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ABSTRACT
Many real-world scenarios involve teams of agents that have to

coordinate their actions to reach a shared goal. We focus on the

setting in which a team of agents faces an opponent in a zero-sum,

imperfect-information game. Team members can coordinate their

strategies before the beginning of the game, but are unable to com-

municate during the playing phase of the game. This is the case,

for example, in Bridge, collusion in poker, and collusion in bidding.

In this setting, model-free RL methods are oftentimes unable to

capture coordination because agents’ policies are executed in a

decentralized fashion. Our first contribution is a game-theoretic

centralized training regimen to effectively perform trajectory sam-

pling so as to foster team coordination. When team members can

observe each other actions, we show that this approach provably

yields equilibrium strategies. Then, we introduce a signaling-based

framework to represent team coordinated strategies given a buffer

of past experiences. Each team member’s policy is parametrized

as a neural network whose output is conditioned on a suitable ex-

ogenous signal, drawn from a learned probability distribution. By

combining these two elements, we empirically show convergence

to coordinated equilibria in cases where previous state-of-the-art

multi-agent RL algorithms did not.
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1 INTRODUCTION
In many strategic interactions agents have similar goals and have

incentives to team up, and share their final reward. In these settings,

coordination between team members plays a crucial role. We focus

on ex ante coordination, where team members have an opportunity

to discuss and agree on tactics before the game starts, but will

be unable to communicate during the game, except through their

publicly-observed actions. Consider, as an illustration, a poker game
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where some players are colluding against some identified target

players and will share the final winnings after the game. Another

instance of this problem is the card-playing phase of Bridge, in

which two defenders have to coordinate their actions against the

declarer, but they are prohibited from communicating by the rules

of the game.

Finding an optimal equilibrium with ex ante coordination is NP-
hard and inapproximable [9]. Celli and Gatti [9] introduced the first

algorithm to compute optimal coordinated strategies for a team

playing against an adversary. At its core, it is a column-generation

algorithm exploiting a hybrid representation of the game, where

team members play joint normal-form actions while the adversary

employs sequence-form strategies [30]. It is crucial to observe that

the number of joint normal-form actions of the team grows expo-

nentially in the size of the game tree, which makes them impractical

when dealing with games of medium/large size. More recently, Fa-

rina et al. [17] proposed a variation of the Fictitious Play algorithm,

namely Fictitious Team-Play (FTP), to compute an approximate

solution to the problem. Both approaches require to iteratively

solve Mixed-Integer Linear Programs (MILP), which significantly

limits the scalability of these techniques to large problems, with the

biggest instances solved via FTP being in the order of 800 infosets

per player. The biggest crux of these tabular approaches is the need

for an explicit representation of the sequential game, which may

not be exactly known to players, or could be too big to be stored

in memory. For this reason, extremely large games are usually ab-

stracted by bucketing similar states together. The problem with

this approach is that abstractions procedures are domain-specific,

require extensive domain knowledge, and fail to generalize to new

scenarios (see, e.g., [7, 20, 21, 50]).

On the other side of the spectrum with respect to tabular equilib-

rium computation techniques there are Multi-Agent Reinforcement

Learning (MARL) algorithms (see [8, 24] for a comprehensive trac-

tation). These techniques do not require a complete knowledge of

the environment and are sample-based by nature, but their applica-

tion to imperfect-information adversarial team games presents a

number of difficulties, such as dealing with private information and

representing coordinated strategy spaces. The latter is of crucial

importance since we will show that, even in simple settings, it is

impossible to reach optimal coordination by exploiting completely

decentralized policies, as it is customary in the RL literature.

Original Contributions. The contribution of the paper is two-

fold. First, we study the problem of collecting meaningful histories
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of play (i.e., trajectory sampling) of the team that can be used,

in a subsequent phase, to compute strong coordinated strategies.

Second, we propose a signal-mediated framework to represent and

compute coordinated strategy from a buffer of past experience. We

address the former problem showing that historical data can be

efficiently collected via self-play on an approximated version of the

team game, leveraging the notion of its perfect-recall refinement,

which provides a natural way to perform centralized trajectory

sampling when the objective is uncovering effective coordinated

behaviors. Moreover, when the team members have symmetric

observations, this approach allow us to prove that an optimal team

coordinated strategy can be computed in polynomial time, on an

equivalent two-player zero-sum game. Finally, we propose signal

mediated strategies (SIMS) as a scalable way to capture coordination

without the need for an explicit description of the underlying game.

Specifically, SIMS represents a coordinated team strategy as the

combination of a signaling policy (i.e., a distribution over signals)

and one decentralized policy for each team member. First, a signal

is sampled from the signaling policy and communicated to the team

members. Then, each team member uses the signal to condition

the output of a neural network encoding his/her decentralized

policy. Therefore, in order to approximate an optimal coordinated

strategy, team members have to learn from past experiences both

the signaling policy and themeaning associated to each signal (i.e., a

suitable parametrisation of the decentralised policies).We show that

this is possible by testing our framework on a set of coordination

games in which previous state-of-the-art multi-agent RL techniques

could not reach an optimal coordinated strategy, and on an instance

of a simple patrolling game defined over a grid-world.

