STATE SPACE MODELS OF REMOTE MANIPULATION TASKS*

Daniel
Assistant Professor,
Massachusetts
Cambridge,
Summary

A state variable formulation of the remote
manipulation problem is presented, applicable to
human supervised or autonomous computer-manipula-
tors. A discrete state vector, containing posi-
tion variables for the manipulator and relevant
objects, spans a quantized state space comprising
many static configurations of objects and hand.

A manipulation task is a desired new state. State
transitions are assigned costs and are accom-
plished by commands: hand motions plus grasp, re-

lease, push, twist, etc. In control theory terms
the problem is to find the cheapest control his-
tory (if any) from present to desired state. In

theorem proving terms it is to combine predicates
and axioms to prove (or disprove) the proposition
"The task. .is possible." Each corresponds

to finding the shortest path to the desired state.
A method similar to Dynamic Programming is used
to determine the optimal history.

The system is capable of obstacle avoidance,

grasp rendezvous, incorporation of new sensor
data, remembering results of previous tasks, and
so on.

Keywords:

Remote Manipulation
Control Theory
Problem Solving
Theorem Proving

Introduction and Problem Statement

Remote manipulation involves a human opera-
tor and a machine together performing a task
which could be performed more easily and effi-

ciently by the man alone, were the task or Its en-
vironment not too large, small, distant, ponder-
ous, delicate, obscure, dangerous or some combin-

ation of these. Manipulators are used In quite
complex hot lab experiments,*7 for underwater re-
trieval, for complete operation and maintenance

of large radioactive research installations for
extended periods of time,® and in robot research,'’
to name a few examples.

To overcome the handicaps of time, scale or
distance barriers, two lines of research have de-
veloped which involve combining a manipulator and
a computer. One is the Human Supervised Remote
Computer-Manipulator,' depicted in Figure 1.
Here, a human operator is aided by the computers
in planning and executing the task. The other
approach is the autonomous robot, which is intend-

*Work supported by NASA Grant NsG 107-61

E. Whitney
Department of Mechanical
Institute of Technology
Massachusetts

Engineering

ed to maneuver and manipulate unaided in a dis-
tant environment.''*’
Major problems in the design of human super-
vised or autonomous computer-manipulators are
1) Model and real world of hands, objects
and obstacles.
2) Define the notion of manipulation task.

3) Develop methods which generate plans of
manipulative action which are relevant
to the task environment (as modelled in
1)) and which are capable of achieving
the stated goal (as expressed In 2)).

To solve these problems, we shall consider
the manipulator's hand and the task site as a sys-
tem to be controlled by an operator or other in-
telligence. This approach differs from previous
work"*'® in which only the hand is included in
the system model. A state vector is defined,
containing not only variables which describe the
manipulative device, but also vital parameters of

task site, possible including locations of rele-
vant objects and obstacles. This vector, suitably
quantized, spans a discrete state space whichcon-

tains many different static configurations of the
manipulator and the objects to be manipulated. A
manipulation task is then defined as a new state
which the "operator" (human or computer) wishes
the manipulator-objects-obstacles system to occupy.
State transitions are accomplished by commands:
quantized basic motions of the manipulator's jaws
plus grasp, release, push, twist, and so on.

One may Interpret the resulting problem in
Modern Control theory terms as follows: given
that each state transition costs a known amount,

find the cheapest (shortest) path from the pre-
sent state to the desired state. This path re-
presents the optimal control policy for accom-
plishing the given task.

Alternatively, one may view the state space
in terms of problem solving or theorem proving:
each state transition represents an instance of
a predicate or an axiom such as "If the jaws move
one inch to the right, then the new state is re-
lated to the old state by. " or "If the jaws
are grasping object A and the jaws move one inch
to the right, then object A moves the same dis-

tance and the new state is related to the old
state by. . <" Each instance is specified by ar-
guments Including the current state, the name of

a relevant object, and so on. Since the problem
is purely geometric, the result of applying any
axiom or predicate is unambiguously related to
the goal. The resulting path may then be thought
of as the solution to the problem (or the proof
of the theorem) "Can the specified task be accom-

-495-

pUshed?"

