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Abstract

The reconstruction of geometry for non-rigidly deforming objects from a single view
is a very challenging problem. Many previous methods have attempted to solve this
problem; however, none have achieved sufficient robustness for industrial application. A
novel approach to this problem is required to advance the state-of-the-art.

Recent advances in neural Implicit Scene Representations (ISRs) have demonstrated
tremendous promise in many applications requiring learning scenes from images. While
some ISR methods have already shown promise for reconstructing the geometry of static
scenes from multi-view data, none have yet demonstrated the capability of non-rigid 4D
reconstruction from a single monocular view.

A new method is proposed, called Unbiased 4D or Ub4D, that uses a neural deformation
model to bend rays into a canonical space for reconstructing the geometry of deforming
objects from a monocular sequence of images. Given the ability of other methods to ac-
quire coarse geometries, we also formulate an optional loss that uses 3D correspondences
of the object as an additional prior.

Ub4D demonstrates state-of-the-art results when compared to other methods solving
the problem of monocular 4D reconstruction for non-rigidly deforming objects. We
examine Ub4D with ablation studies, present extensive results, and investigate semantic
meaning in the learned latent codes. Applying ISRs to such a challenging problem shows
significant potential for future improvement and motivates further investigation.
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Chapter 1
Introduction

The ability for anyone to capture the world with a consumer device has created dramati-
cally new opportunities for content creation. Consumer video capture has altered how
many industries operate and created entirely new industries. This ease of capturing high
quality video allows for new methods of content creation. One such evolution of media
capture will be towards extracting animated 3D models from video.

Already the ability to extract static 3D models from sets of images using photogrammetry
has revolutionized the creation of assets for digital productions. Figure 1.1 shows
an example of such an asset. In contrast, creating animated 3D assets requires time-
intensive work, expensive multi-camera setups, or custom object-specific algorithms.
Extending the ability to scan objects to single cameras for generic deforming objects
would enable creators to build completely new experiences. This problem of monocular
4D reconstruction for non-rigidly deforming objects is the focus of this work.

Figure 1.1: Photogrammetry asset in a digital scene from an Epic press release [87].
Quixel is a company that uses photogrammetry to scan real-world objects for use in
digital productions.

1
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The solution to this problem is critical to the future of XR technologies. A positive
future for these technologies relies on lowering the barriers to creation. The ability to
produce digital replicas of real-world objects from the ubiquitous smartphone camera
would allow individuals more freedom in their creations. Solving this problem would
also open up the possibility of extracting animated 3D models from existing footage.
For example, giving anyone access to all filmed animals and, moreover, all movements
of those animals captured on film. Video is the great library of everything and it can
be made available as a catalogue of digital assets for creating currently unimaginable
immersive experiences.

1.1 Challenges

The problem of monocular 4D reconstruction is fundamentally challenging. The reason
for this is the ill-posed nature of the problem: a single monocular view does not provide
sufficient information to uniquely solve for the 3D object surface. Even knowing the
camera parameters and considering a perfectly rigid object, there is an infinite space of
object scales and depths creating the same image observations. The problem becomes
even more ill-posed when allowing for non-rigid deformations of the object. Such a case
is visualized in Figure 1.2 for multiple depths and surface deformations, all of which
project to the same 2D image plane pixels.

Figure 1.2: Illustration of monocular depth ambiguity modified from Jain et al. [28].
Note that the multiple different depths and surface deformations all project from 3D to
the same 2D pixels on the image plane.

Another challenge encountered in many applications leveraging Neural Networks (NNs)
is hyperparameter tuning. A hyperparameter is an untrained parameter that defines the
construction or operation of the NN architecture, referred to as such to distinguish them
from those that are trained, e.g. the weights and biases. Despite demonstrating excellent
results, NN approaches commonly employ arbitrarily-sized network layers and latent
codes without being able to provide theoretical justification for those decisions. Fre-
quently, hyperparameters are set according to empirical observations. Hyperparameter
tuning represents its own challenging area of research, particularly for complex models
requiring significant training effort.
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1.2 Overview

We examine existing approaches to the problem of monocular 4D reconstruction in
Chapter 2. While some works show good results for humanoid characters or planar
objects, they do so by imposing strict priors on the class of image sequences to which
they can be applied. A recent explosion of works in the domain of neural volumetric
rendering from Implicit Scene Representations (ISRs) is reviewed in Chapter 3. This new
class of method has already been demonstrated to be capable of producing high quality
static 3D models in competition with traditional photogrammetry methods like Structure
from Motion (SfM). In this work, we explore the possibility of extending this capability
to non-rigidly deforming objects using only a single monocular view.

Chapter 4 proposes our novel approach to the problem of monocular 4D reconstruction
through the use of a deforming ISR. Our method, which we call Unbiased 4D or Ub4D,
uses a neural deformation model to bend rays into a canonical space. In this canonical
space, the ray is rendered from the ISR which is supervised by the ground truth pixel
color in order to learn the canonical surface and the per-frame deformation. We provide
extensive investigation of this approach in Chapter 5 for a wide range of object types
represented in a newly created dataset. Ub4D achieves state-of-the-art results and we
examine the correctness of our decisions with an ablation study. Further, we investigate
semantic meaning in the latent codes of our neural deformation model.

Despite achieving state-of-the-art results with our novel approach, there still remains
extensive possibilities for future improvement. Chapter 6 details current limitations and
future work. The application of ISRs to the problem of monocular 4D reconstruction for
non-rigidly deforming objects shows promise that will continue beyond this work.



Chapter 2
Related Work

Monocular 4D reconstruction of non-rigidly deforming objects is an active research
area with multiple approaches to solving the problem. We focus our attention in this
section entirely on monocular methods. While our method, Ub4D, builds on ideas from
multi-view approaches and Implicit Scene Representations (ISRs), we discuss these in
Chapter 3 as they do not tackle the same problem that we do.