2 RELATEDWORKS
Learning how to coordinate multiple independent agents [4, 15]

via Reinforcement Learning requires tackling multiple concurrent

challenges, e.g., non-stationarity, alter-exploration and shadowed-

equilibria [41]. There is a rich literature of algorithms proposed

for learning cooperative behaviours among independent learners.

Most of them are based on heuristics encouraging agents’ policies

coordination [3, 5, 33, 34, 39, 40, 46].

Thanks to the recent successes of deep RL in single-agent envi-

ronments [42, 52, 53], MARL is recently experiencing a newwave of

interest and some old ideas have been adapted to leverage the power

of function approximators [44, 45]. Several successful variants of

the Actor-Critic framework based on the centralized training/de-

centralized execution paradigm have been proposed [18, 19, 38, 54].

These works encourage the emergence of coordination and cooper-

ation, by learning a centralized 𝑄-function that exploits additional

information available only during training. Other approaches fac-

torize the shared value function into an additive decomposition

of the individual values of the agents [55], or combine them in a

non-linear way [48], enforcing monotonic action-value functions.

More recent works, showed the emergence of complex coordinated

behaviours across team members in real-time games [25, 37], even

with a fully independent asynchronous learning, by employing

population-based training [26].

Player’s coordination is usually modeled from a game-theoretic

perspective via the notion of correlated equilibrium (CE) [1], where

agents make decisions following a recommendation function, i.e., a

correlation device. Learning a CE of extensive-form games (EFG) is a

challenging problem as actions spaces grow exponentially in the

size of the game tree. A number of works in the MARL literature

address this problem (see, e.g., [13, 14, 22, 57]). Differently from

these works, we are interested in the computation of TMECor [9].

In our work, we model the correlation device explicitly. By sam-

pling a signal at the beginning of each episode, we show that the

team members are capable of learning how to associate a precise

meaning to a potentially uninformative signal. Our approach is

closely related to the work by Chen et al. [12], which proposes

a similar approach based on exogenous signals. Chen et al. [12]

suggest that coordination can be engouraged by maximizing the

mutual information between the signals and the joint policy.

3 PRELIMINARIES
In this section we provide a brief overview of extensive-form games

(see also the textbook by Shoham and Leyton-Brown [51]).

An extensive-form games G is a tree-form model of sequential

interactions involving a set of players P. A node 𝑣 of the tree is

defined by all the information on the current state of the game. For

instance, in a poker game, a node is determined by the history of

actions up to that point, and by the hand of each player. The set

of actions available to the relevant player at a node 𝑣 is denoted

by A(𝑣). Leaf nodes are called terminal nodes. We denote the set

of terminal nodes by Z. Each player 𝑖 ∈ P as a payoff function

𝑢𝑖 : Z → R which specifies her final reward for reaching a certain

leaf. Exogenous stochasticity is represented via a chance player

(denoted by C) which selects actions with a fixed known probability

distribution. Given 𝑧 ∈ Z, we denote by 𝜌C (𝑧) the probability with

which the chance player plays so as to reach 𝑧.

Private information is modeled through the notion of infor-
mation states (a.k.a. information sets). An information state 𝑠𝑖 of

player 𝑖 comprises all nodes of the tree which are indistinguish-

able to 𝑖 . Taken together, all information states of player 𝑖 form a

partition of the nodes where 𝑖 has to act. We denote the set of all

information states of player 𝑖 as S𝑖 . Given 𝑠 ∈ S𝑖 , for any pair of

nodes 𝑣,𝑤 ∈ 𝑠 , nodes 𝑣 and𝑤 must have the same set of available

actions. As is customary in the related literature, we assume perfect

recall, i.e., no player forgets what he/she knew earlier in the game.

In this setting, we distinguish two fundamental paradigms for

strategy representation. A behavioral strategy profile for player 𝑖
is a collection specifying a point in the strategy simplex for each

information state in S𝑖 . Formally, for any 𝑠 ∈ S𝑖 , 𝜋𝑖 [𝑠] ∈ Δ(A(𝑠))
specifies the probability distribution according to which player 𝑖

selects an action at 𝑠 . The second strategy representation is based

on the notion of normal-form plan, which is a vector specifying

an action 𝑎𝑠 ∈ A(𝑠) for each information state 𝑠 ∈ S𝑖 . A reduced

normal-form plan 𝑝𝑖 is a normal-form plan where irrelevant infor-

mation is removed: it specifies an action only for information states

that can be reached following the actions specified by 𝑝𝑖 higher up

in the game tree. We denote the set of reduced-normal-form plans

of 𝑖 as 𝑃𝑖 . Given a leaf 𝑧 ∈ Z, we denote by 𝑃𝑖 (𝑧) ⊆ 𝑃𝑖 the set of

reduced-normal-form plans in which player 𝑖 plays so as to reach 𝑧.

A normal-form strategy for player 𝑖 is a probability distribution

𝜇𝑖 ∈ Δ(𝑃𝑖 ), where 𝜇𝑖 [𝑝𝑖 ] is the probability with which player 𝑖
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will play according to the actions specified by 𝑝𝑖 . We say that two

strategies of player 𝑖 are realization equivalent if they force the

same distribution over the leaves of the game, i.e., the probability

of player 𝑖 playing so as to reach any 𝑧 ∈ Z is the same under both

strategies.