Tasks and Commands

At the outset ve should distinguish two types
of tasks, those which can be planned ahead and
those which cannote An excellent example of the
latter is the task "Find the pencil." Execution
cannot be planned open loop, along the lines of:
Move jaws to location X, pick up pencil. Rather,
execution consists of continual interaction be-
tween the manipulator-computer and its environ-
ment* The type of plan needed closes a loop
through the manipulator's sensors, and has many
of the features of a numerical algorithm rich in
"If" statements. Such problems have been studied
by Ernst4 and Barber1. Larson and Keckler?' have
used Dynamic Programming to find search and motion
strategies for a robot in an unexplored environ-
ment*

Aside from searches and other tasks whose
history and outcome are almost unknown £ priori,
most manipulation tasks can be planned out In ad-
vance* The likelihood of the plan's success de-
pends greatly on the accuracy of a priori infor-
mation concerning location of named places and
objects, and also on plain luck. Less than cer-
tain success is not, however, any reason for not
planning. It is the ability to formulate and at-
tempt execution of plans that makes an automatic
or semi-automatic manipulator different from and
superior to a manually controlled manipulator.
Furthermore, lack of certainty in the a priori
information can be compensated for by execution
routines which combine obedience to the plan with
minor-range searches. Greater sophistication in
the execution routines will allow more uncertain-
ty in the £ priori information without degrading
the certainty of overall task completion..

Of all tasks which can be planned out in ad-
vance, we shall consider what for ordinary mani-
pulation constitute the great bulk, namely those
in which the positions or orientations of objects
and effectors (jaws, tools, etc*) are changed.
Thus ve specifically exclude such activities as
bouncing a ball or balancing a stick on end. By
ignoring velocities and accelerations, we may con-
centrate on the geometric constraints fundamental
to manipulation: obstacle avoidance, rendezvous
of a jaw-borne object and its destination for
pushing, releasing, pouring, inserting, and so on.
(Granted a jaw-borne object has a velocity: nev-
ertheless what is important about carrying Is
that jaws and object maintain a fixed geometric
relation to each other throughout.) Then one may
state the planning problem as that of finding a
sequence of intermediate configurations for the
task site to occupy on the way, so to speak, from
the initial configuration to the desired one.

To enable the computer to solve such prob-
lems, we must equip it with a model of manipula-
tion tasks so that it can determine what config-
urations may follow from a given configuration,
or equivalently what changes can be made to a

given configuration. This requires a way of ex-
pressing geometric constraints or equlvalently
manipulative predicates and how they are altered
by changes in the task site. More generally, we
must recognize that some configurations are "near
neighbors" while others are not, but rather are
separated by one or more intervening configura-
tions, some of which are near neighbors. Near
nelghborline88 of two configurations may be de-
fined as a (usually bilateral) attribute imply-
ing that one single simple motion of the mani-
pulator jaws, probably of limited extent, will
carry the task site from one configuration to the
other. Working with a small, well chosen set of
such subnotions, we can plan a wide variety of
tasks. To be precise, call the submotlons atomic
commands. For example:

Move jaws left one Inch

Move jaws right one inch (
Open jaws

Close jaws

In what follows we shall describe a method by
which a task site may be modelled, the "operator"
may request a task, and the computer can devise
a sequence of atomic commands which, to the de-
gree of precision of the task model, can accom-
plish the task.

The State Space Model

The problem we have posed is to find a se-
quence of finite elements which has a particular
property. We may dispense with enumeration of
the possibilities, since there are far too many,
and far too few of them are worth considering.

Let x be a vector containing the position
of the manipulator jaws, the positions of rele-
vant objects and any other variables of Interest,
such as object orientations. Then the manipula-
tor-task system is governed by the equation

x(kHl) = x(k) + A{x(k)) ulk)
x(0) given (2)
k - 0,1,2..-.

where tj(k) is a vector of admissible controls
such as equation (1), and A is a state dependent
matrix which expresses the geometric task con-
straints mentioned in the previous section. These
constraints are more easily visualized on a finite
graph-5 in which each node represents a state x.
and each branch leading out to another state in-
dicates an allowed command at state x . States
connected by a single branch are thus near neigh-
bors. The totality of nodes, some connected by
branches, constitutes the state space. Its nodes
represent all the configurations which the task
site can assume as a result of the execution of
arbitrary strings of atomic commands. Alterna-
tively, the state space represents the limited
set of Instances of the manipulative predicates
being considered, the instances differing in the
arguments associated with each, and the set
bounded by the limits on each state variable. We