The other methods solving the problem of monocular 4D reconstruction for non-rigid
objects are Non-Rigid Structure-from-Motion (NRSfM), template-based tracking, and
some neural surface extraction methods. Despite solving the same problem, they differ
significantly from Ub4D and these differences will be highlighted. We first discuss
NRSfM in Section 2.1, then template-based tracking in Section 2.2, and finally neural
surface extraction in Section 2.3.

2.1 Non-Rigid Structure from Motion

Non-Rigid Structure-from-Motion (NRSfM) is a classical factorization approach to
jointly recovering deforming object shape and camera motion from monocular image
sequences [9, 82]. It takes as input 2D image-space keypoints tracked over the sequence
that are typically centered in each frame by removing the average [2, 9, 82]. This is
referred to as the measurement matrixW ∈ R2F×P for F frames tracking P keypoints.
This measurement matrix is then factored into two components: S ∈ R3F×P containing
the 3D position for each keypoint in each frame andR ∈ R2F×3F containing the camera
rotation and projecting the 3D points to 2D [2, 9, 75, 82]. This approach is summarized in
Figure 2.1.

This approach was described for rigid objects under orthographic projection in Tomasi
and Kanade [82] and then subsequently extended to handle non-rigidly deforming objects
in Bregler et al. [9]. When allowing for non-rigid deformations, the problem formulation
becomes highly ill-posed and many works introduce constraints on the allowed space
of deformations [9, 35, 68, 84]. Another trend in NRSfM works is moving towards
the use of dense Multi-Frame Optical Flow (MFOF) [20, 61] instead of sparse keypoint
tracks [2, 19, 75]. Recently, methods leveraging advances in deep neural networks have

4
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Figure 2.1: NRSfM factorization approach to monocular 4D reconstruction. This ap-
proach also seeks to recover the camera motion. Each matrix is depicted as a block matrix
showing the relevent individual elements: wj

i , Ri, and sji , for frame i and tracked point
j. Base image from [75], annotations ours.

become more common [32, 75, 90].

From these neural approaches to NRSfM, Sidhu et al. [75] specifically employs an auto-
decoder to deform a mean shape which is trained against a dense MFOF measurement
matrix, while also optimizing the camera rotations. They call their method Neural NRSfM
or N-NRSfM. This work demonstrates state-of-the-art results for NRSfM approaches and
we show some of their qualitative results in Figure 2.2. We compare against the results of
their method on our introduced datasets in Section 5.4.

Figure 2.2: Qualitative results of Sidhu et al. [75]. Note how little the camera moves and
that the reconstructions are planar surfaces rather than water-tight meshes.

While NRSfM approaches have a significant heritage and solid theoretical framework,
they suffer from drawbacks that make this approach challenging to apply for real-world
captures. The first being that the formulation takes 2D tracks over the entire sequence
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as input which assumes that the same points are visible in all frames [9, 82]. While
some works discuss the ability to handle occlusions [19, 75, 84] and some simply set
occluded tracks to zero [32], none provide real-world results with significant camera
motion showing multiple sides of an object. Additionally, computing 2D tracks is a
challenging problem on its own [69, 79]. Another issue with NRSfM is that its reconstruc-
tions are planar surfaces in practice whereas water-tight meshes are a more desirable
output for many object classes. Finally, the ability of NRSfM to handle large or complex
deformations can be limited by the constraints placed on the allowed deformations [32].

In contrast to NRSfM approaches, our method, Ub4D, takes as input monocular RGB
images and assumes known camera parameters. This allows Ub4D to handle scenes with
large camera motion that creates significant occlusions in the 2D tracks. Additionally
using an analysis-by-synthesis approach gives additional robustness to noise when
compared to a matrix factorization. One benefit of NRSfM relative to Ub4D, is that it
provides 3D correspondences which our method as presented in Chapter 4 does not. We
discuss the potential extraction of 3D correspondences from Ub4D in Section 6.2.

2.2 Template-Based Tracking

Another approach to monocular 4D reconstruction is using a known template and then
tracking it over the image sequence [67, 99]. This approach is frequently used with the
additional prior that the object of interest is a human character [23, 24, 94]. These methods
take as input a monocular RGB sequence and an object template. Then they formulate an
energy E that is minimized for each frame by optimizing the object’s shape S, rotation
R, and translation t [23, 24, 67, 94, 99]. This energy formulation captures the error in the
projection of the deformed template onto the image, as well as various additional priors,
e.g. spatial smoothness, temporal smoothness, and As-Rigid-As-Possible (ARAP) [78]
deformations. This approach is summarized in Figure 2.3.

Figure 2.3: Template-based tracking approach to monocular 4D reconstruction. This
approach deforms a template over the RGB sequence to explain the image observations
and minimize constraining regularizers.

Methods assuming humanoid objects typically use this additional prior to pose a rigged
template using optimized skeleton parameters, in addition to applying non-rigid de-
formations [23, 24, 94]. While Habermann et al. (2019) [23] and Xu et al. [94] are purely



7

optimization methods without a training phase, Habermann et al. (2020) [24] requires
per-character multi-view training data in addition to a template. While these humanoid-
specific approaches demonstrate excellent results for humans, the path to fully generaliz-
ing these methods is infeasible due to how much they rely on the humanoid prior. On
the other hand, Salzmann et al. [67] and Yu et al. [99] are both object class independent
methods.

Specifically, Yu et al. [99] use a combination of a reprojection energy and constrain the
solution with spatial, temporal, and ARAP [78] deformation regularization. They also
initialize the state for each frame using the previous frame. Their method is called Direct,
Dense, and Deformable; or DDD. This work demonstrates state-of-the-art template-
based tracking results for general objects and we show some of their qualitative results
in Figure 2.4. We compare against the results of their method on our introduced datasets
in Section 5.4.

