximablé there is a polynomial-time algorithm which, giva
temporal planning problem ,A,G> and any >0, finds a temporal plan whose makespan is ho more
thanMgp+ €, whereM, is the minimum makespan of all temporal plans<fok,G>.

If the constraints in Cons#) impose that the time interval between each phievents in
Events§) is fixed, then we say that actians rigid.

Theorem 5.7:Let N¥*™ be the class of positive temporal planning probletyA,G> in whichA is
establisher-unique relative to CoAji(dJ G, all fluents in Cond§) [0 G are monotone* relative to
<I,A,G> and all fluents i n (Cond@) O G) are-monotone* relative to kA,G>. Thenl®™™ can be
solved in time Qf°) and space ®f), wheren is the total number of events in the actiond.iindeed,
we can even find a temporal plan with the minimumrmber of action-instances or of minimal cost, if
each action has an associated non-negative ctisge same complexity. Furthermore, if all actioms i
A are rigid then the problem of finding a plan witmimum makespan is polytime approximable.

Proof: The fact thaf1®™™™ can be solved in time @Y and space @f) follows almost directly from
Theorem 5.6 and the fact that the set of auth@isainherent, contradictory-effects and causality
constraints form an STPa simple temporal problem with difference coristsa(Koubarakis, 1992).
An instance of STPcan be solved in @{+k) time and Of*+k) space (Gerevini & Cristani, 1997),
wheren is the number of variables akdhe number of difference constraints (i.e. comdsaof the
form x — x # d). Here, the only difference constraints are thetredlictory-effects constraints of
which there are at most, sok=0(n?). Furthermore, as pointed out in Section 4, theutation ofSG
andA' is OfY).

Establisher-uniqueness tells us exactly whitioas must belong to minimal temporal plans. Then,
as we have seen in the proof of Theorem 5.6, thetonicity* assumptions imply that we only need
one instance of each of these actions. It theiallgivfollows that we solve theptimal version of the
temporal planning problem, in which the aim isitmlfa temporal plan with the minimum number of
action-instances or of minimal cost, if each achies an associated cost, by solving the set obauth
sation, inherent, contradictory-effects and catysetinstraints.

Now suppose that all actionsArare rigid. We will express the problem of miniimis makespan
while ignoring the contradictory-effects constraias a linear program. We will then show that it is
always possible to satisfy the contradictory-effexinstraints (without violating the other constis)i
by making arbitrarily small perturbations to tharstimes of actions. We assume that the everas in
single action-instance satisfy the contradictofget and authorisation constraints; since activas
rigid this can be checked independently for eatibram A in polynomial time. LetP be a temporal
plan for 4,A,G> which has minimum makespan. We showed in thefmbdheorem 5.6 tha®,,
obtained fronP by keeping only one instance of each actioR, iis also a valid temporal plan. Since
makespan cannot be increased by eliminating artgiances from a temporal pldy;, also mini-
mises makespan. L€t be the set of inherent, authorisation and caysadibstraints thal,, must
satisfy.C contains equality constraints of the fopg-x = d, whered is a constant and, x, are times
of events in the same action, and constraintseofdim x; —x < d, whered is a constant ang, x; are
times of events in different actions. We introdtwee other variable$yegi, Teng and we denote by
the set of constraint together with the constraintg.gn< t(€) andt(e) < Tenq for all elJEventsh).
The linear program which minimis&s,q — Thegin SUbject to the constrain@,; minimises makespan

15

COOPERMARIS, REGNIER

but does not take into account the contradictdigets constraint€” that must be satisfied by a valid
temporal plan. LeP,» be a solution to this linear program. Its makesipariearly no greater than
Mops the minimum makespan of all temporal plans (siradel temporal plans must satisfy the con-
straintsC 0 C*). Letd be the minimum difference— (¢ —x) in Pp over all constraints of the form
X —X <din C. LetA be the minimum non-zero differenak+ (x —Xx) | in P, over all contradictory-
effects constraints —x # d in C*. Suppose thak' = {aj,...a.}. Let P be identical td®» except that
we addp; = min{e,8,A}(i—1)im to t(e) for all eJEvents§). By construction, all contradictory-effects
constraints which were violated » are satisfied ifP, all contradictory-effects constraints which
were satisfied ifP.p are still satisfied ifP, and all strict inequations which were satisfiedPi> are
still satisfied inP. The inequationspegin < T(€) are still satisfied irP. Finally, in order to guarantee
satisfying the inequationge) < 1. it suffices to add to te,¢ The resulting solutioR corresponds to
a valid temporal plan whose makespan is no moreNa+ €. The result then follows from the fact
that linear programming is solvable inr®) time by Karmarkar's interior-point algorithm, wiea

is the number of variables ahdhe number of bits required to encode the prolfléanmarkar 1984).

O
Efl f f QD
O O
]]
g g ~h
= O h O

-f
]]]
-f -f -9

() (b) (c)

Figure 3: (a) all instances of actianoccur strictly before all instances of act@n(b) all instances of
& are contained in all instancesagf(c) all instances &, overlap all instances af.

In the clas$15"™", all sub-goal fluents0 SGare true over a single interval i) during the exe-
cution of a temporal plaR. If f is +monotone*, then Int(P) is necessarily of the fornty o) wheret;
is the moment whehis first established. Fis -monotone*, then Int(P) is necessarily of the form
[t1, to] wheret; is again the moment whéiis first established (or 0 1f 1) andt; is the first moment
aftert, whenf is destroyed (ott) if f is never destroyed). The cld$s’™ is solvable in polynomial
time due to the fact that establisher-uniquenessrea that there is no choice concerning which ac-
tions to include in the plan and monotonicity* eresuthat the only choice concerning the time of
events is within an interval. Given these two fetitns it is quite surprising that a large ranf@e
dustrial planning problems fall in this class (CegpMaris, & Régnier, 2012, 2013b). EU monotone
planning is a sufficiently powerful modelling larage to allow us to impose constraints such as an
action occurs at most once in a plan or that sthimces of ever occur before all instances of event
&. To illustrate this, Figure 3 shows how we candsgprecedence, containment or overlapping con-
straints between actiomas anda, by the introduction of, respectively, one, twalmee fluentd, g, h
O | which occur only in the events shown in Figur@&Blemma 4.3, these fluerttg, h are all nec-
essarily both-monotone and +monotone in all temporal plans.

16

MONOTONETEMPORAL PLANNING

6. Temporal relaxation

Relaxation is ubiquitous in Artificial Intelligencé valid relaxation of an instandehas a solution
if | has a solution. Hence when the relaxation hasohaian, this implies the unsolvability of the
original instancé. A tractablerelaxation can be built and solved in polynomnirakt

The traditional relaxation of propositional non-f@ral planning problems consisting of ignoring
deletes has two drawbacks. Firstly, it is not vaditemporal planning unless some specific transfor
mation has been applied beforehand to the setiohadCooper, Maris & Régnier, 2013a). Secondly,
it does not use information which may be essefuiathe detection of unsolvability of the original
instance, namely the destruction of fluents angteal information such as the relative duration of
actions. In this section we present a valid trdetablaxation inspired by EU monotone temporal
planning. In the following section we show how & wur temporal relaxation to detect monotonic-
ity* of fluents. There are other possible applicasi, such as the detection of action landmarks (ac-
tions which occur in each solution plan) (Karpa®&mshlak, 2009), which immediately leads to a
lower bound on the cost of a plan when each abtienan associated cost (Cooper, de Roquemaurel,
& Régnier, 2011).

The traditional relaxation of classical non-tempgpianning problems consists of ignoring deletes
of actions. By finding the cost of an optimal reexplan, this relaxation can be used to calcutee t
admissible h+ heuristic. As shown by Betz and Helrf#909), h+ is very informative but unfortu-
nately NP-hard to compute (Bylander, 1994) and h#sd to approximate (Betz & Helmert, 2009).
As this relaxation does not use information whichyrhe essential for the detection of un-solvability
of the original instance (namely the destructiorilwgnts), a lot of research has been carried@ut t
take some deletes into account (Fox & Long, 2004re@ni, Saetti & Serina, 2003; Helmert 2004;
Helmert & Geffner, 2008; Keyder & Geffner, 2008;i,Gdoffmann & Helmert, 2009). Another recent
approach (Haslum, Slaney & Thiébaux, 2012; Keyideffmann & Haslum, 2012) consists in enrich-
ing the classical relaxation with a set of factjanations. Finally the red-black relaxation (Katz,
Hoffmann & Domshlak, 2013.a.b) generalizes deletaxed planning by relaxing only a subset of the
state variables.

Unfortunately, these relaxations does not diraggiyeralize to temporal planning, since relaxations
based on ignoring deletes are not valid in tentg@aning unless some specific transformation has
been applied beforehand to the set of actions (@obfaris & Régnier, 2013a; Coles, Fox, Long, &
Smith, 2008). An important aspect of temporal plagywhich is absent from non-temporal planning,
is that certain temporal planning problems, knos/teanporally-expressive problems, require concur-
rency of actions in order to be solved (Cushingnklaampati, Mausam, & Weld, 2007). A typical
example of a temporally-expressive problem is aopkseveral ingredients must be cooked simulta-
neously in order to be ready at the same momera. grevious paper (Cooper, Maris, & Régnier,
2010), we identified a subclass of temporally esgite problems, known as temporally-cyclic, which
require cyclically-dependent sets of actions ireotd be solved.

17

COOPERMARIS, REGNIER

Wages-paid Job-started
o PAY(1)
VORK(10)
n]]
Job-started Job-finished Wages-paid

Figure 4: An example of a temporally cyclic tempatanning problem.

