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Abstract
Tensor factorization methods provide a useful way
to extract latent factors from complex multirela-
tional data, and also for predicting missing data.
Developing tensor factorization methods for mas-
sive tensors, especially when the data are binary- or
count-valued (which is true of most real-world ten-
sors), however, remains a challenge. We develop
a scalable probabilistic tensor factorization frame-
work that enables us to perform efficient factoriza-
tion of massive binary and count tensor data. The
framework is based on (i) the Pólya-Gamma aug-
mentation strategy which makes the model fully lo-
cally conjugate and allows closed-form parameter
updates when data are binary- or count-valued; and
(ii) an efficient online Expectation Maximization
algorithm, which allows processing data in small
mini-batches, and facilitates handling massive ten-
sor data. Moreover, various types of constraints on
the factor matrices (e.g., sparsity, non-negativity)
can be incorporated under the proposed framework,
providing good interpretability, which can be useful
for qualitative analyses of the results. We apply the
proposed framework on analyzing several binary-
and count-valued real-world data sets.

1 Introduction
Tensor factorization methods [Kolda and Bader, 2009] of-
fer a useful way to learn latent factors from complex mul-
tiway data. These methods decompose the original ten-
sor data into a set of factor matrices (one for each mode
or “way” of the tensor), which can be used as a latent
feature representation for the objects in each of the tensor
mode, and can be used for other tasks, such as tensor com-
pletion. Among tensor factorization methods, probabilistic
approaches [Chu and Ghahramani, 2009; Xu et al., 2013;
Rai et al., 2014] are especially appealing because of a proper
generative model of the data, which allows modeling different
data types and handling missing data in a natural way.

Real-world tensor data are often binary- or count-
valued [Nickel et al., 2011; Chi and Kolda, 2012]. For ex-
ample, a multirelational social network [Nickel et al., 2011]
can be described as a three-way binary tensor with two modes

denoting people and the third mode denoting the types of re-
lationships. Likewise, from a database of research publica-
tions, one may construct a three-way (AUTHORS×WORDS×
VENUES) count-valued tensor, where the three dimensions
could be authors, words, and publication venues and each en-
try of the tensor denotes the number of time an author used a
specific word at a specific venue. Tensor factorization on this
multiway data can be used for topic modeling on such a pub-
lications corpus (the latent factors would correspond to top-
ics). Another application could be in recommender systems;
having learned the latent factors of authors and venues, one
can use these factors for author-author recommendation (for
potential co-authors) or author-venue recommendation (rec-
ommending the most appropriate venues for a given author).

Although several tensor factorization methods have been
proposed in the recent years [Kolda and Bader, 2009; Chu
and Ghahramani, 2009] and there has been a significant re-
cent interest on developing scalable tensor factorization meth-
ods [Kang et al., 2012; Inah et al., 2015; Papalexakis et
al., 2012; Beutel et al., 2014], most of these methods treat
data as real-valued, and are therefore inappropriate for han-
dling binary and count data; also see Related Work (Sec-
tion 7). Motivated by the prevalence of such binary and
count-valued tensors, we present a probabilistic tensor factor-
ization framework which can handle binary and count-valued
tensors, while being scalable for massive tensor data. Our
starting point will be a conjugate, fully Bayesian model for
both binary and count data, for which we develop an efficient
Gibbs sampler. The framework is based on the Pólya-Gamma
data augmentation strategy [Polson et al., 2012] which al-
lows transforming likelihoods such as logistic (binary data)
and negative binomial (count data) into a Gaussian. We then
develop Expectation Maximization (EM), and, subsequently,
an efficient online EM algorithm [Cappé and Moulines, 2009]
which allows scaling up to massive tensor data. Our on-
line EM algorithm performs comparably or better than Gibbs
sampling and EM, while being considerably faster to run (and
requiring much less storage). Although here we focus on
binary and count data, the framework can also handle other
types of likelihoods, e.g., multinomial (for categorical data).
We present experimental results on various data sets, includ-
ing a publications corpus, and a massive transactions data set
consisting of food-item purchase records from a large set of
households.
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2 Canonical PARAFAC (CP) Decomposition
Given a tensor Y of size n1×n2×· · ·×nK , with nk denoting
the size of Y along the kth mode (or “way”) of the tensor, the
goal in a Canonical PARAFAC (CP) decomposition [Kolda
and Bader, 2009] is to decomposeY into a set ofK factor ma-
trices U(1), . . . ,U(K) where U(k) = [u