4 CHALLENGES OF TEAM COORDINATION
A team is a set of players sharing the same objectives [2, 56]. We

study games where a team faces an opponent in a zero-sum in-

teraction. In order to simplify the presentation, we describe our

results for the case of a team composed by two agents, denoted by

T1 and T2, playing against an opponent O. The extension of our

framework to the case with multiple team members and opponents

is straightforward. We are interested in settings where team mem-

bers can communicate and agree on a coordinated strategy before

the beginning of the game, but are unable to communicate during

the playing phase. Two examples of this setting are collusion in

poker and collusion during bidding, where T1 and T2 will share

their earning at the end of the game and do not want to be detected,

and Bridge, where T1 and T2 are members of the same team, and

the rules of the game do not allow them to communicate during

the game.

4.1 TMECor and Coordinated Strategies
The most appropriate notion of equilibrium for this setting is the

team-maxmin equilibrium with coordination device (TMECor) in-
troduced by Celli and Gatti [9]. A powerful, game-theoretic way to

think about about coordination is through the notion of coordina-
tion device. Intuitively, before the game starts, team members can

identify a set of joint normal-form plans within 𝑃T1×𝑃T2. Then, just
before the play, the coordination device draws one of such plans

according to a suitable probability distribution 𝜇T ∈ Δ(𝑃T1 × 𝑃T2),
and team members will act as specified in the selected joint plan. A

probability distribution over 𝑃T1×𝑃T2 is called a coordinated strat-
egy. A TMECor is a Nash equilibrium (NE) of the game where team

members play their best coordinated strategy. Let 𝑢T : Z → R be

the shared payoff function of the team. Then, computing a TMECor

amounts to solving the following optimization problem:

max

𝜇T
min

𝜇O

∑
𝑧∈Z

∑
𝑝T1∈𝑃T1 (𝑧)
𝑝T2∈𝑃T2 (𝑧)
𝑝O∈𝑃O (𝑧)

𝜇T [𝑝T1, 𝑝T2] 𝜇O [𝑝O] 𝑢T (𝑧)

s.t. 𝜇T ∈ Δ(𝑃T1 × 𝑃T2)

𝜇O ∈ Δ(𝑃O)

(1)

By taking the dual of the inner minimization problem, Problem (1)

can be reformulated a linear programming problem. The main diffi-

culty is then managing the coordinated strategy 𝜇T, as its dimension

grows exponentially in the size of the game tree. In an 𝜖-TMECor,

neither the team nor the opponent can gain more than 𝜖 by deviat-

ing from their strategy, assuming that the other does not deviate.

4.2 Common Pitfalls of Coordination
By sampling a recommendation from the joint probability distribu-

tion 𝜇T the coordination device introduces a correlation between

O

T1 T1

T2 T2 T2 T2

𝐾 0 0 0 0 0 0 𝐾

L R

L R L R

L R L R L R L R

Figure 1: Coordination game. Nodes within the same infor-
mation state are connected through the grey dotted lines.
Leaf nodes display the payoff of the team. The payoff of the
opponent is 𝑢O (·) = −𝑢T (·).

team members’ actions that would otherwise be impossible to cap-

ture through behavioral strategies. This is illustrated by the follow-

ing simple example.

Example 1 (Coordination game). The game is played by a team

of two players (as usual denoted byT1 and T2) and an opponent O.
Each player of the game has two available actions: left (L) and right
(R). Players have to select one of the two actions without having

observed the choice of the other players. Team members receive a

payoff of 𝐾 only if they both guess correctly the action taken by the

opponent and mimic that action. For example, when the opponent

plays L, the team is rewarded 𝐾 if and only if both T1 and T2 play L.
Otherwise they have payoff equal to 0. Team’s rewards are depicted

in the leaves of the tree in Figure 1.

If team members did not have the opportunity of coordinating

their strategies, then the best they could do is selecting an action

randomly. This corresponds to the Nash equilibrium of the game

without coordination, where T1, T2, and O play a uniform behavioral

strategy. This leads to an expected return for the team of 𝐾/4. When

coordination is possible, teammembers can skew their joint strategy to

play only the reduced-normal-form plans (L, L) and (R, R) (displayed
in red in Figure 1). This allows them to avoid playing pairs of actions

that would surely result in a 0 payoff, independently of O’s action. The
TMECor of the game is reached when O plays with equal probability

L and R, and the team plays according to a joint coordinated strategy

such that 𝜇T [(L, L)] = 𝜇T [(R, R)] = .5. At the TMECor the team has

an expected utility of𝐾/2: the team can double its returns by adopting

coordinated strategies.

Despite their theoretical superiority with respect to behavioral

strategies, coordinated strategies have a major downside in prac-

tice: they require an exponential number of bits to be represented.