A simple temporally-cyclic problem is shown in Figut, wherd = 0 andG = {Job-finished}. A
condition for a workman to start work is that hepésd (at the end of the job) whereas his employer
will only pay him after he has started work. Inadidrtemporal plan for this problem the actions PAY
and WORK must be executed in parallel with the etiec of action PAY contained within the inter-
val over which action WORK is executed The tradiibignore-deletes relaxation, forward chaining
from the initial state, would not be able to skither of the two actions since both of them have a
missing condition. Thus, certain proposed relaratialthough very useful in guiding heuristic skarc
(Eyerich, Mattmuller, & Roger, 2009; Do & Kambhartip2003), do not produce a valid relaxation
for temporally cyclic problems. Different solutioasist to get round the problem of temporal cycles.
For example, we gave a polynomial-time algorithnramsform a temporally-cyclic problem into an
equivalent acyclic one (Cooper, Maris, & Régni€l 2a). Other transformations have been proposed
in the literature (Long & Fox, 2003; Coles, Foxnigp & Smith, 2008) which also eliminate the pos-
sibility of temporal cycles, although this was aaot explicitly-stated aim in the descriptions ofsiae
transformations: temporal cycles are avoided bpmgosing durative actions into instantaneous ac-
tions denoting the start and end of the actioeringédiate conditions can also be managed by sglitti
actions into component actions enclosed withinemvélope” action (Smith, 2003). In each case, ig-
noring deletes in the transformed problem is alvaliaxation. If the original problem is not terguer
ily cyclic, then ignoring deletes is a valid reléaa.

In this section, we present an alternative fornteafporal relaxation, inspired by EU monotone
planning, consisting of an STihstance which has a solution only if the origiteahporal planning
instance has a solution. It is incomparable with rflaxation based on ignoring deletes, as we will
show through temporal and non-temporal exampletheirsense that there are instances that can be
detected as unsolvable using EU monotone relaxatibnot by ignoring deletes (and vice versa).

By applying the following simple rule until convemge we can transform (in polynomial time)
any temporal planning probleminto a relaxed versio®” which is EU relative to the set of sub-goals
SG if a sub-goal fluent is established by two distinct actions, then @dlébom the goalG and from
Condg@) for all actionsa. As a consequenckis no longer a sub-goal and SG has to be rectdcula
Clearly, #" is a valid relaxation of. From now on we assume the temporal planning gnolit EU
relative toSG

We denote byA™ the set of action landmarks that have been deltditarpas & Domshlak,
2009). Action landmarks are also known as indispielesactions (Cooper, de Roquemaurel, & Rég-
nier, 2011). Establisher-uniqueness implies thataveeasily identify many such actions, in pargcul
the set of actiond” which establish sub-goals not present in theairstatd .

We cannot assume in the ST®hich we call TR (for Temporal Relaxation), thagingle instance
of each action will be sufficient. For each actismdmarkaand for each evemt[d Eventsg), we in-

18

MONOTONETEMPORAL PLANNING

troduce two variableg;«(€), Tas(€) representing the times of the first and last oerices of everd
in the plan. The constraints of TR include versiohthe internal, contradictory-effects, authoiimat
and causality constraints (which we give belowgtbgr with the following obvious constraint:

intrinsic TR-constraintsJalJA™, for all events [Eventsé), Tis(€) < Tias(€).

In the conference version of this paper in whichdescribed a preliminary version of TR (Cooper,
Maris & Régnier 2013b), we made the assumptionrtbatvo instances of the same action can over-
lap. Under this assumption, fex; e; [0 Events§), the first occurrences ef, e; in a plan correspond to
the same instance of actianA similar remark holds for the last occurrenckes,@,. It turns out that
we do not need to make this assumption in ordapply in TR each inherent constraint in Coratr(
independently to the values tf(e) and T.(€) (for eache [Eventsf)). Indeed, according to
Lemma 3.5, assuming that Conaly(are interval constraints, if each instance dbaa satisfies its
inherent constraints, then bath; andt, satisfy the inherent constraints on events iraeti

inherent TR-constraintsJadA™, 0 e,,e, 0 Eventsf), Tis(€) — Tis(€) 0 [0a(€18), Pa(€r,e)]
andTas(€r) — Tias(€) U [0a(€1,8y), Ba(€1,8)].

The contradictory-effects constraints in TR aréoiews:

contradictory-effects TR-constraintSa, a; 0 A™, for all positive fluents O Del(a) n Add(@),
OL1,L2 O {first,last}, Tu(a - =f) 2 1(a - f).

For each positive flueritwhich is known to bemonotone*, we apply in TR the following modi-
fied version of the-authorisation constraing f:

-authorisation TR-constraints a # g 0 A™, if f 0 Del@) n Cond), thents(f —|a) <
Tirst(@ — —f); for alla0 A™, if f O Del(@) n Condé), then Tus(f - | &) < Trs(@ — —f).

For each positive fluerfitwhich is known to be-monotone*, we apply in TR the following modified
version of the +authorisation constraiots:

+authorisation TR-constraints Ca, g 0 A™, if f 0 Del(g) n Add(@), thentas(a — -f) <
Tfirst(ai - f)

We check that every condition and every goal caestablished, i.e. Coné{") O | O Add(A) and
G O (I\Del(A™)) O Add(A). If not, we consider that the relaxation TR hasaolution. We also apply
in TR the following causality constraints for egusitive fluentf:

causality TR-constraints] & # g 0 A™, if f 0 (Cond&) n Add@)) \ | thentix(a — f) <
Tirst(f |- &); for all g O AMif£0 (Cond&) n Add@))\ I then Tas(ai - f) < Taest(T |- &).

We also apply the following goal constraints fatteg [l G:
goal TR-constraintsJa;, a0 A", if g 0 Del(g) n Add(@), thenTas(; — ~g) <Tas(@ — Q).

Of course, these causality and goal constraintseessary conditions for the existence of a péy o
if AM is EU relative to (Cond{™)\ 1) O (G n Del(A)).

Definition 6.1: An actionalJA is unitary for a temporal planning problem,A,G> if each minimal
temporal plan for thelsA,G> contains at most one instanceof

19

COOPERMARIS, REGNIER

If an actionalJA™ is known to be unitary, then in TR, for each ewent Events§), we replace the
two variableS;«(€), Tis{€) in the above constraints by a unique variatde

TR is a valid relaxation since the constraints Rf iust clearly be satisfied by any temporal plan.
Furthermore, if a plan exists then a minimal plagassarily exists and in minimal plans there is at
most one instance of each unitary action. Undeunagtions of establisher-uniqueness and
monotonicity*, TR is in fact a solution proceduoe fhe tractable class described in Theorem 5.7.

The temporal relaxation TR can be significantlgsgithened by the prior identification of unitary
actions. We therefore present some lemmas whichr gawveral simple but common cases in which
actions can be identified as unitary. We first gidlemma which allows us to simplify certain action

Lemma 6.2: Suppose thdt[d | and thaff is -monotone* in the positive temporal planning problem
<I,A,G>. LetA' be identical to the set of actioAsxcept thaf has been deleted from Adjifor each
actiona. Then all minimal temporal plans fot,A,G> are minimal temporal plans fot,A',G> and
vice versa.

Proof: If P is a minimal temporal plan fol A,G>, then, sincd is -monotone*, it cannot be estab-
lished after having been destroyedPinit follows that all establishments bin P are unnecessary
since they can only occur whéfl | was already true. Hendg,is also a plan forlsA',G>. It is also
minimal for 4,A',G> since all conditions and goals are identicalathiproblems. A minimal tempo-
ral plan for 4,A',G> is necessarily a temporal plan fdrAG>, since all conditions and goals are
positive, and is again necessarily minimal sinte@hditions and goals are identical in both prob-
lems. m

We assume in the rest of the paper that in TRethefsction®A has been simplified as indicated in
Lemma 6.2.

Lemma 6.3: If f is -monotone*f (0 Cond@), f O Del(a) anda simultaneously requires and de-
stroysf (i.e. Constré) contains the constrain(a - -f) =1(f - a)), thenais unitary.

Proof: Let P be a minimal temporal plan containiagand consider the instance afn P which
first destroyd. By condition (5) of Definition 3.2 of a tempordhp, no two instances afcan be
synchronised so that they destf@multaneously, so this instance is unique.-Byonotonicity?*,
f cannot later be established®nHence no other instance afcan require (and destrofyafter
this instant. It follows that the minimal tempogdén P can contain at most one instanceaof
Hencea s unitary. a]

Lemma 6.4: Let 4,A,G> be a positive temporal planning problem aréh an action such that
is rigid or no two instances af can overlap in a temporal plan for,AG>. In each of the three
following casesa is unitary in 4,A,G>: (1) all fluents in Add§) are monotone*, (2) Addj O
G\Cond@), or (3) Addé) = {h} for some fluenth(JG, where there is a unique actibisuch thah
0 Condf), and furthermor® is unitary.

20

MONOTONETEMPORAL PLANNING

Proof: Let P be a minimal temporal plan fol,A,G> containing actiora. Consider first case (1)
in which all fluents in Add{) are monotone*. Monotone* fluents never need taebblished
more than once in a minimal plan. This is becaasminimal plans, once amonotone* fluent
has been established, it cannot be destroyed aond,a-monotone* fluent has been established,
it can be destroyed but not established againlltivis that all but the first establishment of each
fluent in Add@) by a is unnecessary iR. Whethera s rigid or no two instances afcan overlap

in P, all the first establishments of each of the flsantAdd@) correspond to the same instance
of a. All other instances ad can thus be deleted fromwithout destroying its validity. Henae

is unitary.

Now consider case (2), i.e. Ad)J(d G\Cond@). All but the last establishment of each fluent
in Add(@) by a is unnecessary iR, since no fluents in Add] are conditions of actions iA.
Whethera is rigid or no two instances afcan overlap irP, all the last establishments of each of
the fluents in Add{) correspond to the same instanceaofll other instances of can thus be
deleted fronP without destroying its validity. Henceis unitary.