(k)
1 , . . . ,u

(k)
R ], k =

{1, . . . ,K}, denotes the nk×R factor matrix associated with
mode k. In its most general form, CP decomposition ex-
presses the tensor Y via a weighted sum of R rank-1 tensors

Y ∼ f(
R∑
r=1

λr.u
(1)
r � . . .� u(K)

r ) = f(Ψ) (1)

where f specifies the noise model and depends on the
data being modeled (e.g., f can be Gaussian for real-
valued, Bernoulli-logistic for binary-valued, Poisson for
count-valued tensors); λr is the weight associated with the
rth rank-1 component; the nk × 1 column vector u(k)

r repre-
sents the rth latent factor of mode k; and � denotes vector
outer product. We use subscript i = {i1, . . . , iK} to denote
the K-dimensional index of the i-th entry in the tensor Y .
The data are given as a set of N observations {yi}Ni=1 from
the tensor and the goal is to perform CP decomposition (1)
using these observations. Note that (1) can also be written,
individually, for each observation yi as

yi ∼ f(ψi) (2)

where ψi =
∑R
r=1 λr

∏K
k=1 u

(k)
ikr

is a real-valued number.

3 CP Decomposition for Logit Models
In this paper, we develop efficient tensor decomposition
methods for data where the likelihood (2) is of the form

{exp(ψi)}yi
{1 + exp(ψi)}mi

(3)

This general form subsumes several likelihood models [Pol-
son et al., 2012]. For example, for mi = 1, we get the lo-
gistic likelihood for binary data; and for mi = yi + ξ, the
negative binomial likelihood for count data (where ξ is the
overdispersion parameter). In this exposition, we will focus
on these two types of data (binary and count), which are the
most prevalent in applications of tensor decomposition meth-
ods, but the framework we develop can be straightforwardly
extended to handle other data types such as categorical data
via multinomial likelihood [Polson et al., 2012].

A key thing to notice about the likelihood models of
the form (3) is that, using the Pólya-Gamma augmentation
scheme [Polson et al., 2012] allows “Gaussian-ifying” the
likelihood given in (3). Specifically, for each observation yi,
introducing a Pólya-Gamma random variable ωi [Polson et
al., 2012] results in the following

{exp(ψi)}yi
{1 + exp(ψi)}mi

∝ exp(κiψi − ωiψ2
i /2) (4)

where κi = yi − mi/2 and ωi ∼ PG(mi, ψi) denotes a
draw from a Pólya-Gamma distribution. Since the form of

the likelihood on the r.h.s. of (4) is Gaussian, this results
in a conjugate model when the model parameters also have
Gaussian prior distributions. In particular, in probabilistic CP
decomposition models of the form (1), the model parame-
ters u(k)

r and λr are usually given Gaussian prior distribu-
tions [Xiong et al., 2010; Rai et al., 2014], and therefore
the Pólya-Gamma augmentation strategy naturally leads to
fully conjugate Bayesian analysis even though the original
likelihood 3 is non-conjugate. This property was recently ex-
ploited in [Rai et al., 2014]; however, their work has the fol-
lowing limitations: (1) only the case of binary data was con-
sidered, and (3) inference in the model was done using batch
Gibbs sampling which can be infeasible for massive tensors.

In contrast, in this paper, we present a scalable frame-
work for CP decomposition, based on Pólya-Gamma aug-
mentation that applies to not just binary but also count data
(and extendable to other data types such as categorical). For
both these cases, we present scalable inference algorithms to
handle massive tensor data, for which Gibbs sampling [Rai
et al., 2014] methods do not scale. Our inference algo-
rithms are based on online Expectation Maximization [Cappé
and Moulines, 2009] which allows processing data in mini-
batches, and easily scales to massive tensors.