Figure 2.4: Qualitative results of Yu et al. [99].

While template-based tracking methods have demonstrated good results when restricting
the object class, generic methods can struggle with large deformations and can result in
self-intersections (see Figure 5.4). The most significant limitation of template tracking
methods is the requirement to acquire a template of the object. This requires a rigid
sequence around the object or character [94, 99] which can then be reconstructed using
e.g. COLMAP [71, 72]. Needing access to a template makes this method impractical for
in-the-wild application, limiting its future application mostly to controlled environments.
Unlike NRSfM, template tracking methods will output water-tight meshes, provided
that the input template is a water-tight mesh.

In contrast to template-based tracking methods, our method, Ub4D, does not require
access to an object template nor does it make any additional assumptions about the
class of the object. This provides the path towards in-the-wild application of Ub4D
and similar approaches. Two of our introduced datasets include rigid sub-sequences;
however, we demonstrate that these are not necessary in general (see Section 5.2). While
template-based tracking provides 3D correspondences over the sequence through vertex
correspondences of the template, Ub4D produces per-frame geometry that does not
correspond over the sequence. As shown in Section 5.6, Ub4D can be seen as constructing
a template in the canonical space from the monocular RGB sequence itself, without
specifically requiring a rigid sequence.
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2.3 Neural Surface Reconstruction

While some of the methods discussed previously in Section 2.1 and Section 2.2 have
leveraged neural networks (e.g. Sidhu et al. [75] and Habermann et al. (2020) [24]), this
section discusses approaches that are primarily neural in their implementation. We refer
to these approaches as neural surface reconstruction. Most of these approaches focus
on reconstruction from a single view [15, 21, 31, 64, 65, 73, 91] which is an even more
ill-posed problem than approached in this work. They tackle this restricted setting by
requiring explicit 3D ground truth supervision [15, 21, 64, 65, 73, 91] or focusing on
specific object categories [31], both of which limit the applicability of these methods.
Li et al. [39] is a neural surface reconstruction approach that operates on input monocular
RGB sequences; however, it constructs a category-specific template from additional input
single views of the same object category. Compared to these works, Yang et al. [95] takes
monocular video as input and is not specific to an object category making it the most
comparable work.

Yang et al. [95] computes optical flow and segmentations from the input monocular
video, then outputs an articulated mesh with per-frame joint angles and camera param-
eters. They call their method LASR. LASR optimizes a base shape with an articulated
skeleton with skinning weights for the rest shape and then uses a Convolutional Neural
Network (CNN) to determine the joint angles and camera parameters of each frame in
the sequence. The base shape is determined by deforming a sphere in a coarse-to-fine
manner. One downside of this particular approach is its inability to model objects that
are not topologically equivalent to a sphere (i.e. genus-0). This work demonstrates
state-of-the-art results for comparable neural surface extraction approaches and we show
some of their qualitative results in Figure 2.5. We compare against the results of their
method on our introduced datasets in Section 5.4.

The neural surface extraction approach is recent relative to NRSfM and template-based
tracking; however, has demonstrated promising results for single view reconstruction.
However, reliance on 3D ground truth supervision or object category limits applicability
and scalability of this class of methods. Few neural surface extraction methods have yet
been developed that reconstruct non-rigidly deforming general objects. Yang et al. [95]
show promising results for optimized articulated meshes, but are restricted by deforming
from an initial sphere which restricts the topology of the results.

In contrast, our method, Ub4D, has no restriction on the topology of its output (see
Figure 5.3 that shows Ub4D reconstructing a very high genus object) which increases the
range of object categories that it can handle. Additionally, unlike many neural surface
reconstruction approaches, we do not use 3D ground truth for supervision. Our optional
scene flow loss uses only estimated geometric proxies. The method of Yang et al. [95]
produces 3D correspondences, which Ub4D does not. Section 6.2 discusses ideas for
extracting 3D correspondences from Ub4D.
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Figure 2.5: Qualitative results of Yang et al. [95]. Colored dots show the bone locations.
Note how the novel views suffer from monocular depth ambiguities and are relatively
coarse in their representation.



Chapter 3
Background

This work builds upon ideas that are not currently part of the literature on monocular 4D
reconstruction. These are volumetric rendering and Implicit Scene Representations (ISRs)
which are discussed in Section 3.1 and Section 3.2, respectively. ISRs are particularly
important for our approach to monocular 4D reconstruction and in addition to the
original ISR concept, we also discuss how they are learned from images (Section 3.2.1),
their extension to non-rigidly deforming scenes (Section 3.2.2), and their use for static
geometry reconstruction (Section 3.2.3). We also provide details on the metrics used
for quantifying explicit geometry reconstruction quality in Section 3.3. An important
algorithm for our method is marching cubes, which is discussed in Section 3.4.

3.1 Volumetric Rendering

In this section, we introduce the mathematical formulation of volumetric rendering and
a key simplification from which Implicit Scene Representations (ISRs) take inspiration.
The rendering of volumetric phenomena is a common task in computer graphics. This
involves the simulation of four distinct processes that occur for light in volumes: ab-
sorption, out-scattering, in-scattering, and emission [13, 30, 51, 57]. Absorption and
out-scattering both reduce the radiance along a path through a medium, whereas in-
scattering and emission increase the radiance. The differential radiative transfer equation
for a point in space x ∈ R3 and a direction d ∈ R3 is:

dL(x,d)
dt = −µa(x)L(x,d)︸ ︷︷ ︸

absorption

−µs(x)L(x,d)︸ ︷︷ ︸
out-scattering

+µs(x)Ls(x,d)︸ ︷︷ ︸
in-scattering

+µa(x)Le(x,d)︸ ︷︷ ︸
emission

, (3.1)

where µa is the absorption coefficient, µs is the scattering coefficient, L is the radiance, Ls
is the in-scattered radiance, and Le is emitted radiance [13, 30, 51, 57]. This can be seen
as a light-field formulation defining radiances at a given point x traveling in a certain
direction d. Typically, absorption and out-scattering are combined into a generalized
attenuation term with µt = µa + µs as the attenuation coefficient [51, 57].