Now consider case (3). Sinbds unitary, the minimal plaR contains at most one instance of
b. Only the instance of which last establishdsbefore it is required by the unique instancé of
can actually be necessary. All other instancea cdin be deleted from® without destroying its
validity. Hencea is unitary. o

It is often the case that no two instances ofcdipraa can be executed in parallel, for example due
to limited resources. It is therefore quite commdren modelling a temporal planning problem to
forbid that two instances of the same actiooverlap. This can be achieved by introducing arftu
f O Cond(A\a}) O Add(AY{a}) O Del(A{a}) O G, addingf tol and placing event§ — a and
a - —f at the beginning ad and the eventa - f at the end o&. Alternatively, we can place the
eventa - f at the beginning od and the events— a and a — —=f at the end o4, in which case
we do not need to havyell. In either case, we say tHat anon-overlapfluent fora. We can now
state a more general version of Lemma 6.4.

Lemma 6.5: Let 4,A,G> be a positive temporal planning problem ard\ an action such thdt
is anon-overlapfluent fora. In each of the three following casgss unitary in 4,A,G>: (1) all
fluents in Add@)\{f} are monotone*, (2) Ad&)\{f} O G\Cond@), or (3) Add@)\{f} = { h} for

some fluenth(JG, where there is a unique actibrsuch thah 00 Condf), and furthermoré is
unitary.

Proof. Let P be a minimal temporal plan fot,A,G> containing actiom. No two instances & can
overlap inP. As in the proof of Lemma 6.4, we only need topgkaesingle instance @t in case (1)
this is the first instance @f in case (2) the last instanceapfand in case (3) the last instance bie-
fore h is required by. Hencea is unitary. o

The temporal relaxation TR uses two types of infiiiom not used by the ignore-deletes relaxation:
the destruction of fluents and temporal informatidrfe give two very simple examples to illustrate
this.

21

COOPERMARIS, REGNIER

Example 6.6:The simplest possible example showing that TRdedect the unsolvability of a plan-
ning problem that cannot be detected by the igdetetes relaxation consists of an initial state
| ={f}, a goalG = {f, g} and a single action which simultaneously esthbfg and destroyé Un-
solvability is detected by TR since the condit®fl |\Del(A™) 0 Add(A) is not satisfied.

Example 6.7:Consider again the problem of lighting a candiagia single match described in Ex-
ample 4.2. Suppose now that the match is very simokwill only burn for at most two time units.
The problem is clearly establisher-unique. Furtleeenboth actions belong £ and are hence land-
marks. We can deduce that LIGHT-MATCH is unitarylleymma 6.3 and that LIGHT-CANDLE is
unitary by Lemma 6.4 (case (2)). Thus, in TR thisrea single variable(e) for each event
e[JEventsf). As we have already seen, Match-litimonotone, so TR contains thauthorisation
constraint t(match-lit - | LIGHT-CANDLE) < 1(LIGHT-MATCH - -match-lit). It also contains
the causality constraint(LIGHT-MATCH - match-lit) <t(match-lit | LIGHT-CANDLE). The
two inherent constraintg(LIGHT-MATCH - -match-lit) - 1(LIGHT-MATCH - match-lit)< 2
and t(match-lit - | LIGHT-CANDLE) - t(match-lit | LIGHT-CANDLE) =2 then provide a con-
tradiction. No form of relaxation which does ndtednto account the duration of actions can detect
the unsolvability of this problem, since the ideatiproblem with different durations given in Exam-
ple 4.2 has a solution.

Example 6.8: We now give a generic example involving the chdieéwveen two alternatives in
which the temporal relaxation TR can detect unsddvproblems that cannot be detected by ignoring
all deletes. We can illustrate our generic exarbgla simple non-temporal planning problBmvith
initial statel = {f}, goal G = {g,h} and the following two actions:

B: f- =f,g
C: f—> _|f,h

The fluents have many possible interpretationduding: f = | have a packet, g = | have sent the
packet to Destination1, h = | have sent the pack&testination2. Clearly this problem has no solu-
tion, but this is not discovered by the ignore-iedeelaxation (which cannot take into accounfdbe
that | no longer have the packet once | have ssotriewhere).

To show that TR has no solution we give a proottiergeneral case in whié" is EU, actions
B,COA™ are instantaneousJ{Cond(B)n Del(B) n Cond(C)n Del(C) n I)\Add(A), gl Add(B)
n (G\l) and hJAdd(C)n (G\l). The fluent f is-monotone by Lemma 4.3 since there is no action to
establish it. TR has no solution since we obtainfatiowing contradiction by a sequence-afithori-
sation, inherent, intrinsie;authorisation, inherent and intrinsic (respectivetnstraintst«(f — | B)
< Tfirst(c - _'f) = Tfirst(f —'l C)S Tlast(f —'l C) <Tfirst(B - _'f) = Tfirst(f —>| B) < Tlast(f —'l B)-

We should point out that improved versions of tieore-deletes relaxation which retain some in-
formation concerning deletes would also be abldetect the unsolvability of this simple problem.
For example, the transformation of Keyder, Hoffmaamd Haslum (2012) can detect unsolvability by
introducing a special fluent representing the aactjon of g and h .

22

MONOTONETEMPORAL PLANNING

Example 6.9:We now show that the temporal relaxation TR careaieinsolvable problems which
are not necessarily establisher-unigue. In thisgle, all actions are instantaneous and henceave pr
sent it in the form of a non-temporal planning peaiP with initial statel = {j,m,d}, goal G = {g}

and the following three actions:

Buy: j,m- h,=d,=-m
Sell: h- m,=h
Mort2: d, h- m,-d, g

We can interpret the fluents as follows: j = | hajjeb, m = | have money, d = | am debt-free, h =1
own a house, g = | have taken out a second mottagexample, the action Buy is possible only if |
have a job and money to put down a deposit on aehdhbe result is that | own a house but | am in
debt and no longer have money. The goal is todakea second mortgage via the action Mort2.

This problem has no solution, but this fact is aetiected by the standard relaxation consisting of
ignoring destructions of fluents. To set up TR, fin& determine the action landmarks” = {Buy,
Mort2} easily identified as landmarks by the rutggen by Cooper, de Roguemaurel, and Régnier
(2011) since they establish the sub-goals h anesgectively, not present in the initial state. €dbs
thatA™ is EU relative to the set of sub-goals {g,h} aathins some destructions of fluents. By apply-
ing Lemma 6.3 to the fluent d (which is the —monetby Lemma 4.3), we can deduce that Mort2 is
unitary. Then we can deduce from Lemma 6.4 (cagdeh@ Buy is unitary, since Add(Buy) = {h}
and Mort2 is the only action requiring h. Thus,TRR there is a single variabtée) for each event
elJEventsA™). TR contains the following constraint$d — | Mort2) =t(h |- Mort2) by an internal
TR-constraint in Mort2r(Buy — h) =1(Buy — =d) by an internal TR-constraint in BuyBuy — h)
< 1(h |- Mort2) by the causality TR-constraint on tfd —| Mort2) <t(Buy - =-d) by the —
authorisation TR-constraint, since d is —monotdies set of four constraints has no solution, from
which we can deduce th8thas no solution. This example shows that tempelakation can be use-
ful even in non-temporal planning problems whiah ot establisher-unique.

The above examples show that EU monotone relaxdfidrcan be stronger than the relaxation
based on ignoring deletes for two reasons: TR tesegoral information, for example concerning the
duration of actions, and retains destructions w#rits. To see that ignoring deletes can be stronger
than EU monotone relaxation, consider a problemthiich the unique goal is produced by a unique
actiona such that Condj = {f} where the fluenf is produced by two distinct actiohsandc. In the
EU monotone relaxation, the fluehis deleted from Coné), since it is established by two distinct
actions, and the relaxed version of the probleimiisediately solvable by a plan containing the singl
actiona. Ignoring deletes, on the other hand, can debtectihsolvability of the original problem in
certain cases, for example, if actidnandc are instantaneoub, is the only action that establishes
some fluentp O Cond€)\l andc is the only action that establishes some flugntCondp)\I.

An obvious application of temporal relaxation ie ttetection of action landmarks by the following
classic technique which applies to any valid rdlara(Hoffmann, Porteous, & Sebastia, 2004; Coo-
per, de Roguemaurel, & Régnier, 2011). Hed] represent the planning problepvithout a particu-

23

COOPERMARIS, REGNIER

lar actiona. If the temporal relaxation af-a] has no solution, then we can conclude #iatan ac-
tion landmark fore.

In the following sections we investigate other agions of temporal relaxation concerning the
detection of different forms of monotonicity. Thesit idea is that if H is a hypothesis to be teatet
H can be expressed as the conjunction of $BRstraints, then we can add H to the constrafritse
temporal relaxation TR. We thus obtain an SifiBtance which we denote by TR[H]: if TR[H] has no
solution then H cannot be true in any solutiorh®planning problem. In each case, the complekity o
solving TR[H] is Of®) time and Of?) space, wherg is the total number of events in the actiond in
(as we have already seen in the proof of Theor&jn 5.

7. Detecting Monotonicity* using Temporal Relaxation

A subclas$1 of instances of an NP-hard problem is generalhgictered tractable if it satisfies two
conditions: (1) there is a polynomial-time algamittio solvell, and (2) there is a polynomial-time
algorithm to recogniz€l. It is clearly polynomial-time to detect whethdiractions are establisher-
unigue. On the other hand, our very general digfimibf monotonicity of fluents implies that this is
not the case for determining whether fluents areatame.

Theorem 7.1 Determining whether a fluent of a temporal plagrproblem A,G> is monotone (or
monotone*) is PSPACE-hard if overlapping instarafethe same action are not allowed in plans and
EXPSPACE-complete if overlapping instances of tmaesaction are allowed.