-496-

may then say that paths through the space repre-
sent strings of atomic commands (controls or proof
steps) which make coherent (though not necessarily
purposeful or efficient) changes in the task site.
For example, consider the task site in Figure 2.
The Jaws may move from point to point along the
line, open and close, but may not move the block.
(This last capability is added below.) Given the
atomic command set (1), the state space corres-
ponding to Figure 2 is shown in Figure 3. The
coordinates on the axes are xT, jaw position, and
H, Jaw status. Xj and H are the state variables.
The configuration of Figure 2 (jaws in location
4, closed) is represented by the flag at state
[4,1] in Figure 3. The vertical lines indicate
that the Jaws may open or close at any x, while
the horizontal lines indicate allowed jaw move-
ment. Movement directly into [2,1] from [3,1] or
[1,1] is forbidden since this would involve col-
lision between jaws and object. Thus [3,1] and
[2,1] are not neighbors in the sense defined above.

If we wish the jaws to move to location x-1,
jaws closed, we ask the computer to find a satis-
factory path from state [4,1] to state [1,1].*
(Naturally we want the computer to derive by it-
self the fact that the jaws must straddle the ob-
ject on the way.) Such a path, if it exists, can
be translated immediately into a string of atomic
commands suitable for accomplishing the task,
since the path tells the sequence of neighboring
intermediate configurations through which the task
site should pass on the way to the desired con-
figuration. There are countless possible paths,
most of which go nowhere purposive. But a short-
est path cannot go nowhere and in particular can-
not loop. So let us find shortest paths.

Many algorithms are available for finding
shortest paths in networks, among them Dynamic
Programming,2 Ford's algorithm,6 and the Hart-
Nilsson-Raphael algoritlun. ** Of more interest
to us is the general interpretation we can give
to "shortest": A path may be short in time, fuel,
risk, lack of information, or some (normalized)
combination of these, for example. A state space
may well be costly in fuel all over, but costly
in risk only in certain areas. Sometimes a given
command, like carrying, is costly everywhere, while
at other times the cost of a command may depend
on the state at which it is being executed (for
example, carrying through a crowded region of phy-
sical apace). By specifying the dimension, mag-
nitude and distribution of the'lengths" of lines
between points in the state space, the operator

+Suitable computer routines can generate the
value of the desired state from a less formal-
ized input command, such as "Go to the left of
the object"

**For tasks at the complexity level considered
here, this analytic approach seems superior, in
terms of computer time and likelihood of success,
to similar work employing Heuristic Programming
to elicit strategies.16

-497-

can to some degree affect the nature or "style"
of the resulting solution. The arrangement of
lengths shown in Figure 4 results in the path in-
dicated by the arrows. (This schedule of lengths
suppresses unnecessary motions of the open jaws.)
The corresponding work plan is:

Move left one inch
Open
Move left one inch
Move left one inch
Close

A path which allows the jaws to grasp the
object is shown in Figure 5. The corresponding
path for the case where the object is in loca-
tion x-1 is shown in a new state space in Figure
6. By making the object's location a new state
variable, y0, we may represent carrying and push-
ing in a larger state space, Figure 7. This
figure is made by combining Figures 5, 6, and
others like them, each corresponding to a parti-
cular value of y0. Note that pushing is not ex-
pressed 88 a transition analogous to that from
[3,1] to [2,1] in Figures 3, 4, and 5, for ex-
ample. This type of state transition is still
forbidden since it tells nothing about what hap-
pens to the pushed object. Pushing is properly
expressed in Figure 7 as a variation of carrying.