The differential form of Equation (3.1) is typically integrated for computer solution [51,

10
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57]. The integral equation for a straight line from a viewing point x to an example surface
point xz is:

L(x,d) = Tr(xz → x)L(xz,d)︸ ︷︷ ︸
from surface point xz

+

∫ z

0

Tr(xζ → x)µa(xζ)Le(xζ ,d) dζ︸ ︷︷ ︸
volume emission

+

∫ z

0

Tr(xζ → x)µs(xζ)

∫
S2

fp(di,xζ ,d)Li(xζ ,di) ddi dζ︸ ︷︷ ︸
in-scattered radiance

,

(3.2)

where:

Tr(y → x) = exp

(
−
∫ x

y

µt(γ) dγ

)

is the beam transmittance modeling the attenuation from y to x. Additionally, fp is
the in-scattering phase function (e.g. Henyey-Greenstein [26]) and Li is incoming radi-
ance, whose product is integrated over the sphere S2. Equation (3.2) allows practical
implementation in the ray-tracing computer graphics model [30] with efficient solution
possible through the use of Monte Carlo integration methods [51, 57].

One relevant acceleration is the use of texture alpha compositing [58] developed for
scientific visualization of volumetric data [12, 17, 34]. This method represents the volume
using textures that are combined based on their sampled alpha values. If we have a set
of n ordered color ci and alpha αi samples, the combined color can be computed as:

c =

n∑
i=1

αi ci

i−1∏
j=1

(1− αj) . (3.3)

To compare this with Equation (3.2), consider the discretization for a volume in a scene
without any surface and ignoring all scattering:

L =

z∑
i=1

(
1− exp

(
−δi µa(xi

))
Le(xi,d) exp

− i−1∑
j=1

δj µa(xj)

 (3.4)

=

z∑
i=1

(
1− exp

(
−δi µa(xi

))
Le(xi,d)

i−1∏
j=1

exp
(
−δj µa(xj)

)
, (3.5)

where δi is the sample distance. Note that this integral approximation is the improved
version from Max and Chen [46], accounting for the nearer portion of each finite region
occluding the further portion, compared to a naïve Riemann discretization [62]. Com-
paring Equation (3.5) and Equation (3.3), we can see that they can be directly related by
setting:

αi = 1− exp
(
−δi µa(xi,d)

)
. (3.6)
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3.2 Implicit Scene Representations

An Implicit Scene Representation (ISR) is a method for representing a scene without
using explicit geometry (e.g. triangles). This can provide substantial benefits for learning
tasks due to the challenges of gradient propagation and topological changes encountered
when using explicit geometry. The most common representation, and the one used in
this work, is an ISR using one or multiple Neural Networks (NNs) taking 3D coordinates
as input. The output of the NN depends on the desired properties and application of
the ISR. Examples of outputs include occupancy [14, 47, 50], Signed Distance Function
(SDF) value [53, 92, 97], volume density [48, 86, 92], color [44, 48, 86, 92, 97], or alpha
value [44].

Early examples of ISR approaches used input 3D ground truth data to train their NNs [14,
47, 53]. They demonstrated applications like shape completion [47, 53], novel shape
generation [14, 47], and single view 3D reconstruction [14, 47]. However, access to 3D
ground truth training data is highly restrictive and limits the applicability of these early
ISR approaches. Being able to learn an ISR from 2D images provides a much wider range
of application.

3.2.1 Image Supervision

The key element enabling image supervision is the differentiability of the rendering
process. This allows for the supervision of a rendered ray by the pixel from which it
originated. Different rendering approaches have been proposed, including ray march-
ing with a Long Short-Term Memory (LSTM) network [77], texturing estimated depth
maps [50], and predicting radiance at a surface point with a Multi-Layer Perceptron
(MLP) network [97]. However, we focus on the approach most similar to volumetric
rendering: treating the scene as an emissive volume without scattering [44, 48]. This case
was shown to reduce to alpha compositing in Section 3.1.

Specifically, the discretized rendering equation of Mildenhall et al. [48] is:

Ĉ(r) =

n∑
i=1

(
1− exp(−δi σi)

)
ci

i−1∏
j=1

exp
(
−δj σj

)
, (3.7)

where σi is a sample from the density network, ci is a sample from the color network, and
δi is the interval width. The density and color networks take 3D coordinates and viewing
directions as input. These networks form the ISR used by Mildenhall et al. [48]. Note
that Equation (3.7) exactly resembles Equation (3.5) for σi = µa(xi) and ci = Le(xi,d).
Figure 3.1 provides a visualization of this neural volumetric rendering process.

This form of ISR trained from images provides state-of-the-art results for novel view
synthesis. The model of an emissive volume without scattering works very well in this
case as it can capture the light emitted from surfaces and allows for occlusions. However,
these early volumetric models bake the object lighting into the ISR which is not the case
for explicit mesh representations. Another downside of such coordinate-based density
representations is that there is no true surface and extracting surfaces with a density
threshold can result in noisy surfaces as will be demonstrated in Section 5.3. For our
problem of monocular 4D reconstruction, there are two extensions that are of interest:
non-rigidly deforming scenes (Section 3.2.2) and improved explicit geometry extraction
(Section 3.2.3).
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Figure 3.1: Demonstrative figure of the neural volumetric rendering process from
Mildenhall et al. [48]. The process proceeds as follows: (a) Discrete samples are taken
along rays fired into the scene. (b) Each sample point’s position and direction are fed to a
density and color network. (c) These samples are rendered into a single color estimate by
Equation (3.7). (d) A loss is applied against the true pixel color which supervises the ISR.