Proof: Notice that if 4,A,G> has no solution, then all fluents are triviallgpmotone (and hence mono-
tone*) by Definition 4.1, since they are neithetablished nor destroyed in any plans. It is siufiti

to add two new goal fluentg f, and two new instantaneous actiong\te, which simply add$;, and

a, which had; as a condition, addsand deletef (a; anda, being independent of all other fluents) to
any problem kA,G>: f; is monotone (monotone*) if and only if the resdtiproblem has no tempo-
ral plan. The theorem then follows from the facitttesting the existence of a temporal plan for a
temporal planning probleml,A,G> is PSPACE-hard if overlapping instances of threesaction are
not allowed in plans and EXPSPACE-complete if amping instances of the same action are al-
lowed (Rintanen, 2007). O

We can nevertheless detect the monotonicity* daaefluents in polynomial time. In this section
we give rules which can be applied in polynomigleti Given Theorem 7.1, we clearly do not claim
to be able to detect all monotone* fluents withstheules. The set of temporal planning problems
whose fluents can be proved +monotone*mronotone* by the rules given in this section, as re
quired by the conditions of Theorem 5.7, represartactable class, since it can be both recognized
and solved in polynomial time.

To detect the +monotonicity (+monotonicity*) oflaentf it suffices to give a proof thatcannot
be destroyed in a (minimal) plan after being eihbt. In the conference version of this paper we
gave rules to provide such a proof, based on krigel®f the monotonicity of other fluents (Cooper,

24

MONOTONETEMPORAL PLANNING

Maris, & Régnier, 2012). It turns out that thereaisimpler and more general proof rule (although
computationally more expensive) which involves sgvan STP for each pair of actions, b such
thatf O Add@) n Del(b). If the set of actions is establisher-uniquenttiere is at most one such ac-
tiona. To try to prove thab cannot destrof/aftera establishe§ we set up a relaxation TR[Befaag(

f, b)] consisting of the temporal relaxation TR of gienning problem together with a single hypothe-
sis constraint: Befora(f,b) = {Tn(a - f) <Tis(b - =f)}. We can consider the case in which such
a pair of actiong,b does not exist (see Lemma 4.3) as simply a speasal of this rule. Note, how-
ever, that the fact that TR[Befogef, b)] has a solution is a necessary but not a suficiendition for
the existence of a valid temporal plan in whictiestroyd aftera establishe$ Indeed, Theorem 7.1
tells us that it is highly unlikely that a polynahtime algorithm exists for determining whether a
fluent is monotone*.

To detect the-monotonicity* of a fluenf we need to prove thatannot be established in a mini-
mal plan after being destroyed. In the correspan@mP TR[After(a, f, b)], the hypothesis is: Af-
ter@f,b) = {taz(b —» =f) <Tas(@ - f)}. We assume that when setting up the temporakagion
TR[Beforeg, f, b)] or TR[After(a, f, b)] we apply the rules given in the previous sect@rthe identi-
fication of unitary actions. This implies that ingily we are only considering minimal plans and
hence that we detect monotonicity* rather than rtamioity.

Lemma 7.2.Suppose that the set of actighis EU. If TR[Beforeg, f, b)] has no solution for any pair
of actionsa,b 0 A such thatf 0 Add@) n Del(), thenf is +monotone* relative to IA,G>. If
TR[After(a, f, b)] has no solution for any pair of actica$ O A such thaf 00 Add(@) n Del(b), thenf
is -monotone* relative to KA,G>.

In order to apply Theorem 5.6, we also have toegthat all fluents in n (Cond@) O G) are
—monotone* relative to KA”,G>. A plan for the problem IsA’,G> necessarily includes all actions
from A™, but may or may not include actions fréf\ A™. As a consequence of this, we can only
impose constraints on actionsAl". Indeed, under the extra hypothesis that thefsattionsA® is
establisher-unique, the corresponding ‘SERdentical to TR[Afterd, f, b)].

Lemma 7.3.If the set of actiond’ is establisher-unique and the temporal relaxatiRfter(a, f, b)]
has no solution for any pair of actioas O A° such thaf 0 Add(a) n Del(b), thenf is -monotone*
relative to ¢ A°,G>.

We now give a simple lemma to detect certain +nmret fluents based on the notion of unitary
action. We assume that Lemmas 6.3, 6.4 and 61satkto detect unitary actions.

Lemma 7.4.If A is establisher-unique and actiailA is unitary, then all fluenté 0 Add@) n
(G\(1\Del(A""))) are +monotone* relative to the temporal plagmroblem A,G>.

Proof: Letf O Add@) n (G\ (I \Del(A™™))) and letP be a minimal plan for IkA,G>. All fluents in
G\(1\ Del(A™)) must be established i ThusP must contain an instance of actarsinceA is es-

25

COOPERMARIS, REGNIER

tablisher-unique. Indeed, sinaés unitary,P contains exactly one instancezofThereforef is estab-
lished exactly once iR, and furthermore cannot later be destroydd ancef is a goal fluent. It fol-
lows thatf is +monotone*. m

Example 7.5.Consider the following simple example of a plagngmoblem with instantaneous ac-
tions:

Wash_hair:-» —=d, c
Dry clean_hair: ¢ d

where d means dry hair and ¢ means cleanlhair] andG = {d,c}. Note that we impose the condi-

tion that hair must be clean before it can be diiée fluent d is not monotone since there is a-sol

tion plan Wash_hair, Dry_clean_hair, Wash_hair, Blgan_hair (in which the last two actions are
clearly redundant) which destroys, establishedralesand re-establishes d, but this plan is glearl
not minimal. We can deduce from Lemma 6.4 (case(2) Dry_clean_hair is unitary. Lemma 7.4
then tells us that d is +monotone* since Add(Drgaal hair (G\(1\Del(A™))) = {d}.

The following theorem now follows from Theorem $ogether with the fact that each STan be
solved in polynomial time.

Theorem 7.6.Let M, be the class of positive temporal planning problehA,G> in which
Constr@) are interval constraintgy is establisher-unique relative $6 all fluents in Cond) O G
are monotone* relative tol,A,G> and all fluents il n (Cond@") O G) are—-monotone* relative to
<I,AP,G>, where monotonicity* of all fluents can be de¢ecby applying Lemmas 7.3 and 7.4. Then
M, is tractable.

We have already seen in the proof of Theorem &af7dhch temporal relaxation can be solved in
o(n’) time and Off) space, whera is the total number of events in the actionf.iThe number of
temporal relaxations to solve, in order to prowat @ temporal planning problem belongdtg is
proportional to the number of triples, {, b) such thag, b O A? andf O Add@) n Del(b). The number
of pairs (f, b) such thab 00 A andf O Del(b) is bounded above by If A? is establisher-unique, then
there is at most one action tlaaf] A’ such thaf O Add(@). Therefore, the complexity of recognizing
M, is Of") time and Of) space. In the conference version of this papeoi€r, Maris, & Régnier,
2012) we gave simple rules that can be used t@mném® a subclass 61, in O(?) time and Of)
space.

We now discuss further rules for the detection ohatone* fluents. We will show that more
monotone* fluents can be detected in polynomiaktlt at the cost of greater computational com-
plexity.

We say that an action-instarecasefully producea fluenth during the execution of a plarhifvas
false just before being establishedsbyVe say thaa usefully produces the required fluémif a use-

26

MONOTONETEMPORAL PLANNING

fully producesh and eitheh O G or the fluenh is the condition of some actiarin the plan such that
1(a - h) <1(h |- €). We can now state the following general propaositi

Proposition 7.7.Suppose that the set of actighs EU relative to the set of sub-goals andlet A
be the unigue action that establishes subfgéal If (b 00 A such thaf [Del(b), there is no minimal
plan in which some instance bfdestroys after some instance afestablishe$, and such that the
instance of which first establishelsand the last instance bfwvhich last destroysboth usefully pro-
duce required fluents, thdris +monotone*(b) If Ob O A such that O Del(b), there is no minimal
plan in which some instance afestablishe$ after some instance bfdestroyd, and such that the
instance of which last establishdsand the instance afwhich first destroy$ both usefully produce
required fluents, thefis -monotone*.

Proof: (a) Let P be a minimal plan in which some instancéafestroyd after some instance af
establishe& Then, by the hypothesis of the proposition, eithe instance ad which first establishes

f in P or the last instance afwhich last destroyin P does not usefully produce a required fluent.
HenceP cannot be minimal, since we could delete eithsritistance ob or this instance af from P

to leave another valid plan. This contradictionvehidhatf is +monotone*. The proof of cafie) is
similar. m

We now give a lemma which allows us to deduce drtbeohypotheses of Proposition 7.7 and
hence to deduce that a fludrig +monotone* or that it ismonotone*. To simplify the expression of
the lemma, we suppose that there is a goal-acgiedgtionas that must be executed at the end of all
plans and such that Cold) = G. This simply means that goal fluetitslo not need to be treated as
special cases.

Lemma 7.8.Suppose thah is EU relative to the set of sub-go8i&and leta [0 A be the unique ac-
tion that establishes fluehfl SG Letb [0 A be such th&t Del(b).

(@) Lethd SGn Add(@) andh' 00 SGn Add(b). If any of the following conditions hold, theretie is
no minimal plarP in which the last destruction bby an instance df occurs after the first establish-
ment off by an instance daf, and in which this instance bfusefully produces the required fludmt
and this instance af usefully produces the required fluént

(2) for all actionsc,c such thah O Cond€), ' O Cond€'), TR[Beforeé,f,b) O For(,first,h,c) O
For(b,lasth’,c’)] has no solution, where Faji(,h,c) = {t.(Xx—> h) <Ta(h |- C)}.

(2) Constrb) imposes a fixed interval between the destruaifdrand the establishmentlgfby b,
h' is monotone* and for all actiorst’ such thah 0 Cond€) andh’ O Cond¢€’), TR[Beforef,f,b)
O Onceb) O Forfafirst,h,c) O For(,lasth,c)] has no solution, where Onge€ {Tsis(E) = Tas(E)
| E O Eventsk)}.

(b) Leth 0 SGn Add(a) andh’ 0 SGn Add(b). If any of the following conditions hold, theretie is
no minimal plarP in which the last establishmentfdfy an instance &f occurs after the first destruc-

27

COOPERMARIS, REGNIER

tion of f by an instance df, and in which this instance afusefully produces the required fluérand
this instance ab usefully produces the required fludfit

(1) for all actionsc,c’ such thah O Cond€), h' O Cond¢’), TR[After(a,f,b) O For@,lasth,c) O
For(,first,i’,c)] has no solution.