Physical Demonstration

The ideas of the previous section were im-
plemented on a three degree of freedom manipu-
lator converted from a plotting table. Square
objects could be grasped and moved about in a re-
gion 15 inches on a side. The manipulator jaws
were equipped with grip sensors inside and con-
tact sensors outside. No jaw rotations were pos-
sible. A Digital Equipment Corp. PDP-8 computer
contained a 2000 word program and a 500 word state
space.” The state vector consisted of (Xj, Yj,
H), while objects and obstacles were kept track
of in a separate list. The 2000 word program con-
tained all 1/O, a path finding algorithm, touch
sensor evaluation routines, stepping motor control,
plus interpretation of commands such as

operator desipgnates object at (x,y) with
Name, , »

pick up object with name. . .

take it to location (x,y)

go to location (x,y)

If a new object was discovered by the touch sen-
sors while a path was being executed, the system
estimated its location, asked the operator for a
name and then computed a new path to the original
goal, incorporating knowledge of the new object.
This object could be referred to later by name,
picked up, carried, and so on. A more complete
description appears in

*Twelve bits per word.

A More Complex Example

Suppose we wish to move a long thin spar
through a crowded two-dimensional environment.
(Picture carrying a sofa from the living room to
the porch.) Here the interactions between the en-
vironment and the spar's position and orientation
are of the most interest. To map motions of the
spar once it is grasped by a rotating pair of jaws,
we choose state variables

= x coordinate of spar, 1

» y coordinate of spar, 1

= orfentation of spar

of0 1f epar is parallel te x axis
1 if apar is parallel to y axis

2 awn

The allowed commands are

Move * x direction one unit
Nove * y direction one unit
Rotate 90"

Thus both position and orientation of the spar are
quantized.

The physical space is shown in Figure ft.
Walls are shown as open rectangles, while the two
possible orientations of the spar are shown by
cross lines at each possible position. The chal-
lenge is provided by the doorways, which allow the
spar to pass axlally but not athwart. This con-
straint and the presence of walls are shown in the
state space by deleting the lines corresponding
to the forbidden transitions.

The state space appears in Figure 9. We as-
sume for illustration that each "move" is of
length 2, each "rotate" of length 3. Let the spar
be initially at location (2,2) in the physical
space, oriented parallel to the y axis, and say
we want it moved to (3,3), ending up oriented
parallel to the x axis. Then the initial state
is [2,2,1] and the final state is [3,3,0]. These
are marked Start and End, respectively, on Figure
9.

There are two equal length solution paths,
shown In Figure 10 and visualized on a sketch of
the task site in Figure 11. These paths do not
"look like" the most direct route. Closer exam-
ination, however, reveals that these paths, by
initially moving the object away from the final
state, are able to save two rotations by spending
a little more distance. Again, if we read a solu-
tion path, we get a list of the required moves
and rotates in the correct order. A more general
solution to this problem which includes grasping
and releasing the spar in arbitrary (quantized)
positions and orientations, may be found in Chap-
ter V of Reference :°.

Discussion of the State Space Model
and its Implications

The main feature of the State Space Models
above is their quantization. This Is a direct

consequence of the kind of atomic commands we al-
low and of our Interest In the main motion fea-
tures of tasks for planning purposes. The atomic
commands may be thought of as task differentials,
but ultraflne quantization Is neither practical
nor necessary, especially if good sensors are
available. In fact, since more complex tasks re-
quire, In principle, state spaces of higher di-
mension, quantization poses staggering computer
storage problems. (6 state variables, 10 points
per axis - 10° points.) Three factors mitigate
such difficulties:

1) Only a handful of these points need be
in live (core memory) storage at any one time.
In fact, the problem of finding shortest paths is,
by default, one of State Increment Dynamic Pro-
gramming, 9 which latter may be greatly speeded
by algorithms such as that of Hart, Nilsson and
Raphael, which pursue only the currently most
promising path.

2) The state space need not be built and
held whole and intact in storage, but rather only
those sections needed as a particular path is
pursued. The state space is just a logical con-
sequence of a list of object and jaw locations,
sizes and orientations, plus extremely local "know-
ledge" of what circumstances prohibit a given com-
mand. The needed portions of the state space may
be built to order, using the information in the
list. Then, merely by concentrating on one state
and its immediate neighbors at a time, the com-
puter can plan tasks which involve hundreds (or
any number) of states. In most algorithms, more-
over, progress is monotone so that a state, once
considered, is never considered again. These no-
tions suggest that the state space je_ a list and
that list-processing computer languages may be
useful in dealing with it.