3.2.2 Non-Rigidly Deforming Scenes

ISRs have been extended to handle image sequences of non-rigidly deforming scenes.
A naïve idea for such an extension is to provide the networks with an additional time
input. However, this alone does not produce high quality results [86, 93] or requires
RGB-D input [93]. Another idea is to use a learned 3D scene flow to transform between
neighbouring timesteps [41]. Finally, a per-frame deformation to a canonical space can
be used [54, 59, 86].

This deformation can be modeled using an MLP conditioned on a learned per-frame
latent code [54, 86]. This approach is depicted in Figure 3.2. A convenient way to
view this deformation is as rendering along a bent ray in the canonical space. Thus
the deformation network is also referred to as a bending network. Another key idea
introduced in Tretschk et al. [86] is the zero initialization of the per-frame latent codes
provided to the bending network. We show in Section 5.8 that this makes a substantial
difference when compared with random Gaussian initialization.

Figure 3.2: Demonstrative figure of neural volumetric rendering with a per-frame
deformation from Park et al. [54]. Discrete samples along the rays in the observation
frame are deformed through a per-frame learned deformation field into a canonical
frame. Then the same rendering process as shown in Figure 3.1 is performed along these
bent rays.
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3.2.3 Explicit Geometry Reconstruction

While Mildenhall et al. [48] demonstrated that explicit geometry can be extracted from
the density network through the use of the marching cubes algorithm [45] discussed
in Section 3.4, the results contain significant noise and require determining a threshold
for the density. Various ideas have been introduced to improve the explicit geometry
extracted from ISRs. Most works focusing on surface reconstruction use Signed Distance
Functions (SDFs) to model geometry [92, 96, 97]. An SDF is beneficial since it provides
an obvious threshold (i.e. 0) whereas density-based representations must determine a
threshold without any obvious optimal value. An alternative approach is given by Oech-
sle et al. [52] where they formulate the rendering method so that the volume rendering
converges to an exact surface defined by a threshold during training. When considering
importance sampling, the methods of Wang et al. [92] and Yariv et al. (2021) [96] both
resemble Oechsle et al. [52] since these works construct the density from a probability dis-
tribution that narrows on the surface over time. They define the probability distribution
as a function of the SDF value.

This notion of constructing the density from the SDF is especially powerful since it lends
itself to mathematical proofs, in addition to working well when implemented. Our
method is most similar to that of Wang et al. [92] since they use the logistic probability
distribution to construct the density, whereas Yariv et al. (2021) [96] use the Laplace
distribution. Using the notation of Section 3.1, Wang et al. [92] define the density as:

µa(xi) = max

{
−dΦs

dt

(
f(xi)

)
Φs
(
f(xi)

) , 0

}
, (3.8)

where Φs is the logistic Cumulative Distribution Function (CDF) and f is the scene SDF.
Then we can consider Equation (3.5) to be a weighted sum as:

c =

z∑
i=1

w(xi)Le(xi,d) , (3.9)

where:

w(xi) =
(

1− exp
(
−δi µa(xi

)) i−1∏
j=1

exp
(
−δj µa(xj)

)
. (3.10)

This weight function w is visualized for a toy example in Figure 3.3. Wang et al. [92]
show that this weight function is unbiased with respect to the surface (i.e. 0 level set of
SDF f ) and, in Section 4.2.5, we provide an alternative proof for any smooth parametric
path.

3.3 Geometry Reconstruction Metrics

In determining the accuracy of our geometry reconstruction, we employ two common
metrics: the Chamfer Distance (CD) and the Hausdorff Distance (HD). Note though that
we use a different definition of the HD than as it was originally defined [27]. We define
the HD as the asymmetric average distance from one set to the nearest points in another
set:

dHD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

||x− y||22 . (3.11)
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Figure 3.3: Demonstrative figure from Wang et al. [92] for the specially designed weight
function in Equation (3.10). Note how the weight function computed from the SDF
attains a local maximum at each potentially visible surface along the ray. The width of
the weight distribution is parameterized by s in the logistic CDF of Equation (3.8).

When using the HD we always consider the estimated vertices as S1 and measure the
average distance to the ground truth mesh S2. Since this is a mesh rather than a point
cloud, the HD considers the set S2 to include all surface points of the mesh and not just
its vertices. Then we define the CD as the symmetric average distance between the sets
in terms of this HD:

dCD(S1, S2) = dHD(S1, S2) + dHD(S2, S1) . (3.12)

This definition of the CD is consistent with its original definition [4].

3.4 Marching Cubes

Marching cubes is an algorithm for converting an implicit representation into an explicit
surface. It was originally described by Lorensen and Cline [45]. The algorithm samples a
value for each point in a uniform 3D grid. It then identifies the triangles necessary to
represent each cell from a set of 15 possible configurations (excluding symmetries) based
on thresholding of the 8 corner samples. All 15 possible cases are shown in Figure 3.4.
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The specific vertex positions for the triangulation are determined by linearly interpolating
based on the values for the 2 grid points of the edge requiring a vertex.

This algorithm is very simple and easy to implement; however, it does suffer from
drawbacks. The most notable drawback is a lack of adaptability to local complexity.
This is similar to the “teapot in a stadium” problem in computer graphics, typically
encountered for spatial partitioning [57]. That is, it either wastes samples in empty space
or results in low resolution output. While adaptive modifications exist [70, 74], we find
the original algorithm suffices in our case, given that we are interested in localized objects
and do not require real-time performance.

Figure 3.4: Triangle configurations for marching cubes from Lorensen and Cline [45].
Note that this does not include the symmetries for each case.