(2) Constrb) imposes a fixed interval between the destruaifdrand the establishmentlgfby b,
his monotone* and for all actiong’ such thah 0 Cond€) andh’ O Cond¢€'), TR[After(a,f,b) O
Oncef) O For@lasth,c) O For(,first,h',c)] has no solution.

Proof: (a) We suppose th& is EU relative t&&G f 0 SGn Add@) n Del(), h0 SGn Add(@) and
h 0 SGn Add(D).

(1) If TR[Beforeg,f,b) O For,first,h,c) O For(,lasth’,c')] has no solution for all actiormsc’ such
thath 0 Cond¢€), h' O Condg€'), then it cannot be the case that in a minimai Bl¢he first estab-
lishment off by a occurs before the last destructiorf bfy an instance df, and the instance af

which first establishebusefully produces the required fluénin P, and the instance &fwhich

last destroy$ usefully produces the required fluéhin P.

(2) If i’ is monotone*, then only the instancebafhich first establishds can usefully produck!
in P. Since there is a fixed interval between the destm off and the establishment lgfby b, it
is necessarily the same instancé e@fhich first destroy$. Since it is the instance bfwhich last
destroyd which is assumed to usefully proddgewe can deduce that all instance aire syn-
chronised to destrdlyat exactly the same moment. But then this comttm@ondition (5) of the
Definition 3.2 of a temporal plan, unless therersy one instance dj in P. The result follows
from the same argument as in case (2) with tha exinstraint Oncbj that there is only one in-
stance obin P.

The proof of parfb) of the lemma is similar. o

Example 7.9.Consider the following EU temporal planning prablan which all actions are instan-
taneous:

Check p- g,0
Drive: p,0- a,~g
Take g- p

andl = {g} and G = {a}. One interpretation of these actions andrlses: Have_Engine_checked
(Chech, Drive_to_destinationOrive), Take Petrol Takg, Have petrol (p), At garage (g), En-
gine_OK (0), Arrived (a). The fluent g is not mamo¢ since there is a plarake Check Drive,
Check(in which the last action is clearly redundant)ichhestablishes, destroys, and establishes g.
However, g iss-monotone* since in a minimal plan actiGheckcannot usefully produce a fluem{]
Add(Chech = {g, o} after actionDrive has destroyed g. In the cdsa, this is by Lemma 7.8(b)(1):
Takeis the only action such thatlgy Cond{Take, and TR[AfterCheckgDrive) O For({Checklast,g,
Takég] has no solution. In the caBes 0, this is by Lemma 7.8(b)(2) since o is monotdbg Lemma

4.3) and TR[AfterCheckg,Drive) (0 OnceChech] has no solution. Note that since a, p are mamoto

28

MONOTONETEMPORAL PLANNING

by Lemma 4.3, we can deduce from Lemma 6.4 (c3b¢héit action®rive andTakeare unitary. It
then follows from Lemma 6.4 (case (3)) that ac@heckis also unitary. We therefore impose in TR
that the action€heck Drive andTakeoccur only once; it follows that we could have utestl that g

is -monotone* directly from Lemma 7.2 without havinguse Lemma 7.8.

Combining Proposition 7.7 and Lemma 7.8 allowsouddfine a tractable class of temporal plan-
ning problems which is larger than the class d@sdin Theorem 7.6.

Theorem 7.10.Let M, be the class of positive temporal planning probledyA,G> in which
Constr@) are interval constraint#y is establisher-unique relative $6 all fluents in Cond{) O G
are monotone* relative tol,&',G> and all fluents il n (Cond@") O G) are—-monotone* relative to
<I,AP,G>, where monotonicity* of all fluents can be dedilif®m Proposition 7.7, Lemmas 7.4 and
7.8. TherT1, is tractable.

The number of temporal relaxations to solve, ireotd prove that a temporal planning problem
belongs toll,, is proportional to the number of septuplad,,c,h,6h) such thatab,c,¢ O AP,
f 0 Add(@) n Del(), hO Add@ n Cond€) andh’' 0 Add(b) n Cond€'). We have seen in Section 5
that, assumingA is establisher-unique, the number of triplesfly satisfyinga,b O A’ and
f O Add(@) n Del(b) is bounded above by the total number of events in the actiona.iThe num-
ber of pairs¢,h) such that 00 A’ andh O Condg) is again bounded above hyTherefore, the num-
ber of relaxations to be solved isr€)(We have seen in the proof of Lemma 4.3 that éaiporal
relaxation can be solved in &) time and Off) space. It follows that the complexity of recogmig
M, is Of°) time and Of?) space.

8. Experiments on IPC-2011 benchmarks

We conducted experiments on the benchmark probiemsthe temporal deterministic track of
the 7" international planning competition IPC-2011, inlerto test the applicability of our proposed
temporal relaxation TR as well as the relativeitytibf our various lemmas for the detection of
monotonicity*. The main drawback of our tempordaxation is that it only concerns EU fluents (i.e.
fluentsf for which there is a single actiarwith f 0 Add(@)). Indeed, the first step in setting up TR is
to remove all fluents which are not EU from thelgéd goal fluents are removed for all problems in
the following domainsfloortile , matchcellar, parking, pegsol, openstacks, sokoban, storage, tur-
nandopen We therefore concentrated our experiments orthiree domaingrewplanning, par-
cprinter, tms. For each problem in each domain, lef’ 8€note the set of possible sub-goals in the
original unrelaxed problem. For each of the 20 lerols in each of these domains, we determined the
set EUSG of possible sub-goals S@hich are EU. Not all of these EU possible subsgyofithe un-
relaxed problem remain possible sub-goals in TiResin TR we remove all fluents which are not EU
from conditions of all actions. We calculated tle¢ af possible sub-goals in the relaxed problem,
which we call S&rel) to distinguish this set from the set of pblessub-goals StG@n the unrelaxed
problem. Moreover, we calculated the set of actishigh produce possible sub-goals in the relaxed

29

COOPERMARIS, REGNIER

problem, which we call Arel) to distinguish this set from°An the unrelaxed problem. The first three
columns of Table 8.1 show the minimum, mean andirmax percentages of possible sub-goals
which remain possible sub-goals in TR (i.e. thoa8G&(rel) | / [SG |) over the 20 problems. We
then used the fluents in EU%@nd, in particular, the ones from @l) to test the relative frequency
of monotonicity*. The results for S@el) are shown in the next three columns of T&ble In the
parcprinter domain, all EUS&fluents were detected to be monotone*. For eaoblgm in the
crewplanning domain, almost all fluents in EUS@ere detected to be monotone*. In each problem
in thetms domain, 37% of the fluents in EUS®ere detected to be monotone*, and 50% o{1B4}.
These results indicate that in certain temporatmptey problems EU monotone* fluents are quite
common, but that in others TR can provide no usefafmation since no goals are EU.

IPC 2011 SG(rel) Monotone* SG(rel) | Unitary AP(rel)

Domain ;N [MEAN [MAX | MIN |MEAN |MAX MIN |MEAN | MAX
Crewplanning 21%| 36% 94% 87% 95% | 98% 39% 56% | 71%
Parcprinter 4% | 8% 15% 1009 100% 100%56% 72% | 94%
Tms 60% 60% 60% 50% 50% | 50% 54% 54% | 54%

Table 8.1. Results of experiments on three donfieins IPC 2011.

The last three columns of Table 8.1 give the nunalbections in A(rel) which we detected as
unary in TR. The identification of unary actionsllgmmas 6.3, 6.4 and 6.5 can be achieved in linear
time and provides useful information which is ubgd'R in the detection of monotonicity*. On aver-
age, over half the actions irff(fel) were found to be unitary.

IPC 2011 Monotone* SG(rel)
Domain Lemma 4.3 | Lemma7.4| Lemma 7.2 ALL
MIN 80% 0% 0% 87%
Crewplanning | MEAN 87% 0% 7% 95%
MAX 95% 0% 13% 98%
MIN 88% 0% 0% 100%
Parcprinter MEAN 95% 0% 5% 100%
MAX 100% 0% 12% 100%
MIN 29% 21% 0% 50%
Tms MEAN 29% 21% 0% 50%
MAX 29% 21% 0% 50%

Table 8.2. Percentages of fluents detected as metoby three different lemmas.

30

MONOTONETEMPORAL PLANNING

We detected monotonicity* by applying our lemmasricreasing order of computational com-
plexity: Lemma 4.3, Lemma 7.4, Lemma 7.2, and themma 7.8. In all domains, the majority of
fluents which are recognised as monotone* are résed as such by applying Lemma 4.3, some flu-
ents are recognised as monotone* by applying Leihrhand all other monotone* fluents are recog-
nised by Lemma 7.2 (which uses the temporal rétaxd@R). We found no monotone* fluents which
required Lemma 7.8 to be detected. The signifigagitbater complexity of applying Lemma 7.8
compared with Lemma 7.2 means that it is not wapplying systematically to all problems. On the
other hand, our experiments have confirmed thatrhasw.3, 7.4 and 7.2 are all effective for the de-
tection of monotonicity*. Table 8.2 shows for eaftthe three domains, the minimum, mean and
maximum percentage of fluents in ®®I) which are detected by each of these threeesn

To illustrate the degree of variation between diffie problems within the same domain, in Figures
8.3, 8.4 and 8.5 we show the details of each oR€heroblems in the three different domains. For
each problem we show the number of monotone* fuienB8G(rel) detected by different lemmas.