This is because the set of joint reduced-normal-form plans grows

exponentially in the size of the game tree. Hence, previous work

on the topic largely focuses on providing more manageable rep-

resentations of the coordinated strategy space (see, e.g., Celli and

Gatti [9], Farina et al. [17]). Here, we take a radically different

approach by proposing a model-free framework to approximate

coordinated strategies in a RL fashion. Classical multi-agent RL

algorithms employ decentralized policies, which can be described
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as behavioral strategies. Therefore, they are unable to attain the op-

timal coordinated outcome even in simple settings such as the one

depicted in the previous example. We show how to reach a middle-

ground between decentralized policies (i.e., behavioral strategies)

and coordinated strategies.

5 CENTRALIZED TRAINING FOR
IMPERFECT-INFORMATION TEAM GAMES

Our framework subdivides the training procedure for approximat-

ing a TMECor in two separate phases: in the first phase the game

trajectories (i.e., sequences of state-action pairs) are collected in

self-play and stored in a buffer M. In the second phase, the coordi-

nated team strategy, that will be used at test time, is learned from

M via supervised learning. This approach was already exploited

by known algorithms for the two-player, zero-sum setting such as

Neural Fictitious Self Play (NFSP) [23] and Deep-CFR [6]. However,

the team coordination setting presents a number of additional chal-

lenges: first, unlike in the two-player, zero-sum setting, it is not

clear how to collect trajectory samples in such a way to guarantee

convergence when two or more team members are coordinating

against an opponent. Second, the coordinated strategy to be used

at test time must be able to capture coordination without having

to represent the exponentially large 𝜇T. In this section we propose

a solution for the former problem, the latter is discusses in the

remainder of the paper (Section 6).

The former problem amounts to populating the buffer M with

meaningful trajectories to learn a coordinated strategy. We do that

through a centralized training phase in self-play during which we

let each team member share with the other its private informa-

tion. We can provide a useful interpretation of this procedure by

considering team members T1 and T2 as a single meta-player T. In
the original game G, T may have imperfect recall. For example, in

Figure 1, T would not remember his/her first move when choosing

its second action. Equivalently, in card-playing game with private

cards, T would have to periodically forget about T1’s cards and
regain memory of T2’s hand, and vice versa. By letting T1 and T2
sharing their private information, we are making sure that T has

perfect recall. This is because information sharing produces finer

grained information states. If we denote by G∗
the game resulting

from this process, we can say that G∗
is a perfect-recall refine-

ment of G for the meta-player T. Following Lanctot et al. [32], we

define a perfect-recall refinement for T as follows:

Definition 1 (Perfect-recall refinement). Given a game G with an

imperfect-recall player T, G∗
is a perfect-recall refinement of G if T

has perfect recall in G∗
and G is an abstraction of G∗

, that is if, for

any pair of nodes 𝑣,𝑤 of T it holds A(𝑣) ⊆ A∗ (𝑣) and 𝑣,𝑤 ∈ 𝑠T,
then there exists an information state 𝑠∗T ∈ S∗

T such that 𝑣,𝑤 ∈ 𝑠∗T.
As an illustrative example, the perfect-recall refinement of the

game in Figure 1 is obtained by splitting the information state of

T2 into two distinct information states: one following action L of

T1, and the other following from action R of T1. In a perfect-recall

refinement team members share the same observations on the state

of the game. Specifically, in G∗
team members have imperfect in-

formation that can be due only to either partial observability of

the actions of the opponent (as it happens in the perfect recall re-

finement of Figure 1), or to private information of the opponent

due to a chance moves higher up in the game tree. The key ob-

servation is that in G∗
either T1 and T2 both observe an action

(of any player, chance included), or they both do not. We say that

G∗
has symmetric observations for the team. In this setting, the

underlying reason for which the meta-player T has imperfect recall

is the limited observability within the team: that is, T1 not being
able to observe every T2’s action and vice versa.

5.1 Coordination in Games with Team
Symmetric Observability

In the class of games in which G already has symmetric observa-

tions for the team, we show that our approach provably yields a

TMECor. To show this we need to introduce the notion of A-loss

recall [27, 29]. A player has A-loss recall if he/she has perfect recall,

or if his/her losses of memory can be traced back to forgetting

his/her own actions.

Definition 2 (Symmetric observability). A game G has symmetric

observability for the team if and only if the meta-player T has A-loss

recall.

We observe that a perfect-recall refinement G∗
always has sym-

metric observability for the team, but the converse is not true in

general. A practical example where this condition holds is the game

of Goofspiel [49]. In this setting, both team members cannot ob-

serve the opponent’s move up until the end of each turn, and do

not have any private information but the action they just played.

In the following, G∗
is always treated as a two-player, zero-sum

game between the meta-payer T and O. Let 𝜋 = (𝜋T, 𝜋O) be an

arbitrary behavioral strategy profile of G∗
. In order to prove our

theoretical results we need the following auxiliary definitions.

Definition 3. Two games G and G′
differing only for their informa-

tion partitions ({S𝑖 }𝑖∈P and {S′
𝑖
}𝑖∈P , respectively) are 𝜇-equivalent

if for any player 𝑖 and for any normal-form strategy 𝜇 of 𝑖 in G, there

exists a realization equivalent normal-form strategy 𝜇 ′ in G′
, and

vice versa.