Chapter 4
Method

Figure 4.1: Our Ub4D approach takes as input a sequence of images and respective
foreground segmentations recorded with a single calibrated RGB camera. In addition,
each frame is also equipped with a learnable latent code. Optionally, we accept a corre-
sponding proxy geometry of the object. Given this, our method learns a canonical and
colored SDF representing the static scene. Our bending network maps the frame space
to canonical space and volume rendering and marching cubes can produce per-frame
renderings and geometries, respectively. We weakly supervise our scene representation
with image-based losses as well as spatio-temporal priors including our novel scene flow
loss.

We present our method, called Unbiased 4D or Ub4D, for reconstructing non-rigidly
deforming objects from a monocular RGB sequence. Figure 4.1 presents an overview
showing the components of the method. Ub4D takes as input a monocular RGB sequence
with segmentations, as well as the camera parameters. In addition, we optionally accept
a corresponding geometry proxy for use in our novel scene flow loss. In an analysis-by-
synthesis approach, Ub4D jointly learns a per-frame deformation to a canonical space
and the surface in that canonical space as a Signed Distance Function (SDF). Explicit
geometry is then extracted for each frame.

Section 4.1 explains the model we use for temporal, non-rigid deformations. Then, in
Section 4.2 we provide the rendering method that converts the scene representation into
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RGB images and segmentations. These renderings are supervised with losses given
in Section 4.2.3. We also prove that Ub4D’s reconstructions are unbiased with respect
to the surface in Section 4.2.5. Next, we present our novel approach to constraining
the reconstruction with the scene flow from the geometric proxy in Section 4.3. We
summarize the losses and regularizers from the previous sections in Section 4.4 and give
details on converting the coordinate-based implicit representation into explicit geometry
in Section 4.5. Finally, Section 4.6 provides further details on the practical implementation
of Ub4D.

4.1 Non-Rigidity Model

Ub4D models temporal non-rigid deformations as a vector field projecting points from
the frame space into a shared canonical space. This can be seen as a frame-dependent
bending of the straight rays originating from the camera. Given a straight ray with an
origin o ∈ R3 and a viewing direction d ∈ R3 as r(t) = o+ td, we bend the ray with a
frame-dependent bending network bi : R3 → R3 as:

r̃i(t) = r(t) + bi(r(t)) , (4.1)

where i denotes the frame. We desire that this bending network transforms points from
frame space into a single canonical representation of the object shared by all frames.

This bent ray is a directed parametric path in R3 like the straight ray, but, where the
derivative of the straight ray is constant (i.e. dr(t)

dt = d), the bent ray has an instantaneous
direction at each point along it. We can compute this instantaneous direction analytically
as:

dr̃i(t)
dt = d

dt

[
r(t)

]
+ d

dt

[
bi(r(t))

]
= d+

∂bi
∂r(t)

d
dt

[
r(t)

]
= d+

∂bi
∂r(t)

d , (4.2)

where ∂bi

∂r(t) is the Jacobian of the bending network with respect to its input r(t), the point
along the straight ray. Note that, in our case, this Jacobian exists everywhere since the
bending network is implemented with a Multi-Layer Perceptron (MLP), which takes as
input a continuous point in 3D space; thus our bent ray is a smooth parametric path.

While this discussion presents the bending network as a per-frame vector field through-
out R3, it is actually implemented using a per-frame learned latent code li ∈ R64. This
latent code is given as input along with a point in space to an MLP b : (R3,R64)→ R3

and the latent codes are optimized during training. Note that this latent code is the only
frame-specific element in our method and no network other than the bending network
receives it. One can see this as a factorization between the temporal and spatial domains
where our method forces time to be entirely modeled in the latent code and bending
network. We further inspect the latent codes after training in Section 5.8.

Our non-rigidity model is similar to that of Tretschk et al. [86]. However, we propose
a different regularization to enable the modeling of larger deformations, which also re-
moves the need to learn a rigidity score throughout the scene. Whereas Tretschk et al. [86]
penalizes the bending network output for its absolute length, we instead enforce that
the deformation of the current frame is similar to that of the neighboring frames. This
assumes that neighboring frames represent similar object states, which is a more reason-
able assumption for dynamic scenes compared to the absolute amount of deformation.
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Specifically, for ns samples along a straight ray r, we penalize the bending network as:

LNBR =
1

ns

ns∑
z=1

∑
j∈N (i)

ω
(z)
i ||bi(r(t

(z)))− bj(r(t
(z)))||22 , (4.3)

where ω(z)
i is the visibility weight at sample z along the bent ray (see Section 4.2.2) and

N (i) are the neighbours of frame i. We also penalize the divergence of the bending
network as:

LDIV =
1

ns

ns∑
z=1

ω
(z)
i |∇ · bi(r(t(z)))|2 , (4.4)

where we use the unbiased, approximated divergence from Tretschk et al. [86].

4.2 Rendering Bent Rays

In this section we show how we render bent rays given in the form of Equation (4.1)
with the goal of learning the surface. Treating these bent rays as a functional input, we
extend the rendering method of Wang et al. [92] to dynamic scenes and prove that it
remains unbiased with respect to the surface. Section 4.2.1 explains the continuous form
of the rendering method and Section 4.2.2 shows how we discretize it for implementation.
Note that this discretization refers to space, while time is discrete throughout. Next,
Section 4.2.3 presents the reconstruction losses and the Eikonal regularization of the SDF.
The derivation of the discrete opacity equation (Equation (4.14)) is a significant detail in
the rendering method and is given in Section 4.2.4. Finally, Section 4.2.5 provides a proof
of the unbiased nature of our rendering method.