As a general conclusion of our experimental triaés,have seen that in many problems TR pro-
vides no useful information since all goal flueats removed. Nevertheless, we have identified vari-
ous benchmark domains in which it can be appliée fact that a large percentage of fluents were
found to be monotone* and a large percentage @irectvere found to be unitary demonstrates the
potential importance of these notions beyond thedr in the temporal relaxation TR. These experi-
mental trials together with our investigation oésific examples (such as Example 7.9 or the Tempo-
ral Cement Factory domain described in the follgnsection) seem to indicate that integrating the
detection of unitary actions into TR provides aminformation as the more computationally ex-
pensive approach of Lemma 7.8.

IPC 2011 - crewplanning
70
60 -
50 A

—_ ONot detected

T 40 -

] 30 - DMonotone*
20 - (Lemma 7.2)
10 - H Monotone

(Lemma 4.3)
0 .
1234567 8 91011121314151617181920
problem

Figure 8.3. The number of fluents in %@l) detected as monotone* by different lemmaén
crewplanning domain.

31

COOPERMARIS, REGNIER

IPC 2011 - parcprinter

o
|

O Monotone*
(Lemma7.2)

SGP(rel)
w B~ U
o O

B Monotone
(Lemma 4.3)

[)
o o
1

o
|

1234567 8 91011121314151617181520

problem

Figure 8.4. The number of fluents in *%®l) detected as monotone* by different lemmasén
parcprinter domain.

IPC2011 - tms
700 -
600 -
500
— MNot detected
T 400
] 300 EMonotone*
200 (Lemma 7.4)
100 HEMonotone
(Lemma 4.3)

1234567 891011121314151617181920

problem

Figure 8.5. The number of fluents in"9@l) detected as monotone* by different lemmatén
tms domain.

32

MONOTONETEMPORAL PLANNING

9. Examples of Applications of EU Monotone Planning

We have previously shown that EU monotone planhamypotential applications in various indus-
trial settings, such as the construction or thenited and pharmaceutical industries (Cooper, Maris,
& Régnier, 2012, 2013b). For example, the TempBhamical Process domain, described in detail in
(Cooper, Maris & Régnier, 2013b), involves diffar&mds of operations on chemicals that are per-
formed in the industrial production of compounds:. €ach raw material, there is an operator that can
activateits source. Then, this raw material canch&alysedin different ways tsynthesizalifferent
products. These products canrbeedandreactedusing the raw material once again to produce the
desired compound. For example, acetylene is a raterial derived from calcium carbide using wa-
ter. Then, a vinyl chloride monomer is producednfi@cetylene and hydrogen chloride using mercuric
chloride as a catalyst. PVC is then produced byrpetization. Other examples occur in the pharma-
ceutical industry in the production of drugs (sachparacetamol or ibuprofen) and, in general, in
many processes requiring the production and coribmaf several molecules, given that there is a
unique way to obtain them (which is often the @hseto industrial constraints).

We now give in detail an example from the consipadindustry to show how the detection of uni-
tary actions can greatly speed up the recognitfcsuch problems. The Temporal Cement Factory
planning domain (Cooper, Maris & Régnier, 2013l)ved us to plan concrete mixing, delivery and
use. An action of duration 30 time unitskes and times batch of concrete which is fluid from time
unit 3 to 30 (after which it sets). At the samedijira concrete-mixer must bleaned in order for the
concrete to béaded thendrivento a building site, where it isnloaded The concrete must then be
usedwhile it is still fluid. This process is illusted by the temporal plan given in Figure 5.

Avai | abl e(c)

o
| MAKE- AND- TI VE- CONCRETE(c) [30] |
At-factory(m] Fl ui d }
=l -Avai | abl e(c)w Hace) -Fl ui d(f)v'x
CEAN(M [4] At-facéory(n') /// "
Erpty(m [DRIVE(ms)[6] | L |
- At - At e !
At-factory(ma (ms) Del i ver ed(sT<, 5) h
Fluidc) ! Flui d . o Fluid(cy
| : | ui d(c) r// ’
Empty(m At -factorv(ml on ‘\,' AL(m s) s USE(c) [4]
 — n(m,c
;]
LOAD(m c) [5] P/DUNLm = Used(c)
-Enpty(m m on(m,c |_ D(m c.) (71] _
-on(mc) Delivered(mc,s)

Figure 5: Ready-mix Concrete Delivery Temporal Plan

This set of actiona\ (illustrated in the temporal plan shown in Figbyere all landmarks. The ini-
tial statel and the goab are given by

| = {At-factory(n), Available(c)}
33

COOPERMARIS, REGNIER

G = {Delivered(mc,s), Used(c)}

Given the temporal planning problerhA5G>, whereA is the set of all actions from the Temporal
Cement Factory domain, the set of sub-g8&snd the reduced set of acticksre:

SG = {Delivered(mc,s), Used(c), Fluid(c), At(ms), Available(c),
O(mc), At-factory(m, Enpty(m}

A = {USE(c), UNLOAD(mc,s), DRIVE(ms), LOAD(mc), CLEAN(m), MAKE-
AND- TI ME- CONCRETE(¢) }

For alla; # & O A, we have Add{) n Add(g) n SG= 0. Hence, by Definition 3.3, the set of ac-
tionsAis EU relative t&5SG We can immediately remark that no actions détetdluentsused(c),
Delivered(mc,s) and At(ms), and no actions add the fluerdsail abl e(c) and At -
factory(n). Thus, by Lemma 4.3, each of these fluents afe -bobnotone and +monotone rela-
tive to 4, A, G>. By Lemma 7.2, we can deduce tBatm c) is —-monotone since the temporal re-
laxation TR[After(QAD(m c) ,On(m c), UNLOAD(m ¢, s))] has no solution. By a similar argu-
ment,Fl ui d(c) is also —monotone by Lemma 7.2.

We can then detect unitary actions. From Lemma (6abe (1)), we can deduce that
UNLOAD(m ¢, s) is unitary. Then, applying Lemma 6.4 (case (3jjhwkh = On(mc) andb =
UNLOAD(m ¢, s), tells us that QAD(m c) is unitary. Finally, applying Lemma 6.4 (case ,(8)ith h
=Enpty(nm andb=L0AD(m c), tells us thaCLEAN(m) is unitary. SinC&CLEAN(n) is unitary, we
effectively add the constraint OnCGeEAN(m)) to TR and with this constraint Lemma 7.2 is naif¢ s
ficient to detect thatenpt y(nm) is monotone*. Thus, using the new notion of ugitaction and the
linear-time rules to detect such actions givenenti®n 6, we can prove monotonicity* of all fluents
without needing to use the computationally expenkdmma 7.8 as we previously proposed (Cooper,
Maris & Régnier, 2013b).

It is now possible to apply Theorem 5.6, siAdds EU, all fluents are monotone* and all fluemts i
| are —_monotone*. It follows that TR is a soluticlwgedure for this problem. The problemiXG>
has a solution-plan, found by TR, shown in Figur&\® represent non-instantaneous actions by a
rectangle. Conditions are written above an actmd, effects below; causality constraints are repre-
sented by bold arrows, and —authorisation consérbindotted arrows.

This example can be extended to the generic cashiah there are several sites, several batches
of concrete and several mixers. It is monotoneranthins EU provided that the goals (via the fluents
Del i ver ed(m c, s)) specify which mixemis to deliver which batch to which building sites. All
such instances can be solved in polynomial timéHsorem 7.10.

10.Discussion

The results in this paper can also be applied tetemporal planning since, for example, a classi-
cal STRIPS planning problem can be modelled asnadeal planning problem in which all actions
are instantaneous. It is worth pointing out that titactable class of classical planning problems in
which all actions are establisher-unique and adirits are detectable as (both + apdhonotone by
applying only Lemma 4.3, is covered by the PA #&hle class of (Jonsson & Béackstrém, 1998).

34

MONOTONETEMPORAL PLANNING

An obvious question is whether both establishegugmess and monotonicity are necessary to ob-
tain tractability. An affirmative answer to this agtion follows from intractability results in non-
temporal planning: Backstrém and Klein (1991b) sbdwhat establisher-uniqueness alone cannot
prevent minimal plans being of exponential sizel, onsson & Béckstrom (1998) showed that under
conditions implying monotonicity of all fluents éfclass BA in their terminology), planning is NP-
hard.

For simplicity of presentation and for conformitjtwPDDL2.1, we have considered that inherent
constraints between the times of the events witldrsame action-instance are all interval conggrain
We can, however, remark that Theorem 5.6 still ©idfidhe inherent constraints are arbitrary min-
closed constraints, since this was the only prgpeguired of the constraints in the proof of Thor
5.6. An example of such a constra@i{ky) is a binary interval constraint with variable hds:y—x [
[fx¥),a(x,y)], which is min-closed provided thixy) is a monotone increasing function>ofind
g(x,y) is a monotone decreasing functioryof he shift-monotonic constraints used by Praldt\Aer-
faillie (2012) in the scheduling of agile sateflitare a subclass of such constraints since in shift
monotonic constraints bofiix,y) andg(x,y) are monotone increasing functionsxodnd monotone
decreasing functions gf The consistency of a set of shift-monotonic qamsts can be tested in time

ord).

An important aspect of temporal planning, whichlisent from non-temporal planning, is that cer-
tain temporal planning problems, known as temppetpressive problems, require concurrency of
actions in order to be solved (Cushing, Kambhampéiisam, & Weld, 2007). The cement factory
planning problem given in Section 9 is an exampke mporally-expressive problem, since concur-
rency of actions is required in any solution. Irdjée industrial environments, concurrency of awio
is often used to keep storage space and turn-atimed within given limits. In a previous paper
(Cooper, Maris, & Régnier, 2013a), we identifiedubclass of temporally expressive problems,
known as temporally-cyclic, which require cycligatlependent sets of actions in order to be solved.
A simple but commonly occurring example was giveRigure 4, concerning an agreement between
an employer and employee. The tractable classrgddeal planning problems described in Theorem
7.6 contains both temporally-expressive and tentlgergclic problems. For example, the tempo-
rally-cyclic problem given in Figure 4 is estabéistunique and all fluents are both + amdonotone
(this follows from Lemma 4.3 since no fluents aestbyed by either action).