Given a node 𝑣 , let 𝑋𝑖 (𝑣) be the set of information state-action

pairs of player 𝑖 on the path from the root of the tree to 𝑣 . We will

make use of the inflation operation [16, 27, 43], which we define as

follows:

Definition 4 (Immediate inflation). Let S𝑖 and S′
𝑖
be two informa-

tion partitions of player 𝑖 . We say that S′
𝑖
is an immediate inflation

of S𝑖 iff there exists 𝑠 ∈ S𝑖 and 𝑠 ′, 𝑠 ′′ ∈ S′
𝑖
such that: (i) the set of

nodes comprised by 𝑠 is equal to the set of nodes comprised by 𝑠 ′ and
𝑠 ′′ (i.e., 𝑠 = 𝑠 ′ ∪ 𝑠 ′′), and (ii) for each 𝑣 ∈ 𝑠 ′ and𝑤 ∈ 𝑠 ′′ there exists
𝑠 ∈ S𝑖 ∩S′

𝑖
such that (𝑠, 𝑎) ∈ 𝑋𝑖 (𝑠 ′), (𝑠, 𝑏) ∈ 𝑋𝑖 (𝑠 ′′) for some actions

𝑎 ≠ 𝑏.

Definition 5 (Inflation). Given a player 𝑖 , an information partition

S′
𝑖
is an inflation of S𝑖 iff it is obtained by successive applications of

immediate inflation operations to S𝑖 .

When an inflation of S𝑖 has no further immediate inflations, it

is called complete inflation.

By leveraging the notion of inflation we can prove the following

result, which constitutes a strong motivation for our approach to

the computation of a TMECor.
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Theorem 1. Given a game G with symmetric observability, for any

𝜋 = (𝜋T, 𝜋O) which is an NE of G∗
there exists a pair of realization

equivalent strategies (𝜇T, 𝜇O) which is a TMECor of G, and vice versa.

Proof. Given G, let T be the team meta-player. Formally, T’s
information states are such that

ST = ST1 ∪ ST2 .

Then, the set of coordinated strategies of the team Δ(𝑃T1 × 𝑃T2)
is equal to the set of normal-form strategies of T, i.e., Δ(𝑃T). We

are left with a two-player, zero-sum game between O and T. O has

perfect recall and, by Def. 1, T has A-loss recall. Then, G is A-loss.

Case 1 : from 𝜇T to 𝜋T. By Theorem 5.A of Kaneko and Kline

[27] we have that since the information partition of G satisfies

the A-loss condition, then the complete inflation of G coincides

with the perfect-recall refinement G∗
. Since the inflation procedure

preserves the same 𝜇-equivalence class, we have that G and G∗

are 𝜇-equivalent. Hence, if we denote by 𝜇T a TMECor of G, by
Definition 3 there exists a normal-form strategy 𝜇∗ of the team

meta-player in G∗
which is realization equivalent to 𝜇T. By Kuhn’s

theorem [31], every normal-form strategy of G∗
has an equiva-

lent behavioral strategy: there exists a behavioral strategy 𝜋∗T of

the team meta-player in G∗
which is realization equivalent to 𝜇∗T,

which implies realization equivalence to 𝜇T. By definition of T,
Δ(𝑃T1 × 𝑃T2) = Δ(𝑃T). Then, since O’s information partition in left

unchanged going from G to G∗
, if 𝜇T is an NE with strategy space

Δ(𝑃T1 × 𝑃T2), then 𝜇∗T and 𝜋∗T are NE of G∗
.

Case 2 : from 𝜋T to 𝜇T. The proof follows the same points of the

previous case. □

Hence, Theorem 1 justifies the introduction of our centralized

training regiment over the perfect-recall refinement of each game,

since in many cases this implies sampling trajectories from true

equilibrium strategies. Then, we have the following key result,

which is in striking contrast from with impossibility results by Celli

and Gatti [9].

Theorem2. For any gameG with symmetric observability, a TMECor

can be computed in polynomial time.

Proof. The result immediately follows from Theorem 1 with

the following remarks:

• An NE of a two-player, zero-sum game (i.e., G∗
) can be computed

in polynomial time via linear programming by exploiting, for

example, the sequence-form representation of the game [30].

• The complete inflation of an arbitrary game G can be computed

in polynomial time [11, Theorem 3.3].

• Given 𝜋T in G∗
it is possible to compute the reach probability

associated to each leaf node 𝑧 ∈ Z in polynomial-time. From

there, a realization equivalent normal-form strategy for T can be

computed in polynomial time [10, Theorem 4]. This is a TMECor

strategy for the team in G.
□

Even in games where T does not have A-loss recall, collecting

trajectories on a perfect-recall refinement allows team members

to populate the buffer of past experience with meaningful trajecto-

ries, which are the result of coordinated play in the ideal setting

in which they are able to share information. As we will show in

the experimental evaluation, this is essential to compute strong

coordinated strategies at test time. The crucial problem of perform-

ing strategy mapping between G∗
and G is entirely handled by the

SIMS framework (Section 6).