4 Pólya-Gamma CP for Binary & Count Data
We first describe the general CP decomposition model with
Pólya-Gamma augmentation for likelihoods of the form

p(yi|ψi,mi) ∝
{exp(ψi)}yi

{1 + exp(ψi)}mi
(5)

where ψi =
∑R
r=1 λr

∏K
k=1 u

(k)
ikr

is a real-valued number.
We further assume a Gaussian prior distribution on each of
the factor matrices U(k) = [u

(k)
1 , . . . ,u

(k)
R ]

u(k)
r ∼ Nor(0, I) (6)

and assume that the coefficients λr’s are drawn from the mul-
tiplicative gamma process (MGP) prior [Bhattacharya and
Dunson, 2011; Rai et al., 2014], with a truncation-level R
over the rank of the decomposition. The MGP prior shrinks
the λr’s for the unnecessary factors to close to zero, thereby
inferring the effective tensor rank from the data, and has the
form

λr ∼ N (0, τ−1r ), 1 ≤ r ≤ R

τr =
r∏
l=1

δl, δl ∼ Gamma(ac, 1) ac > 1
(7)

Using the fact that (5) can be re-expressed as a Gaussian
using the transformation (4), and the fact that the priors on the
model parameters u(k)

r ’s and the λr’s are also Gaussian, we
can derive a fully Bayesian inference procedure using Gibbs
sampling. In [Rai et al., 2014], the Gibbs sampler for binary
tensors was described, so we skip it here for brevity; there-
fore, and in Section 4.1, we focus only on the Gibbs sampler
for the count data case, which was not considered in [Rai et
al., 2014]. We will refer to our model as PGCP.
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4.1 Gibbs Sampler for PGCP with Count Data
We first re-express ψi =

∑R
r=1 λr

∏K
k=1 u

(k)
ikr

as

ψi = u
(k)
ikr
c
(k)
ikr

+ d
(k)
ikr

(8)

where c(k)ikr
and d(k)ikr

are defined as c(k)ikr
= λr

∏
k′ 6=k u

(k′)
ik′r

and d(k)ikr
=

∑
r′ 6=r λr′

∏K
k=1 u

(k)
ikr′

. Using (8), (4), uikr ∼
Nor(0, 1), and using results from Gaussian-Gaussian conju-
gacy, the Gibbs sampling updates for u(k)nr , 1 ≤ n ≤ nk,
for the case of count-valued tensor data, are given as u(k)nr ∼
Nor(α(k)

nr , τ
(k)
nr

−1
), with the precision and mean defined as

τ (k)nr = 1 +
∑

i,ik=n

c
(k)
ikr

2
ωi, 1 ≤ n ≤ nk

α(k)
nr = (τ (k)nr )−1

∑
i,ik=n

c
(k)
ikr
{0.5(yi − ξ)− ωid

(k)
ikr
}

(9)

In a similar manner, writing ψi = (
∏K
k=1 u

(k)
ikr

)λr +

(
∑
r′ 6=r λr′

∏K
k=1 u

(k)
ikr′

) = ariλr + bri , using (4) and the
fact λr ∼ N (0, τ−1r ), the Gibbs sampling updates for λr,
1 ≤ r ≤ R are λr ∼ Nor(µ̂r, τ̂−1r ), with the precision and
mean defined as

τ̂r = τr +
∑
i

ari
2ωi

µ̂r = τ̂−1r
∑
i

ari{0.5(yi − ξ)− ωib
r
i}

(10)

The other MGP parameters (the δl’s) can be sampled eas-
ily from a Gamma posterior, following [Rai et al., 2014]. We
skip the details here for brevity. Sampling the overdisper-
sion parameter ξ: In the negative binomial model for counts,
we also need to estimate the overdispersion parameter ξ. We
assume a prior ξ ∼ Gamma(a0, 1/h) and, following [Zhou et
al., 2012b], the Gibbs sampling updates for ξ are

ξ ∼ Gamma(a0+
N∑
i=1

Li, 1/(h+
N∑
i=1

log(1+exp(ψi))) (11)

where Li ∼ Poisson(ξ log(1 + exp(1 + exp(ψi)).