Most temporal planning problems will not fall inttee tractable class of EU monotone problems.
Even so, it may be that certain sub-problems diinfal this class. Given a temporal planning proble
<I,A,G>, we can test in polynomial time, for each fluenthether the sub-problem A{f} > satisfies
the conditions of Theorem 7.6 (i.e. EU monotoneh wionotonicity detectable using the temporal
relaxation TR). If this is the case, then we cad fn polynomial time a plaR: which establishes the
fluentf. This planPs can then be considered as an action which couétited to the set of actioAs
in order to facilitate the solution of the origimebblem <,A,G>.

Our work is related to the literature regardingdi@arks. Porteous, Sebastia & Hoffmann (2001)
and Keyder, Richter & Helmert (2010) define a laatkas a fact that must be true at some point in
every valid solution-plan. Landmarks have been usgdanning in two main ways. The first one is
the conception of heuristic functions to guide dealgorithms (Richter, Helmert & Westphal, 2008;
Richter & Westphal, 2010; Helmert & Domshlak, 200®hother use of landmarks is to partition the
problem into easier subproblems whose goals ajendtgons of landmarks (Hoffmann, Porteous &

35

COOPERMARIS, REGNIER

Sebastia 2004; Sebastia, Onaindia & Marzal 2006yeNMecently, Vernhes, Infantes & Vidal (2013)
define a landmark-based meta best-first searchithigo

Landmarks have also been used for the detectiangaflvable temporal planning problems (Mar-
zal, Sebastia & Onaindia, 2008). A graph is byiladding causal relationships between the extracted
landmarks. Then temporal intervals are associatttdeach landmark and these intervals, together
with the causal relationships, define a set of traimts. Finally, a CSP solver checks the consisten
of this set and indicates that the problem hasohgisn when an inconsistency is found. Unlike the
set of constraints in our temporal relaxation T set of constraints does not fall into a trdetab
class. Further research is required to determiretheh certain of these constraints could be ugefull
combined with the STReonstraints of our temporal relaxation TR to abtai even stronger tractable
relaxation.

In the general case, verifying that a fact is afaark is PSPACE-complete (Hoffmann, Porteous
& Sebastia 2004). However, some landmarks can lmedfonore efficiently by using various tech-
nigues: Porteous & Cresswell (2002) and Hoffmammte®us & Sebastia (2004) present methods for
detecting landmarks and relations between landnzaked on backchaining from the goals in the
relaxed planning graph, whereas Zhu & Givan (2088)forward propagation in the same graph and
Richter, Helmert and Westphal (2008) use the dotnaisition graph, a graph whose nodes represent
the possible values of the variable and edgesgepiréhe possible transitions between values inlduce
by actions.

The notion of monotonicity* introduced in this papepends on the relative order of the estab-
lishment and the destruction of the same fluerttivih minimal plan. Our experiments have demon-
strated that many fluents in benchmark problemsnai®ed monotone*. An interesting avenue of fu-
ture research would be to investigate, both thiealist and empirically, the relative order of the e
tablishment and the destruction different fluents within a minimal temporal plan. This isaag
closely related to research on landmarks. Diffeoetierings between landmarks have been studied in
non-temporal planning. Some of these orderinggaaganteed to hold in every solution-plan and do
not prune the solution space (they are sound):ufidit(Koehler & Hoffmann, 2000), "Necessary"
and "Greedy-necessary" (Hoffmann, Porteous & Sieba@04). The natural ordering is the most
general and then greedy-necessary ordering andsaegeordering. Others orderings such as "Rea-
sonable”, "Obedient-Reasonable” (Kcehler & Hoffn#2090) are not sound (it is possible that no so-
lution-plan respects these orderings) but they prage the solution space. All these orderings be-
tween landmarks are defined assuming instantaresions and would need to be redefined in the
temporal framework. Further research is requiraedetermine whether landmark orderings could use-
fully be extended to incorporate orderings betwaletypes of events in temporal plans (the estab-
lishment or destruction of a fluent by an actiamdimark, or the beginning or end of an interval over
which a fluent is required by an action landmark).

11.Conclusion

We have presented a class of temporal plannindgonsbwhich can be solved in polynomial time
and which has a number of possible applicationgbhpin the chemical, pharmaceutical and con-
struction industries. The notion of monotonicityt@mporal planning is an essential part of thendefi

36

MONOTONETEMPORAL PLANNING

tion of this class. We extended our basic notiomofotonicity to monotonicity* by considering only
minimal plans.

We have also shown that all planning problems bharataxation based on EU monotone planning
which is an interesting alternative to the standelakation produced by ignoring deletes. It alsw p
vides a means of detecting action landmarks andtooe* fluents.

Further research is required to discover otherilplesapplication areas and, on a practical leweel, t
develop tools to help users find a model of a Enwhinvolving only monotone* fluents when such a
model exists. On a theoretical level, an intergséimenue of future research is the extension of the
tractable classes presented in this paper by nglaikie condition of establisher-uniqueness soghat
fluent can be established by more than one actmvided that there is only one action that canbesta
lish it at any given moment.

Acknowledgements

This research was supported by ANR Project ANR-LAM-0210. We gratefully acknowledge
the help of the reviewers whose constructive suiggssled to significant improvements in the pres-
entation of this paper.

References

Backstréom C. & Klein I. (1991a) Parallel non-bingrhanning in polynomial timeProceedings
IJCAI'1991], 268-273.

Backstrom C. & Klein I. (1991b) Planning in polyn@in time: the SAS-PUBS class,
Computational Intelligence (3), 181-197.

Backstrom C. & Nebel B. (1995) Complexity resulisr fSAS+ planning.Computational
Intelligencell(4), 625-655.

Baier J. A. & Botea A. (2009). Improving planningrformance using low-conflict relaxed plans.
Proc. 19th International Conference on AutomateahiRing and Scheduling (ICAPS'2009)

Betz C. & Helmert M. (2009). Planning with h+ in ddry and Practicekl 2009: Advances in
Artificial Intelligence LNCS Vol. 5803, 9-16.

Blum A.L. & Furst M.L. (1995) A.L. Blum, M.L. FurstFast planning through planning-graphs
analysis, inProceedings of the 14th International Joint Confiae on Artificial Intelligence
(IJCAI-95), Montréal, Québec, Canada, 1636-1642.

Bonet B., Loerincs G. & Geffner H. (1997) A Robastd Fast Action Selection Mechanism for
Planning,Proceeding®AAI-97/IAAI-97 714-719.

Brafman R.l. & Domshlak C. (2003) Structure and @tewity in Planning with Unary
OperatorsJournal of Artificial Intelligence Researd8, 315-349.

Brafman R.l. & Domshlak C. (2006) Factored Plannidgw, When, and When No®roc. 21st
National Conference on Atrtificial Intelligencg09-814.

Bylander T. (1994) The Computational ComplexityRsbpositional STRIPS Planningrtificial
Intelligence69(1-2), 165-204.

37

COOPERMARIS, REGNIER

Cai D., Hoffmann J. & Helmert M. (2009). Enhancitigg context-enhanced additive heuristic
with precedence constrainfroc. 19th International Conference on AutomateahiRing and
Scheduling (ICAPS’'2009%0-57.

Chen H. & Giménez O. (2008) Causal Graphs and tiraity Restricted Plannind?roc. 18th
International Conference on Automated Planning &ctiedulindICAPS’2008) 36-43.

Coles A., Fox M., Long D. & Smith A. (2008) Plangirwith Problems Requiring Temporal
CoordinationProc. of AAAI 2008892-897.

Cooper M.C., de Roguemaurel M. & Régnier, P. (20A1yveighted CSP approach to cost-
optimal planningAtrtificial Intelligence Communicatiori24(1), 1-29.

Cooper M.C., Maris F. & Régnier P. (2010) Solvirgmporally cyclic planning problems,
International Symposium on Temporal Representati@hReasoning (TIMEL13-120.

Cooper M.C., Maris F. & Régnier, P. (2012) Tractaflonotone temporal plannirgroceedings
ICAPS 201220-28.

Cooper M.C., Maris F. & Régnier, P. (2013a) Manggiremporal Cycles in Planning Problems
Requiring Concurrencyzomputational Intelligenc9(1), 111-128.

Cooper M.C., Maris F. & Régnier P. (2013b) Relaxatiof Temporal Planning Problems,
International Symposium on Temporal Representati@hReasoning (TIMEB7-44.

Cushing W., Kambhampati S., Mausam & Weld D.S. @200hen is Temporal Planning Really
Temporal? Proceedings of 20 International Joint Conference on Artificial Inliglence
IJCAI'2007, 1852-1859.

Dean T., Firby J. & Miller D. (1988) Hierarchicald®ning involving deadlines, travel time and
ressourcesComputational Intelligenc6(1), 381-398.

Dean T. & McDermott D.V. (1987) Temporal Data BddanagementAtrtificial Intelligence
32(1), 1-55.

Dechter R., Meiri |. & Pearl J. (1991) Temporal Gaint NetworksArtificial Intelligence49(1-
3), 61-95.

Do M.B. & Kambhampati S. (2008apa: A Multi-objective Metric Temporal Plann@gurnal
of Artificial Intelligence Research0, 155-194.

Domshlak C. & Dinitz Y. (2001) Multi-agent off-lineoordination: Structure and complexity.
Proceedings of 6th European Conference on Plani@’2001 277-288.

Erol K., Nau D.S. & Subrahmanian V.S. (1995) Comjile decidability and undecidability
results for domain-independent planniAgtificial Intelligence76(1-2), 75-88.

Eyerich P., Mattmiiller R. & Réger G. (2009) Usiing tContext-enhanced Additive Heuristic for
Temporal and Numeric Planningroceedings ICAPS 200230-137.

Fox, M. & Long, D. (2001). Stan4: A hybrid plannistrategy based on subproblem abstraction.
The Al Magazin2(3), 81-84.