5.2 Centralized Training: Trajectory Sampling
on Perfect-recall Refinement

A perfect-recall refinement of a game, as defined in Def. 1, provides

the team players with the ability to observe the actions played

by their team members at each step of the game. This simulates

the best-case scenario in which agents can communicate during

game-play: hence, we can collect meaningful trajectories on the

relaxed game G∗
using any trajectory sampling algorithm and still

exploit the extra information available at training time. We test

our framework using NFSP [23] and QMIX [48] (see Appendix for

further details). Going back to the coordination game with horizon

2 in Figure 1, the team players’ observations can be split in two

separate information issues: the state of the game and the teammate

action. Consider, for example, an episode of the game in which T1
plays action L and T2 plays action R. Then, the observations of the
players will be: 𝑜T1 : {𝑜 : R, 𝑎T2 : None} and 𝑜T2 : {𝑜 : R, 𝑎T1 : L},
where the played actions are 𝑎 = {𝑎T1 : L, 𝑎T2 : R} and 𝑜T1, 𝑜T2 are
both R because in the original game there is only one information

set for each player.

Before storing the collected trajectory into the buffer, players’ ob-

servations are purged from the extra knowledge of the teammate’s

action since this information is not available at execution time. In

the example, only T1’s action is purged from T2’s observation as for

the multistage nature of the original game the only player that does

not observe the action of the other is T2. Note that in multi-stage

games like the coordination game of the example, in order to purge

the observation of T2 from the information obtained by observ-

ing T1’s action is enough to set the observation of T2 equal to the

one of T1. In the next section, we explain how to use the collected

trajectories to learn the team strategy via signal coordination.

6 SIMS: SIGNAL MEDIATED STRATEGIES
In this section, we focus on the problem of representing team coor-

dinated strategies and, in doing so, we implicitly solve the problem

of mapping strategies of G∗
back to the original game G.

As noted by Farina et al. [17], any coordinated strategy 𝜇T can

always be represented as the convex combination of a finite set of

behavioral strategy profiles (𝜋T1, 𝜋T2) of the team. Therefore, we

exploit a set of exogenous signals to condition team members’ de-

centralized policies. Specifically, the decentralized policy followed

by each team member at test time is conditioned on a signal which

is sampled just before the beginning of the episode. The questions

here are: (i) how to properly learn the probability distribution over

signals in order to optimally balance different decentralized poli-

cies? (ii) how to make sure team members don’t just ignore signals?

Let M be a memory of trajectories collected from game-play in-

teractions, following the centralized sampling procedure described

in Section 5.2. Each sample in M is a pair (𝑜, 𝑡) containing a game

observation and its target action. Once the experience buffer is full

of meaningful coordinated trajectories, we can try to imitate the
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Figure 2: Diagram block of the training of SIMS to learn a coordinated strategy in a game with 2 team players.

team players’ behaviour via supervised learning. In practice, coor-

dination is achieved by conditioning the team players’ policies on

an exogenous signal drawn from a learnable distribution, explicitly

implementing a coordination device.

Signal Mediated Strategies (SIMS). Let be T the set of team

players (T1, T2, . . . T |T |), with observation space S, and action

space AT𝑖 . For simplicity, we assume that the game observation 𝑜

is the same for all team players and 𝑡 is a tuple (𝑡T1
, ..., 𝑡T|T | ) that

specifies the target action for each team member. In the rest of the

section and in Figure 2, for the sake of clarity, we drop the prefix T
from the player notation and denote each player only by its index.

Each team member’s policy is defined as 𝜋𝑖,𝜙𝑖
: S × E → Δ |A𝑖 |

,

where E is the space of signals and 𝜙𝑖 are the parameters of a deep

neural network that parameterizes the policy. Crucially, each policy

is conditioned both on the observation 𝑜 (the state of the game) and

on an exogenous signal 𝜉 ∈ E, sampled at the beginning of the game.

The signals are sampled according to a categorical distribution

𝜇𝑠 = Cat(𝑛, 𝜃 ), where 𝑛 is the number of available signals and their

probabilities are learned from experience, parameterized by 𝜃 . We

sample all the 𝑛 signals from the distribution 𝜇𝑠 and compute the

action distributions 𝑎 𝑗,𝑘 from 𝜋 𝑗,𝜙 𝑗
for each team member and for

each signal 1 ≤ 𝑘 ≤ 𝑛. The marginal action distributions of the

team players are then multiplied via joint product to obtain the

team action distribution a𝑘 for each signal 𝜉𝑘 :

a𝑘 =
∏
𝑗 ∈T

𝜋 𝑗 (·|𝑜, 𝑧𝑘 , 𝜃𝑖 ) =
∏
𝑗 ∈T

𝑎 𝑗,𝑘 (2)

Wemarginalize the joint action distribution over all the𝑛 signals a =∑
𝑖≤𝑛 𝜇𝑠 [𝜉𝑖 ]a𝑖 , and compute a classification loss L𝐶 with respect

to the target action 𝑡 :

L𝐶 (a, 𝜃 ) = CrossEntropy(a, 𝑡 |𝜃 ). (3)

We also introduce an additional entropy regularization term L𝐸,𝑠 =∑
𝑡 ∈T 𝐻 (𝑎𝑡,𝑘 ) , to enforce pure strategies over the actions probabil-

ities for each distinct signal. The overall supervised learning loss

to be minimized is:

L(a1, ..., a𝑛, 𝜃 ) = L𝐶 + 𝛽
∑
𝑘≤𝑛

𝜇𝑠 [𝜉𝑘 ]L𝐸,𝑠 (ak) (4)

where we dropped the arguments of L𝑐 and L𝐸,𝑑 for clarity, and 𝛽

is the coefficient of the regularization term. A block diagram of the

SIMS framework is shown in Figure 2.