4.2.1 Continuous Form

For each bent ray, we are interested in computing two properties: the rendered color of
the ray and whether a ray hits the object or not. First, the rendered color can be computed
with an integral along the ray:

Î(r̃i) =

∫ ∞
0

ω(r̃i, t) c
(
r̃i(t),

dr̃i(t)
dt

)
dt , (4.5)

where ω(r̃i, t) is an occlusion-aware weighting functional for a distance t along the bent
ray r̃i and c : (R3,R3)→ R3 is a color network taking a point along the bent ray and its
instantaneous direction at that point. We compute ω(r̃i, t) as:

ω(r̃i, t) = T (r̃i, t) ρ(r̃i(t)) , (4.6)

where:

T (r̃i, t) = exp

(
−
∫ t

0

ρ(r̃i(τ)) dτ

)
, (4.7)

and:

ρ(r̃i(t)) = max

{
−dΦs

dt

(
f(r̃i(t))

)
Φs
(
f(r̃i(t))

) , 0

}
, (4.8)
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where Φs is the Cumulative Distribution Function (CDF) of the logistic distribution. Here
T is the accumulated transmittance, which allows the modeling of occlusion and ρ is the
density computed from the SDF f that we primarily seek to learn. Note that the form of
ρ in Equation (4.8) is the derivative of the natural logarithm.

We can integrate the weights in order to determine if a ray hits the object:

Ŝ(r̃i) =

∫ ∞
0

ω(r̃i, t) dt , (4.9)

which gives 1 for rays hitting the object and 0 for rays entirely in free space. In order to
implement this rendering method, we must formulate these equations using discrete
samples along the ray.

4.2.2 Discretization

We seek discrete equations for the color and whether a ray hits the object or not, given ns
samples along the bent ray: {r̃i(t(z)) : z ∈ Z, z ∈ [1, ns]} where t(z) < t(z+1),∀z. These
samples are taken in a hierarchical manner similar to Mildenhall et al. [48]: an importance
sampling based on weight values from an initial uniform sampling. However, unlike
Mildenhall et al. [48], we maintain only a single copy of our networks like Wang et al. [92].

Given these samples we can formulate the discrete color equation as:

Î(r̃i) =

ns−1∑
z=1

ω
(z)
i c

(
r̃i(t

(z)), r̃i(t
(z+1))− r̃i(t(z))

)
, (4.10)

where we approximate the instantaneous ray direction from Equation (4.5) using a
forward difference. This was shown in Tretschk et al. [86] to have minimal impact on the
novel view synthesis quality. We can compute the discrete weight samples ω(z)

i as:

ω
(z)
i = T

(z)
i α

(z)
i , (4.11)

where:

T
(z)
i =

z−1∏
ζ=1

(
1− α(ζ)

i

)
, (4.12)

and:

α
(z)
i = 1− exp
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ρ(r̃i(t)) dt
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− Φs

(
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(
r̃i(t

(z+1))
))

Φs

(
f
(
r̃i(t(z))

)) , 0

 . (4.14)

Note that in Equation (4.11) we reformulate from the density accumulation of Equa-
tion (4.6) to an alpha compositing formulation as shown in Section 3.1. The discrete
opacity α(z)

i is defined as in Equation (4.13) and we show in Section 4.2.4 that, given
our specific definition of ρ from Equation (4.8), this is can be easily computed as in
Equation (4.14).
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As a direct analog to Equation (4.9), we can compute the segmentation of a ray as:

Ŝ(r̃i) =

ns−1∑
z=1

ω
(z)
i , (4.15)

where Ŝ(r̃i) is 1 for rays hitting the object and 0 for rays entirely in free space. Now that
we have established how we can compute the color and segmentation of a bent ray in
practice, we can look at the reconstruction losses used to learn the surface.

4.2.3 Reconstruction Losses and Eikonal Regularizer

While the previous analysis looked at a bent ray from a single pixel, we now consider a
batch of pixels P . If we write the straight ray originating from a pixel p as r(p), then the
bent ray for that pixel is:

r̃
(p)
i (t) = r(p)(t) + bi

(
r(p)(t)

)
. (4.16)

With this, the color loss can be expressed for a specific frame i as:

LCOL =
1

|P|
∑
p∈P
|Î
(
r̃

(p)
i

)
− I(p)| , (4.17)

where I(p) is the ground truth color of pixel p. The segmentation loss uses binary cross
entropy between the estimated segmentation Ŝ

(
r̃

(p)
i

)
and pixel p’s respective ground

truth segmentation value S(p) ∈ {0, 1}:

LSEG = − 1

|P|
∑
p∈P

S(p) ln
(
Ŝ
(
r̃

(p)
i

))
+
(
1− S(p)

)
ln
(

1− Ŝ
(
r̃

(p)
i

))
. (4.18)

In addition to these reconstruction losses, we also impose an Eikonal regularization loss
on the SDF network f :

LEIK =
1

|P|ns

∑
p∈P

ns∑
z=1

(∣∣∣∣∇f(r̃(p)
i

(
t(z)
))∣∣∣∣− 1

)2

. (4.19)

Note that this Eikonal loss is performed on bent ray sample points, thus it is applied
most at the points in canonical space to where rays are bent and where the density is
highest (due to the two-stage hierarchical sampling discussed in Section 4.2.2). This is
thought to be beneficial since we are most interested in the visible surface crossings being
the best approximation to an SDF.