Fox M. & Long D. (2003) PDDL2.1: An Extension to BD for Expressing Temporal Planning
Domains,Journal of Artificial Intelligence Resear@b, 61-124.

Fox M., Long D. & Halsey K. (2004). An Investigationto the Expressive Power of PDDL2.1,
Proc. 18" European Conference on Artificial Intelligenca28-342.

Gerevini A. & Cristani M. (1997) On Finding a Satut in Temporal Constraint Satisfaction
Problems.Proc. 18" International Joint Conference on Atrtificial Inliglence (IJCAI'1997),
1460-1465.

Gerevini, A., Saetti, A. & Serina, |. (2003). Plamgthrough stochastic local search and temporal
action graphsJournal of Artificial Intelligence Researd@0, 239-290.

38

MONOTONETEMPORAL PLANNING

Ghallab M. & Alaoui A.M. &1989) Managing EfficientiTemporal Relations Through Indexed
Spanning TreesProc. 11" International Joint Conference on Atrtificial Inigencg 1297-
1303.

Ghallab M., Nau D.S. & Traverso P. (200¥dtomated Planning: Theory and Practiddorgan
Kaufmann.

Giménez O. & Jonsson A. (2008) The complexity adnpling problems with simple causal
graphsJournal of Artificial Intelligence Resear@1, 319-351.

Giménez O. & Jonsson A. (2012). The influencé&-dependence on the complexity of planning.
Artificial Intelligencel77-179, 25-45.

Haslum P. (2008) A New Approach To Tractable PlagnProceedings of ICAPS'2008.32-
139.

Haslum P., Slaney J. & Thiébaux S. (2012). Incraaidower bounds for additive cost planning
problems.Proc. 22nd International Conference on AutomatednRing and Scheduling
(ICAPS’2012) 74-82.

Helmert M. (2003) Complexity results for standarhbhmark domains in planningutificial
Intelligencel43 (2), 219-262.

Helmert M. (2004). A planning heuristic based onsa graph analysi®roc. 14th International
Conference on Automated Planning and SchedylitgPS'2004) 161-170.

Helmert M. (2006) New Complexity Results for Classi Planning Benchmark®roc. 16th
International Conference on Automated Planning Satleduling (ICAPS'2006%2-61.

Helmert M. & Geffner H. (2008). Unifying the cauggiaph and additive heuristicfroc. 18th
International Conference on Automated Planning &ctieduling (ICAPS’2008)40-147.

Helmert M. & Domshlak C. (2009) Landmarks, Critiddhths and Abstractions: What's the
Difference Anywayroc. International Conference on Automated Plagrémd Scheduling
(ICAPS 2009), 162-169.

Hoffmann J. (2005) Where Ignoring Delete Lists W&rkocal Search Topology in Planning
BenchmarksJournal of Artificial Intelligence Researd#, 685-758.

Hoffmann J., Porteous J. & Sebastia L. (2004) Qrdldcandmarks in Planninglournal of
Artificial Intelligence ResearcB2, 215-278.

Jeavons P. & Cooper M.C. (1995) Tractable condsaion ordered domainsArtificial
Intelligence79, 327-339.

Jonsson A. (2007) The Role of Macros in Tractabsnifing Over Causal GraphBroc. 20th
International Joint Conference on Atrtificial Intiglence(IJCAI'2007), 1936-1941.

Jonsson A. (2009) The Role of Macros in Tractadenning.Journal of Artificial Intelligence
Researcl86, 471-511.

Jonsson P. & Backstrom C. (1994) Tractable planniitig state variables by exploiting structural
restrictionsProc. AAAI'1994 998-1003.

Jonsson P. & Backstréom C. (1995) Incremental Plaprin New Directions in Al Planning: 3rd
European Workshop on PlannirgWSP’199579-90.

Jonsson P. & Backstrom C. (1998) State-variablenrpfey under structural restrictions:
Algorithms and complexityArtificial Intelligence100(1-2), 125-176.

Karmarkar N. (1984) A new polynomial time algorittion linear programmingCombinatorica4
(4) 373-395.

Karpas E. & Domshlak C. (2009) Cost-optimal plagninith landmarks|nternational Joint
Conference on Atrtificial Intelligence (IJCAI'20Q9)728-1733.

39

COOPERMARIS, REGNIER

Katz M. & Domshlak C. (2008) New Islands of Tradliép of Cost-Optimal PlanningJournal of
Artificial Intelligence ResearcB2, 203-288.

Katz M. Hoffmann J. & Domshlak C. (2013a). Who saié need to relax All variablesoc.
23rd International Conference on Automated Planrang Scheduling, (ICAPS’2013)

Katz M., Hoffmann J. & Domshlak C. (2013b). Red-d{eRelaxed Plan HeuristicBroc. 27th
AAAI Conference on Artificial Intelligence (AAAI'EZB).

Keyder E. & Geffner H. (2008). Heuristics for plamg with action costs revisitedProc. 18th
European Conference on Atrtificial Intelligence (H2A08), 588—-592.

Keyder E., Hoffmann J. & Haslum P. (2012) Semi-Reth Plan HeuristicsProc. 22nd
International Conference on Automated Planning Setleduling, ICAPS'201228-136.

Keyder E., Richter S. & Helmert M. (2010) Sound &lete Landmarks for And/Or Graphs.
Proceedings of the European Conference on Artificigelligence (ECAI)335-340.

Knoblock C.A. (1994) Automatically Generating Alasttions for PlannindArtificial Intelligence
68(2), 243-302.

Koehler J. & Hoffmann J. (2000) On reasonable amdefd goal orderings and their use in an
agenda-driven planning algorithdournal of Artificial Intelligence Researd®, 338—386.

Koubarakis M. (1992) Dense Time and Temporal Cairss with# Proc. 3° International
Conference on Principles of Knowledge Represemtaticd Reasonin(KR'1992) 24-35.

Laborie P. & Ghallab M. (1995) Planning with ShdeatiResource Constraint®roc. 14"
International Joint Conference on Artificial Intiglence 1643-1651.

Long D. & Fox M. (2003) Exploiting a graphplan framork in temporal planning?roc. 13"
International Conference on Automatic Planning &wheduling52-61.

Maris F. & Régnier P. (2008) TLP-GP: Solving TenadhyExpressive Planning Problems,
TIME 2008 137-144.

Marzal E., Sebastia L. & Onaindia E. (2008) Detatif unsolvable temporal planning problems
through the use of landmark&roceedings of ECAI'200819-920.

McDermott D. (1998) PDDL, The Planning Domain Défon Language. Technical Report,
http://cs-www.cs.yale.edu/ homes/dvm/.

Porteous J. & Cresswell S. (2002) Extending lan#manalysis to reason about resources and
repetition.Proceedings of PLANSIG'20025-54.

Porteous J., Sebastia L. & Hoffmann J. (2001) Oa HExtraction, Ordering, and Usage of
Landmarks in PlannindRecent Advances in Al Planning. European ConferemncBlanning
(ECP 2001) 37-48.

Pralet C. & Verfailie G (2012) Time-Dependent SimpTremporal NetworksProc. 18"
International Conference on Principles and PractifeConstraint Programming08-623.

Reichgelt H. & Shadbolt N. (1990). A Specificatidool for Planning SystemsProc. 9"
European Conference on Atrtificial Intelligendat1-546.

Richter S., Helmert M. & Westphal M. (2008) LandksarevisitedProc. 23rd AAAI Conference
on Artificial Intelligence (AAAI'08)975-982.

Richter S. & Westphal M. (2010) The LAMA Plannerui@ing Cost-Based Anytime Planning
with LandmarksJournal of Artificial Intelligence Research (JAIBY: 127-177.

Rintanen J. (2007) Complexity of Concurrent Tempd?kanning. Proc. 17th International
Conference on Automated Planning and Sched(litgPS’2007) 280-287.

Rutten E. & Hertzberg J. (1993) Temporal Planné&tonlinear Planner + Time Map Manager.
Artificial Intelligence Communications 6(1)8-26.

40

MONOTONETEMPORAL PLANNING

Schwartz P. & Pollack M.E. (2004) Planning with jDisctive Temporal Constraint$2roc.
ICAPS'04 Workshop on Integrating Planning into Sichieg, 67-74.

Sebastia L., Onaindia E. & Marzal E., (2006) Decosition of planning problemsAl
Communication49:49-81.

Shin J. & Davis E. (2004) Continuous Time in a SBased PlannerProc. 19" National
Conference on Atrtificial Intelligence (AAAI'Q4H31-536.

Slaney J. & Thiébaux S. (2001) Blocks World reeditArtificial Intelligence125, 119-153.

Smith D.E. (2003) The Case for Durative Actions:Cdmmentary on PDDL2.1Journal of
Artificial Intelligence ResearcB0, 149-154.

Stergiou K. & Koubarakis M. (2000) Backtracking a@fighms for disjunctions of temporal
constraintsArtificial Intelligence120(1):81-117.

Vere S. (1983) Planning in Time: Windows and Dunagi for Activities and Goal$EEE Trans.
on Pattern Analysis and Machine Intelligere246-267.

Vernhes S., Infantes G. & V. Vidal V. (2013) PrahleSplitting using Heuristic Search in
Landmark OrderingsProc. 23rd International Joint Conference on Adiél Intelligence
(IJCAI'2013), 2401-2407.

Vidal V. & Geffner H. (2005) Solving Simple PlangirProblems with More Inference and No
Search.Proc. 11th International Conference on PrincipleadaPractice of Constraint
Programming CP'05, 682-696.

Williams B.C. & Nayak P. (1997) A reactive planrfer a model-based executiveroc. 15th
International Joint Conference on Artificial Intiglence 1178-1185.

Younes H.L.S. & Simmons R.G. (2003) VHPOP: Vergsatieuristic Partial Order Planner.
Journal of Artificial Intelligence Resear@d, 405-430.

Zhu L. & Givan R. (2003) Landmark extraction viaaphing graph propagatiohCAPS'2003
Doctoral Consortium156-160.

41