7 EXPERIMENTAL EVALUATION
In this section, we empirically evaluate our framework against

some of the state-of-the-art multi-agent RL algorithms available in

the literature. First, we provide some details on our experimental

setting, then we provide the main experimental results.

7.1 Experimental Setting
We use as benchmarks for our experimental evaluation different

instances of the coordination game in Figure 1 and an instance of

the patrolling game shown in Figure 4.

Coordination game. We consider two different instances of the

coordination game in Figure 1. Specifically, coord-2 and coord-4 are

coordination gameswith horizon 2 and 4 respectively, i.e., each team

member plays once or twice before reaching a terminal node. In

each game, the team receives a positive payoff only if both players

guess correctly the action of the opponent and mimic its action.

Otherwise, all players have payoff equal to 0. The final team payoff

is split equally among the team members. Note that these game

are known to be the worst-case instances in terms of difficulty of

coordination [9], which makes them ideal to understand whether

team members are effectively coordinating or not. In particular, we

consider the setting in which there is an imbalance in the team’s

payoffs, i.e., instead of receiving 𝐾 for playing both left or right,

team members receive 𝐾 and 𝐾/2, respectively. Imbalanced payoffs

make the process of learning an optimal coordinated strategy more

challenging with respect to the balanced setting. Intuitively, this is

because a uniform probability distribution over signals is no longer

enough to reach an optimal strategy. In all the experiments we set

𝐾 = 100. We also tested other combinations of imbalanced payoffs,

but we omit them since they yield similar results.

Patrolling game. We focus on a simple patrolling game defined

over a grid-world. The setting is described in Figure 4. Both team

members play as the defending agents and, starting from the central

position in the grid, they have to reach one of the four sites that

must be defended. The game evolves synchronously and at every
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Figure 3: First row: performance of SIMS-iNFSP on a coordination game with horizon 2 (coord-2). Second row: performance on
coordination game with horizon 4 (coord-4). Left column: Average Team reward. Center column: Average exploitability. Right
column: Kullback-Leibler divergence between the joint average strategy and the optimal TMECor strategy.

round each agent can either move in one of the four directions or

remain on the same cell. After three time instants, the opponent

decides which one of the sites to attack (without observing the

team members’ positions). The defense is considered successful if

both agents are located in the exact cell attacked by the opponent,

unsuccessful otherwise. In case of a successful defense the team gets

as a reward +1 and the opponent −1, while in case of a successful

attack the team gets -1 and the opponent +1. The game is denoted

as patrolling_4_3 to indicate 4 sites to defend and attacks taking

place after 3 time steps.

Baselines. We evaluate SIMS in combination with two differ-

ent algorithms for collecting trajectories, namely SIMS-iNFSP and

SIMS-iQMIX. The prefix “i” indicates that trajectories have been
collected using the relaxed game (i.e., the perfect-recall refinement)

and the extra information about the action of the teammate has been

discarded when saved into the buffer as described in Section 5.2 –

“i” stands for inflation operator from Def. 4 and Def. 5. In order to

improve the performances of the trajectory sampling performed by

iNFSP, we adopt parameter sharing between team members. We

show the necessity of centralized training by sampling the trajecto-

ries on the relaxed game and comparing the performance against

versions of theNFSP andQMIX algorithmswhere trajectories have

been collected on the original game. Finally, we also perform exper-

iments using SIC-MADDPG [12], another framework that models

the coordination device explicitly. SIC-MADDPG extends the actor-

critic framework proposed in [38] for competitive-cooperative en-

vironments by adding signals coordination and ensuring that the

signal is taken into account with a mutual information regularizer.

MADDPG and hence SIC-MADDPG take advantage of the central-

ized training by observing extra information such as the state of the

game and the actions of other players. In a coordination game, this

is equivalent to observing only the actions chosen by other players,

as the game can be considered inherently stateless. Furthermore, we

empirically show that oftentimes SIC-MADDPG and QMIX cannot

reach convergence to a TMEcor, even in settings in which iNFSP is

guaranteed to converge.