5 Inference via Expectation Maximization
Although the Gibbs sampler described in Section 4.1 is effi-
cient for moderate-sized count-valued tensors, running it on
massive tensor data can be infeasible, both due to high storage
as well as high computational costs.

In this section, we first describe an Expectation-
Maximization (EM) algorithm for parameter estimation in the
PGCP model (for both binary- as well as count-valued tensor
data), and then describe an online EM algorithm that can pro-
cess data in mini-batches and scale to massive-sized tensors.

To derive the EM algorithm for the PGCP model, we need
to write down the expected complete data (log)-likelihood for
each of the model parameters. The latent variables here are
the Pólya-Gamma variables ωi’s. Luckily, the expectation of

a PG random variable ω ∼ PG(b, c) is available in closed-
form [Polson et al., 2012], and is given by

E[ω] =
b

2c
tanh(c/2) (12)

In the case of binary data where ωi ∼ PG(1, ψi), the expec-
tation is given by E[ωi] = (0.5/ψi) tanh(ψi/2), whereas in
the case of count data where ωi ∼ PG(yi + ξ, ψi), the ex-
pectation is given by E[ωi] = (0.5(yi + ξ)/ψi) tanh(ψi/2).
In the rest of this section, we will abuse notation and simply
use ωi in place of E[ωi]. Also, in what follows, κi is de-
fined as κi = yi −mi/2, where mi = 1 for binary data and
mi = yi + ξ for count data. With these ingredients, the EM
algorithm for the PGCP model then proceeds as follows: E-
Step: Compute expectations of ω1, . . . , ωN . M-Step: Max-
imize the expected complete data log-likelihood w.r.t. each
model parameter. For the u

(k)
nr (n = 1, . . . , nk), it fol-

lows from (8) that the expected complete data log-likelihood
Q(u

(k)
nr ) is given by the following quadratic

−1

2

∑
i:ik=n

ωi(u
(k)
nr c

(k)
ikr

)2 +
∑
i:ik=n

(κi − dikr)c
(k)
ikr
u(k)nr

Further, we can vectorize the above and write the complete
data log-likelihood for u(k)

r = [u
(k)
i1r
, . . . , u

(k)
nkr]

> as

Q(u(k)
r ) = −1

2
u(k)
r

>
S(r,k)u(k)

r + u(k)
r

>
t(r,k) (13)

where S(r,k) is a diagonal matrix, and S(r,k) and t(r,k) ∈
Rnk are defined as S

(r,k)
nn =

∑
i:ik=n

c2ikrωi and t
(r,k)
n =∑

i:ik=n
(κi− dikrωi)cikr. Note that since S(r,k) is diagonal,

maximizing (13) w.r.t. u(k)
r is very efficient with no matrix

inversions needed. Also note that, it is possible to incorporate
a prior distribution on u(k)

r (e.g., Gaussian, sparsity, etc.)

Q(u(k)
r ) = −1

2
u(k)
r

>
S(r,k)u(k)

r + u(k)
r

>
t(r,k) + log p(u(k)

r )

Alternatively, one can solve a constraint optimization prob-
lem for the objective (13) by placing any desired constraint
on u(k)r (e.g., sparsity, non-negativity, etc.).

Likewise, the expected complete data log-likelihood for the
λ = (λ1, . . . , λR) is

Q(λ) = −1

2
λ>Sλλ+ λ>tλ (14)

where Sλ is again an R×R diagonal matrix with diagonal
entry given by Sλr =

∑
i a
r
i
2ωi and tλ ∈ RR is defined as

tλr =
∑
i(κi − briωi)ari .

In the case of count data, we need to estimate the overdis-
persion parameter ξ of the negative binomial. This can be
done using the Newton-Raphson procedure in the M-step.