3) A state space describing a complex task
is of high dimension only because the space stores
the relations for all tasks which could be per-
formed by manipulating the objects and Jaws in
question. No command, however, asks for all tasks,
and because rearrangement tasks consist of re-
peated sequences such as "Move empty Jaws to lo-
cation X, grasp, carry object to location Y, re-
lease," it should be clear that only the state
variables actually involved in one such sequence
need be considered variable at one time. This is
obviously equivalent to considering only a limited
and much lower dimension cross section of the ori-
ginal space. Great savings in computer time and
storage may be effected by treating sequences of
such cross sections, Indeed considering them as
atomic actions on a much higher level than the
atomic commands which underlie them. We are thus
afforded two levels of planning, an upper level
in which gross motion goals are selected, and a
lower level in which detailed strategies for such
motions are evolved and their costs evaluated.
Thus we can consider more complex tasks without
recourse to unmanageable state spaces. In this
way, competing gross plans may be judged for cost-
effectiveness and the best one (for the given cost
structure) selected. It is worth speculating that

-498-

methods of Heuristic Programming5 would be useful
at the higher level, but some comparisons19 show
that for actually finding detailed paths, even the
relatively inefficient Ford algorithm is greatly
faster than Travis'16 heuristic path finding
methods.

Extending the Power of the State Space Method

Now we have reduced some basic manipulation
tasks to shortest path problems. In this section
we show how to make use of the basic pick-up-and-
carry capability demonstrated in Figure 7 to pro-
gram more complex tasks without recourse to enor-
mous state spaces, preserving the "operator's"
ability to shape the general features of the re-
sult without having to specify details.

We think of commands as functions whose ar-
guments (specified by the operator) may be place
or object names, and whose values are paths in
one or more related state spaces. The basic func-
tion "Take" is evaluated by a state space such as
Figure 7. Formally:

Take (A,X,Y) = carry object A to location X,
leaving the jaws in location Y {(3)

To exchange objects A and B, we may use "Take" to
define "Switch", using an appropriate interpretive
computer language:

Switch {A,B,X,Y) = Take (A,X,Y)
+ Take (B,A',Y) (A)
+ Take (A,B'.Y)
in which "+" means "followed by", X i8 a loca-

tion between A and B {chosen by the "ocperator"),

Y 19 a location near X, A" is A's old location

and B' {s B's old location, Switch may be "opti-
mized" 1f we allow the operator to define fuzzy
arcas X and Y in which points X and Y, respectively,
are to be sought by the computer aoc as to achieve
minimm total task length:

Switeh (A,B,X,Y) = min{ Take (A,xq,vy)
ixq} [+Take (B,A",¥7)
(yj} +Take (A,B',yy)

(5)

in vwhich ;’xﬁnndzy,_fgenote_the sets of locations
comprising regions X and Y respectively,

The evaluation of (5) requires the establish-
ment of a tree representing the result of choos-
ing each x; and yy, the frag subpoals. See
Pigure 12, in which we let X = x;,x3 and ¥ = y;,
¥3. The cost of an arc on the treae is deduced
by constructing a state space similar to Figure 7
(simplar alternatives using even lower dimension
spacas may aleo be u.,d20) and finding the length
of the shortest path which does the required job.
This spaca, consistent with remarks In the previous
section, may be thought of as a cross section
through & much larger space, which we never bothar
to construet, In this way, only those subtaske
vhich the "operator”, in his greater wisdom,
thinke are worth considering will actuslly be eval-

uated, When all the possibilities in X and Y have
been priced, the cheapest x; and y{ may be chosen,
completing the evaluation of (5).