Implementation details. All the policies and value networks

are parameterized byMulti-Layer Perceptron (MLPs) with two fully-

connected layers of 128 units each and ReLU activation. The batch

size has been set to 128 and the optimizer used is Adam [28] for

all experiments, with a learning rate 𝑙𝑟 = 10
−3

and default 𝛽1 and

𝛽2 parameters. The replay buffers used by all algorithms have a

size of 2 · 10
4
, while the reservoir buffers in NFSP have a size of

10
5
. The mixing layer used by QMIX has also 128 units with ReLU

activation. In all the considered games, there exists an optimal

coordinated strategy employing only two signals. In SIMS, we used

a signal space composed of 5 signals for the coordination games and

4 signals for the patrolling game. In order to improve stability of the

strategy computation, we use a linear scheduling for the entropy

regularizer coefficient 𝛽 in Eq. 4. In particular, we keep fixed the

parameter at 𝛽𝑖𝑛𝑖𝑡 for the first half of the training, and then linearly

increase it up to 𝛽𝑒𝑛𝑑 for the second half of the training phase. For

all our experiments we set 𝛽𝑖𝑛𝑖𝑡 = 0 and 𝛽𝑒𝑛𝑑 = 1. Moreover, we

accumulate the gradients of the signals distribution’s parameters

and perform a back-propagation step every 𝑁𝑠𝑖𝑔 = 20 iterations.

Both the introduction of the scheduling for 𝛽 and the accumulation

of gradients for the signal distribution significantly stabilize the

training. All the algorithms are evaluated for 100 episodes every 50

training iterations by averaging across 10 different runs. We used

PyTorch [47] and the multi-agent environment abstraction from

RLlib [36].
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Figure 4: Patrolling game instance. Yellow cells are the facil-
ities that must be defended, the red cell is the starting cell
for both defending agents.

7.2 Results
Now, we discuss the results on the experimental settings described

above, showing the success of the SIMS framework in achieving

team coordination.

Coordination game. In coordination games, decentralized strate-

gies are not expressive enough to describe the optimal coordinated

behaviours of the team members. This can be observed by the un-

satisfactory performance of NFSP, QMIX and SIC-MADDPG, when

compared to the optimal TMECor. On the other hand, SIMS-iNFSP

is able to compute and represent an optimal coordinated strategy

for the team. As shown in Figure 3 (Right), the team reward of the

joint policy computed through SIMS-iNFSP is close to the optimal

one reached at the equilibrium. This is further confirmed by Fig-

ure 3 (Center), as the exploitability of the strategy obtained through

SIMS-iNFSP decreases towards zero. Informally, the exploitability

of a strategy gives a measure of how much worse that strategy

performs versus a best response of the opponent, compared to

an equilibrium strategy. Finally, the leftmost column of Figure 3

reports the Kullback-Leibler divergence between the joint policy

and the TMECor strategy profile during training. The analysis of

SIMS-iQMIX and its comparison with the other algorithms show

two important aspects. On one side it shows how the proposed de-

centralized training paradigm outperforms the centralized training

paradigms of QMIX and SIC-MADDPG, that together with NFSP

fail in being able to capture coordination between team members.

This happens because, by relaxing the environment, we are giving

the possibility to the team members to always avoid playing unco-

ordinated actions, resulting in an increase of the average reward

obtained, and in a decrease in the Kullback-Leibler divergence with

the optimal strategy. Comparing SIMS-iNFSP and SIMS-iQMIX fur-

ther stresses the importance of collecting meaningful trajectories.

While the trajectory sampling performed by iNFSP has theoretical

guarantees of converging to an equilibrium in some specific set-

tings (see Section 5.1), this is not the case for iQMIX. This results in

high instability of SIMS-iQMIX’s performances and higher average

exploitability, that is a higher distance from the equilibrium. We

also observed that policy gradient approaches struggle to find a

pair of strategies with satisfactory performances. We conjecture

that this is due to the sparsity of the rewards, a key characteristic

of coordination games that inevitably weakens the gradients and

prevents the algorithm from learning.

Patrolling game. The analysis of the patrolling game offers

the opportunity to visualize the level of coordination achieved via

Figure 5: First row: heatmaps of player T1 on patrolling_4_3.
Second row: heatmaps of player T2 on patrolling_4_3. Every
column represents a single signal.

SIMS-iNFSP through the heatmaps that we report in Figure 5. The

heatmaps clearly show that team members learn to associate the

same shared meaning to each signal. Specifically, each signal (i.e.,

each column of Figure 5) is associated with the same site by both

team members, resulting in an optimal coordination between them.

In Figure 6, we plot the average reward achieved by SIMS-iNFSP

against the average reward of NFSP and the reward at the TMEcor.

Also in this case, SIMS-iNFSP is able to guarantee to team members

the optimal reward, resulting in better performances than NFSP.
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Figure 6: Team reward on a patrolling game with 4 sites to
defend and attack after 3 time steps.

8 CONCLUSIONS AND FUTUREWORK
In this paper we propose to leverage the notion of perfect-recall

refinement of a game to perform centralized trajectory sampling

for a team of agents whose goal is to learn a coordinated strategy.

Moreover, we introduce a supervised learning framework (SIMS)

for computing and representing joint coordinated strategies of a

team from a buffer of past experiences.

We provide a preliminary experimental evaluation which shows

promising performance of our framework. Future works will be de-

voted to further testing the ideas we presented on more challenging

benchmarks where the abstraction power of deep RL techniques can

be fully appreciated. For example, we plan to test our techniques

on predator-prey environments such as Wolpack [35]. We are also

planning more extensive tests on different trajectory-sampling algo-

rithms that may be used to populate the buffer of past experiences

used by the team.
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