6 Online Expectation Maximization
The batch EM algorithm presented in Section 5 is more
efficient than the batch Gibbs sampling presented in Sec-
tion 4.1. In many cases, however, the data can be too
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massive to handle even for batch EM. In this section, we
present an online EM algorithm [Cappé and Moulines, 2009;
Scott and Sun, 2013] that works by processing data in mini-
batches and therefore has the capability to scale to massive
tensor data (in terms of the tensor dimensions and/or in terms
of the number of tensor observations).

Note that the batch EM algorithm presented in Section 5
operates on the sufficient statistics (e.g., S(r,k), t(r,k),Sλ, tλ,
etc.) of the model parameters. These sufficient statistics are
computed using all the observations from the tensor. Not-
ing that these statistics are defined as summation over the
individual observations from the tensor, it is possible to re-
cursively update these sufficient statistics as more and more
data arrives. This eliminates the need of having to store all of
the tensor observations in the memory and computing these
statistics using the entire data in each round of the EM al-
gorithm. Instead, with the online EM algorithm [Cappé and
Moulines, 2009], these statistics can be computed using the
current mini-batch of the data, and added to the previous
statistics. We leverage this idea to develop an efficient, on-
line EM algorithm for the proposed PGCP model.

In the online EM algorithm, we express the sufficient statis-
tics at time t as a convex combination of the old statistics
from time t− 1 and contribution from the new mini-batch of
data. For example, for the parameters u(k)

r , the estimates of
the sufficient statistics S(r,k,t)

nn and t
(r,k,t)
n after seeing a new

minibatch It of data at round t is given by

S(r,k,t)
nn = (1− γt)S(r,k,t−1)

nn + γt
∑

i∈It:ik=n
c2ikrωi

t(r,k,t)n = (1− γt)t(r,k,t−1)n + γt
∑

i∈It:ik=n
(κi − dikrωi)cikr

The sufficient statistics of the other parameters can also be
updated in a similar manner, and used in the M step.

We note that, as shown in [Cappé and Moulines, 2009],
updating the sufficient statistics recursively as above, and us-
ing these in the M step, is equivalent to a stochastic gradient
ascent-style updates of the parameters; e.g., for the parameter
u
(k)
r , it would be equivalent to the following update
u(k,t)
r = u(k,t−1)

r + γtI(u(k,t−1)
r )−1∇Q(u(k,t−1)

r )

where I(.) denotes the Fisher Information Matrix. The
learning rate γt ∝ (t + t0)−c for some c ∈ (0.5, 1] is
chosen to ensure that

∑∞
t=1 γt = ∞ and

∑∞
t=1 γ

2
t < ∞;

these conditions are necessary for the convergence of on-
line EM [Cappé and Moulines, 2009]. Following [Cappé
and Moulines, 2009], we set c to be close to 0.5, which
worked well in practice in our experiments. Moreover, as
recommended in [Cappé and Moulines, 2009; Scott and Sun,
2013], we also smooth the parameter estimates using Polyak-
Ruppert averaging where the parameters are averaged over
the final T − T0 where T0 is some large enough value such
that the algorithm has settled down.

Finally, note that, although motivated differently, our on-
line EM mirrors stochastic variational inference [Hoffman et
al., 2013] methods, where the parameters of the variational
approximation of the posterior distribution are updated recur-
sively in a similar fashion with each incoming minibatch of
data.

7 Related Work

Tensor factorization methods have become increasingly
prevalent nowadays, thanks to the rise of multirelational and
multiway data sets in a wide variety of application domains.
While much of the work on tensor factorization methods as-
sumes the tensor entries to be real-valued, some generaliza-
tions to data from exponential family distributions [Hayashi
et al., 2010], generalized linear models [Yılmaz et al., 2011],
or specifically for binary-valued tensors [Nickel et al., 2011;
Rai et al., 2014] have been also proposed. However, these
models can be computationally infeasible to run on massive
tensors (e.g., the method in [Hayashi et al., 2010] requires
tensor unfolding operations which can easily render it im-
practical for large tensors) as they all require batch process-
ing. For count-valued tensor data, [Chi and Kolda, 2012] pro-
posed a Poisson tensor factorization method, but this method
cannot handle missing values in the tensor, and can therefore
not be used for tensor completion. Moreover, these methods
also have other limitations such as the need to pre-specify
the rank of decomposition a priori, or to select it via cross-
validation.