The advantage of (5) over (4) is that the
"operator™ need not have precise knowledge com—_
cerning X and Y in order to request a switch, X
and Y correspond to the statement "over there some-
where", & convenient sort of statement to be able
to make. In a working system, one could make this
statement by pginting one's finger, a light pen,

a Lincoln Wand™ or similar 1/0 device at the task

gite or a representation of it on a TV or CET screer

Function definition im an obvious way of in-
creasing the manipulative capabllities of a com-
puter-manipulator. We may build layer on layer,
using the existing functions to define nev ones.
We have a way of telling the computer "how' te do
new tasks, such as sasembling involved structures
or making complex selection and ordering of sub=
goals, As an example of the latter, consider the
task site Iin Figure 13, Two cbiacts block s nar-
rov doorway. We wish to move object A to location
X. Bboth blockers must he moved from the doorway
before A can be carried through, It is posaible
to define a recursive function which enables the
computer to decide, on the basis of minimum total
length, which blockers to move, the order in which
to move them, and where to, in order to get A to X.
The operator, vhen defining the function, says in
affect, "These are the bloekers, here is a reglon
where they mipht be put; move A to X." 1f the
cost of a unit move empty is one, the coat of a
unit carry is two, and no diagonal moves are al-
lowed, then the tree correaponding to the evalua-
tion of chis function is shown in Figure 14, The
cost shown on each arc of the tree is deduced from
a two dimensional state space based on the appro-
priate version of Fipure 13. 53 such evaluacions
are reaquired, employing vastly less computation
and storage than the general 8 dimsnsional space
which could be defined, The two squal length so-
lution paths differ only in that B; and By exchange
rolea, Thisa Eroblam is discussed more fully in
Chapter V of B,

Conclusions

The state apace method has been showm to be
capable of describing s wide variety of tha logi-
cal and physical constraints which comprisse mani-
pulation. Using it, we can plan some non-trivial
taske and gain insight into the nature of caske
and commands. Combined with a flexible fnput
language and carefully composed execution routinas,
it can provide a basin for Supervisory Controlled
or Autonomous manipulation.

Referances

1, Barber, D.J., "MAKRTRAN, A Symbolic Language
for Supervimory Control of an Intalligemt
Remote Manipulator," S,M. Thesis, M.I.T,, De=
partment of Machanical Engineering, May, 1967,

-494-

10.

12.

13.

15.

16.

17.

18.

Bellman, R.E., and S.E. Dreyfus, Applied Dy-
namic Programming, Princeton: Princeton Uni-
versity Press, 1962.

19.
Berge, Claud, Theory of Graphs and Its Appli-
cation, New York, JOhn Wiley and Sons, 1962. 20.
Ernst, H.A., "A Computer-Operated Mechanical 21.

Hand," Sc.D. Thesis, M.l.T., Department of

Electrical Engineering, December, 1961.
Feigenbaum, E.A., and J. Feldman, editors,
Computers and Thought, New York: McGraw-Hill

Book Co., 1963.
Ford, La.R., Jr., "Network Flow Theory," Rand
Corp. Paper P-923, August 14, 1956.

Hart, P.E., N.J. Nllsson, and B. Raphael, "A
Formal Basis for the Heuristic Determination
of Minimum Cost Paths," IEEE Trans, on Systems
Science and Cybernetics, V. SSC4 (2), July,
196S, pp. 100-107.

Johnsen, Edwin, Discussant at 11th Annual Meet-
ing of the Human Factors Society,. September
25-28, 1967.

Larson, R.E., "Dynamic Programming with Re-
duced Computational Requirements," Trans.
IEEE Auto. Control, V AC-10 (2), pp. 135-43,
April, 1965.

Mergler, H.W., and P.W. Hammond, "A Path Opti-
mization Scheme for a Numerically Controlled
Remote Manipulator," 6th Annual Symposium of
the IEEE Human Factors in Electronics Group,
May, 1965.

Minsky, M.L., and S.A. Papert, Research on In-
telligent Automata, Status Report |1, Sept.,
1967, M.I.T. Project MAC.

Nllsson, N., and B. Raphael, "Preliminary De-
sign of an Intelligent Robot," in Computer
and Information Sciences - |1, New York:
demic Press, 1967.

Aca-

Roberts, L.G., "The Lincoln Wand," FJCC 1966,
pp. 223-26.

Ferrell, W.R., and T.B. Sheridan, "Supervisory
Control of Remote Manipulation," IEEE Spectrum,
V 4 (10), pp. 81-88, October, 1967.