With the advent of massive-scale tensor data in applica-
tions such as knowledge-bases and social networks, there
has been a considerable recent interest on scaling up tensor
factorization methods by developing distributed and parallel
methods [Kang et al., 2012; Inah et al., 2015; Papalexakis et
al., 2012; Beutel et al., 2014]. Most of these methods, how-
ever, have one or more of the following limitations: (1) they
assume a parallel or distributed setting, (2) missing data can-
not be easily handled/predicted, (3) they lack a proper gen-
erative model of the data (most of these assume real-valued
data), and are not designed for a Bayesian setting, and (4)
the rank of the decomposition needs to be chosen via cross-
validation. In contrast, our proposed framework does not
have any of these limitations.

In [Hayashi et al., 2012], the authors proposed an EM
algorithm for exponential family tensor factorization, using
Laplace and Gaussian process approximations, and extended
it to online EM; however, the proposed algorithm, based on
tensor unfolding, has computational complexity that is cu-
bic in the sum of the tensor dimensions, and is prohibitive
even for moderate-size tensors. In contrast, our algorithms
have per-iteration complexity that is linear in the tensor di-
mension as well as linear in the number of observations (or in
the minibatch size in the case of online EM) in the tensor, and
therefore can scale up nicely even for massive tensor data.

Finally, scalable Bayesian tensor decomposition is a rel-
atively under-explored area. Some recent attempts in-
clude [Zhe et al., 2015; Rai et al., 2014; Zhe et al., 2013].
However, these are limited to real-valued and/or binary-
valued tensors (except for the work in [Zhou et al., 2014],
which assumes categorical data), and scale poorly w.r.t the
size of the tensor and/or rely on batch inference. In con-
trast, our online EM based framework applies to binary and
count data (real-valued data can be trivially handled without
the need for Pólya-Gamma augmentation), and extends easily
to other data types, such as categorical data (via multinomial
likelihood), or data with binomial likelihoods.
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8 Experiments
We experiment with several real-world data sets that consist
of both binary and count tensors. These include:

• Kinship: This is a 104×104×26 binary tensor [Nickel
et al., 2011] consisting of 26 types of relations among a
set of 104 individuals.

• Digg: This is a 581×124×48 binary tensor [Zhe et al.,
2013] with 0.024% nonzeros.

• DBLP: This is a 10, 000 × 200 × 10, 000 binary ten-
sor [Zhe et al., 2015] constructed from the DBLP
database, and contains author-conference-keyword rela-
tions (a tensor entry is 1 if the relation holds). This data
has 0.001% nonzeros.

• GDELT: This is a 220×220×20×52 count tensor [Lee-
taru and Schrodt, 2013] consisting of country-country
interactions based on 20 types of actions; we use a sub-
set of this data collected over a period of one year (year
2012).

• Scholars: This is a 2370×8663×4066 count tensor con-
structed from a publications database of Duke Univer-
sity 1, where each entry of the tensor denotes the number
of times an authors uses a word at a publication venue.

• Transactions: This is a 117, 054× 438× 67, 095 count
tensor constructed from a database of transactions data
of food-item purchases at various stores in the US 2;
the three tensor modes correspond to households, stores,
and items purchased.

In the experiments, we refer to our model PGCP (Pólya-
Gamma CP decomposition) with Gibbs, EM and online EM
inference, as PGCP-Gibbs, PGCP-EM, and PGCP-Online
EM, respectively. For binary data, we compare with MGP-
CP [Rai et al., 2014], and (2) Infinite Tucker Factoriza-
tion [Xu et al., 2013]. For count data, we compare with:
(1) PTF [Chi and Kolda, 2012] 3 which assumes a Poisson
factorization model, and (2) LRA-NTD[Zhou et al., 2012a]
which is a non-negative tensor factorization method but data
is assumed to be real-valued.
Experimental settings: All the methods use random initial-
ization. For the online EM, we set the mini-batch size to one-
tenth of the total data size. For our methods, the upper bound
R on the tensor rank was set to 10 for DBLP data and Kinship
data; Digg data, R was set to 5 (larger values yield similar re-
sults, albeit at a greater computational cost). For GDELT,
Scholar, and Transactions data sets, R was set to 100. Un-
less specified otherwise, the Gibbs sampler was run for 1000
iterations with 500 burn-in iterations. Unless specified oth-
erwise, the online EM and EM algorithms were run for 1000
iterations. All experiments are done on a standard desktop
with Intel i7 3.4GHz processor and 24GB RAM.

1https://scholars.duke.edu/
2The data is provided to us by USDA.
3Since the method in [Chi and Kolda, 2012] cannot handle miss-

ing data, we implement a fully Bayesian version of the model and
use it in our experiments

8.1 Tensor Completion
We first experiment on the task of tensor completion where
we compare all the methods for their ability to predict missing
entries in the tensor. For binary tensors, we split the data into
80% training and 20% test, while ensuring that the nonzeros
are also split the same way between the training and test data.
For count data, we use 95% data as the training data and use
the remaining 5% as the heldout data (in Section 8.4, we also
show an additional experiment with varying fractions of the
training data). The tensor completion results are shown in Ta-
ble 1 for binary tensor data, and Table 2 for count tensor data.
Each result is averaged over five random splits of the train-
ing and test data. On both binary as well as count data, the
PGCP (all the three variants) outperform the other baselines
(except Digg where Inf-Tucker baseline does marginally bet-
ter). Moreover, the EM and online EM variants of PGCP per-
form at par or better than Gibbs sampling, suggesting that on
massive data sets, the Gibbs sampler, in addition to running
slower, may also be mixing poorly (in Section 8.2, we com-
pare the three variants of PGCP in terms of running times).

8.2 Scalability
In this section, we assess the performance of the online EM
as compared to the batch counterparts (batch EM and batch
Gibbs) in terms of its convergence speed vs the wall-clock run
time. Each method was run for a specified amount of time
(long enough that it roughly converges to a stable AUC or
log-likelihood score). The results from various data sets are
shown in Figures (1) and (2). As these figures show, the on-
line EM algorithm reaches reasonably good quality solutions
fairly quickly as compared to batch EM and batch Gibbs. In
most cases, it even attains better quality solutions than its
batch counterparts. In particular, this can be attributed to the
fact that the Gibbs sampler may exhibit slow mixing on large
data sets. This experiment demonstrates that the PGCP model
with the online EM algorithm can be a viable alternative to
Gibbs sampling and batch EM on massive tensor data sets.
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Figure 1: (Left) Scalability on Kinship. (Right) Scalability on
DBLP. Blue: PGCP-Gibbs, Green: PGCP-EM, Red: PGCP-Online
EM

8.3 Topic Modeling Results
Our model can also be used for topic modeling of multiway
data. On the Scholar data (AUTHORS × WORDS × VENUES
tensor), we do an experiment with PGCP-Online EM by im-
posing non-negativity constraint on the factor matrices and
examine the factor matrix of the words dimension of the ten-
sor. Table 3 shows three of the factors and the top 8 words
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Kinship Digg DBLP
AUC Log-lik. AUC Log-lik. AUC Log-lik.

MGP-CP [Rai et al., 2014] 0.9796 -0.0601 0.6104 -0.0037 0.9299 -0.2310
Inf-Tucker [Xu et al., 2013] 0.9710 -0.1087 0.6632 -0.0027 - -

PGCP-EM 0.9823 -0.0551 0.6412 -0.0033 0.9450 -0.2324
PGCP-Online EM 0.9796 -0.0592 0.6572 -0.0030 0.9423 -0.2006

Table 1: Tensor completion on binary data (we report AUC - Area under the ROC curve, and heldout likelihood). Note: For the binary
data, since MGP-CP and PGCP-Gibbs are essentially the same, we do not separately report PGCP-Gibbs results here. Also, the Inf-Tucker
baseline gave out-of-memory error on the DBLP data, so we are not able to report its results on the DBLP data.