Tomovlc, R., and G. Bonl, "An Adaptive Artifi-
cial Hand," IRE Trans. Automatic Control, AC-7,
April, 1962, pp. 3-10.

Travis, L.E., "Experiments with a Theorem-Uti-
lizing Program," SJCC 1964, pp. 339-58.

Weinberg, Alvin, "Transuranlc Elements and the
High-Flux Isotope Reactor," Physics Today,
vV 20 (1), p. 29.

Whitney, Daniel E., "State Space Models of Re-
mote Manipulation Tasks," Ph.D. Thesis, M.I.T.

-500-

Department of Mechanical Engineering, January,

1968.

Whitney, D.E., op. cit., p. 106.
Whitney, D.E., op. cit., pp. 113-123.

Larson, R.E., and V.G. Keckler, "Optimum
Adaptive Control in an Unknown Environment,"
IEEE Trans. Auto. Control, V AC-13 (4),
August, 1968, pp. 438-9.

EFFECTORS

™

DISPLAYS

REMOTE
ENV IRONMENT

_d_fz____ﬁ

¥

CONTROLS

SENSORS

REMOTE
COMPUTER

LOCAL
COMPUTER

Schematlec Diagram of Superviscry

']
T
Flg, 1 H Controlled Aemote Manlpulator

-501-

/bluck / Javs {clomed)

[S)
= _ <
1 3 'T 5

2

Figure 2, O(me-Dimensional Task Site

nt Ocecuple

l = closed }

0 = opan 8

" A A A

1 2 3 A 5 x5

Figure 7, State Space rorrespouding to Fipnre 2

L

4 H

l = clossd |

0 = open L .

Fipure 4. State Space with Aasipned Lengthis and the Shertest Path

&ﬁ 11
from: lto 1
FIRNDY
Ir [
2
1= closad |} o 2
Y
1 i 1 1 1
- o i —g-
0 = open 3 3 3 3
1 2 3 4 5 T %

Figure 5. Path Which Nepresents Grasping the Ohject

-502-

L A " "

-
= x

i 2 3 4 5 !
TFipure 6. Path for Grasping the Object in Location 1

H
1 Move
D —
Empty Jaws
0
1

x; = location of
Jaws

y = location cof
object

5
H = jaw atatus 3;\ 1 4

JJ1 1f jaws are closed
0 1f jaws are open

Figure 7

STATE SPACE ALLOWING JAWS TO PUSH THE OBJECT

-503-

A . A " 1 - X

1 2 3 4 5
Figure f. Physical Space for the Spar Problen

4y = v coordinate of object

/Eﬂd /
Y 1 i
|
- Start
- - T
o = orientation
of object
1
0
X = x coordinate
1 3 3 4 5 of object
Figure §

GRAPH OF THE PROBLEM IN FIGURE 8

-504-

- N
(AN [IEN
RN R
i _|||“|!._i-_--:
| “ " I i
h e
N N
| Al i N
T
N |
f] "
I\ L
| |
| _

4
#./
_ ~
|
bodo]
///

Figure 10

SOLUTION TO THE GRAPH OF FIGURE 9

2

L]
0 0

- o

I
[aundord-

g

imipaten

— T

L

visunlization of Sotution Path for Fipure 10

Figurc 11.

~505-

(11;?1)
Take (B.A'.yl) Take(A.B'._vl)

P

(x: .Yz) Take(A ,Blyn)

1Y2) Take(BAly,) Take(A,Bly)

CO 1 N o
st - r)Jo)
F)
(xznyl)
Take(B.A'v,) Take (A B v,) Cost —
» sl -0 +
Cost = v, Cost = ¥, prvr Y3
Tipure 17, Tree for Tvaluation of Pquation),
X L! N
Tar s T " Thaies 1 s 7 el ory
| = P . .
! e Teatead laaar o for ohject A

Lx = I'inal locatiun §e1 .-

A mL et T e fap (hee PTast sl Tewrees L,

-506-

Sranch Bl iminated
By the Minim{zation

T

Start

A S S B B P

Select Select Obtect Location Object Location
Object Location End

Filgure 14

‘TREE CORRESPONDING TO SOLUTION OF THE BLOCKED DOORWAY
PROKLEM IN FIGURE 13,

-507-