GDELT Scholar Transactions
MAE Log-lik. MAE Log-lik. MAE Log-lik.

PTF [Chi and Kolda, 2012] 55.48 -4425695 1.64 -860808 1.47 -2425433
LRA-NTD [Zhou et al., 2012a] 65.05 N/A - - - -

PGCP-Gibbs 43.22 -2632322 0.792 -146586 0.7256 -2243346
PGCP-EM 44.42 -2694564 0.732 -145198 0.6951 -2066424

PGCP-Online EM 43.16 -2614195 0.734 -145219 0.7092 -2071723

Table 2: Tensor completion on count data (we report MAE - mean-absolute-error, and heldout likelihood). Note: The LRA-NTD baseline
gave out-of-memory error on the Scholar and Transactions data, so we are not able to report its results on those data sets.
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Figure 2: (Left) Scalability on Scholar data. (Right) Scalability
on Transactions data. Blue: PGCP-Gibbs, Green: PGCP-EM, Red:
PGCP-Online EM

in each of these factors (based on their factor scores). Look-
ing at the top words in these factors suggests that these fac-
tors correspond to topics machine learning & statistics (ML),
immunology, and cardiac imaging, which are representative
subject areas of the Scholar publications corpus.

ML IMMUNOLOGY CARDIAC IMAGING
MODEL CELLS PHANTOM
STATISTICAL ANTIBODIES MOTION
REGRESSION PLASMA PATIENT
CATEGORICAL VACCINE IMAGING
SPARSE VIRUS CARDIAC
BAYESIAN HUMAN SLICES
LATENT RESPONSES PERFUSION
DICTIONARY INFECTION ARTIFACTS

Table 3: Most probable words in topics related to ML, Immunol-
ogy, and Cardiac Imaging

8.4 Varying Amounts of Training Data
We also investigate the behavior of PGCP with varying
amounts of training data. For this experiment, we first split
the Scholar data into 80% training and 20% test data, and then
use a varying fraction of the training data (here we only re-
port the results with PGCP-online EM). In Figure 3, we show

results for (1) heldout log-likelihood vs fraction of training
data, and (2) running-time vs fraction of training data.

As Figure 3 (left) shows, the heldout log-likelihood expect-
edly gets better with increasing training data; however, even
with small fractions of the training data, the model achieves
reasonably high log-likelihoods, suggesting its robustness.

Figure 3 (right) shows the total running time (summed over
the total number of iterations) for each fraction of the training
data. As shown, the total running time scales roughly linearly
in the number of observations in the training data.
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Figure 3: Varying the amount of observed data: (Left) tensor com-
pletion accuracy vs fraction of training data, (Right) scalability vs
fraction of training data

9 Conclusion and Future Work
We have presented a scalable framework for tensor factoriza-
tion that can handle binary and count data via a conjugate
model obtained using a data augmentation strategy. Lever-
aging this conjugacy, our framework can perform a fully
Bayesian analysis via closed-form Gibbs sampling, as well as
allows efficient inference via EM and online EM algorithms.
Our work opens doors to the a scalable and fully Bayesian
analysis of binary- and count-valued tensors, which are now
becoming increasingly prevalent in several applications. The
work here can be extended in several interesting directions.
Although, here, we only considered binary and count data,
our framework, which is based on the Pólya-Gamma aug-
mentation, can also be straightforwardly extended to handle
categorical data, or data with binomial likelihoods.
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Another interesting extension can be incorporating sources
of auxiliary information for the tensor for improved ten-
sor decomposition. For example, often data sources with
side-information about each of the tensor modes are avail-
able [Yılmaz et al., 2011; Ermiş et al., 2013; Beutel et al.,
2014; Rai et al., 2015; Khan and Kaski, 2014]. By sharing
the factor matrices of such modes across these multiple data
sources, such side-information can be effectively leveraged.
To further scale up our framework, many steps of the Gibbs
sampler in Section 4.1, as well as of the proposed EM and
online EM algorithms, can be parallelized/distributed.
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