4.2.4 Derivation of the Discrete Opacity α
(z)
i Equation for Bent Rays

In this section we show that the derivation of discrete opacity α
(z)
i shown in Equa-

tion (4.14) follows from volume rendering principles and the definition of the density ρ
in Equation (4.8). This analysis is similar to that in the Appendix A of Wang et al. [92]. We
extend their derivation to our bent rays, which were shown in Section 4.1 to be smooth
parametric paths.
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In Equation (4.8), we defined the density as:

ρ(r̃i(t)) = max

{
−dΦs

dt

(
f(r̃i(t))

)
Φs
(
f(r̃i(t))

) , 0

}
. (4.20)

In order to proceed, we must expand the numerator through the chain rule:

dΦs

dt

(
f(r̃i(t))

)
= φs

(
f(r̃i(t))

)
d
dt

(
f(r̃i(t)

)
= φs

(
f(r̃i(t))

)[
∇f(r̃i(t)) · dr̃i(t)

dt

]
,

(4.21)

where φs is the Probability Density Function (PDF) of the logistic distribution. There is
no need to expand the instantaneous viewing direction dr̃i(t)

dt further, but, critically, we
know this derivative exists since our bent rays were shown in Section 4.1 to be smooth.

Placing Equation (4.21) into Equation (4.20), gives:

ρ(r̃i(t)) = max

{
−
φs
(
f(r̃i(t))

)[
∇f(r̃i(t)) · dr̃i(t)

dt

]
Φs
(
f(r̃i(t))

) , 0

}
(4.22)

There are two regions of interest for Equation (4.22) identified in Appendix A of Wang et al. [92]:
a ray entering geometry and a ray exiting geometry.

Figure 4.2: Graphical depiction of a bent ray (traveling left to right) entering an SDF
surface. Note that the instantaneous viewing direction and gradient of the SDF must
have a negative dot product in order for the bent ray to enter the geometry.

We first present the case where a ray enters the geometry as depicted in Figure 4.2. Since
we know in this case that:

∇f(r̃i(t)) · dr̃i(t)
dt < 0 , (4.23)

and that both φs and Φs are non-negative, we can drop the maximum in Equation (4.22)
and then return the numerator to its more condensed form:

ρ(r̃i(t)) =
−φs

(
f(r̃i(t))

)[
∇f(r̃i(t)) · dr̃i(t)

dt

]
Φs
(
f(r̃i(t))

)
=
−dΦs

dt

(
f(r̃i(t))

)
Φs
(
f(r̃i(t))

) (4.24)
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The remaining derivation for the discrete opacity α(z)
i follows exactly as in Appendix A

of Wang et al. [92]:

α
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(
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) . (4.25)

Note that in the case of a bent ray entering the geometry, Equation (4.25) will be non-
negative (∵ f(r̃i(t

(z)) > f(r̃i(t
(z+1)) and Φs is non-negative and monotonically increas-

ing) and as such is equivalent to a maximum with zero.

Figure 4.3: Graphical depiction of a bent ray (traveling left to right) exiting an SDF
surface. Note that the instantaneous viewing direction and gradient of the SDF must
have a positive dot product in order for the bent ray to exit the geometry.

The second case to consider is where a ray exits the geometry as depicted in Figure 4.3.
Given that:

∇f(r̃i(t)) · dr̃i(t)
dt > 0 , (4.26)

and that both φs and Φs are non-negative, Equation (4.20) gives that ρ(r̃i(t)) = 0. Thus
the discrete opacity α(z)

i is:

α
(z)
i = 1− exp

−∫ t(z+1)

t(z)
ρ(r̃i(t)) dt


= 1− exp

−∫ t(z+1)

t(z)
0 dt


= 0 .

(4.27)
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Since Equation (4.25) will be non-positive when exiting the geometry (∵ f(r̃i(t
(z+1)) >

f(r̃i(t
(z)) and Φs is non-negative and monotonically increasing), we can write the derived

equation for α(z)
i satisfying both cases as:
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))
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(
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(z+1))
))
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(
f
(
r̃i(t(z))

)) , 0

 . (4.28)
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4.2.5 Unbiased Nature of our Rendering Method

In this section, we show that our rendering method is unbiased with respect to the
surface of the object, i.e. f

(
r̃i(t)

)
= 0. This proof follows a similar progression to that

in the Appendix B of Wang et al. [92]. From Figure 4.2, it can be seen that for a smooth
parametric path to intersect the surface, there must be a finite region t ∈ (tl, tr) such that
∇f
(
r̃i(t)

)
· dr̃i(t)

dt < 0.

We can re-write the weight as:
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. (4.29)

Then we can establish that for:

F (t) =
[
−∇f(r̃i(t)) · dr̃i(t)

dt

]
︸ ︷︷ ︸

G(t)

φs
(
f(r̃i(t))

)
, (4.30)

∃s > 0 such that F (t) is maximized by f(r̃i(t
∗)) = 0, t∗ ∈ (tl, tr). Consider another value

t† ∈ (tl, tr), t† 6= t∗ where G(t†) = 1 is maximum and G(t∗) = ε is minimum for some
necessarily non-zero value ε. This corresponds to the worst case for the unbiasedness
since 0 < G(t) ≤ 1, ∀t ∈ (tl, tr). Then:

G(t∗)φs
(
f(r̃i(t

∗))
) ?
> G(t†)φs

(
f(r̃i(t

†))
)

(4.31)

φs(0)

φs
(
f(r̃i(t†))

) ?
>
G(t†)

G(t∗)
=

1

ε
. (4.32)
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Taking the limit of the left-hand side of Equation (4.32) as s approaches 0 and using the
definition of the Logistic PDF φs:

lim
s→0

φs(0)

φs
(
f(r̃i(t†))

) = lim
s→0

exp
(
f(r̃i(t

†))
s

)
4

(
1 + exp

(
− f(r̃i(t†))

s

))2 =∞ . (4.33)

Thus, for every possible ε, ∃s > 0 such that:

φs(0)

φs
(
f(r̃i(t†))

) > 1

ε
, (4.34)

which implies F (t∗) > F (t†), ∀t† ∈ (tl, tr), t
† 6= t∗. �

4.3 Scene Flow Loss

So far, very large scene deformations remain a challenge for Ub4D since it can create
erroneous multiple geometries in the canonical space to best explain the monocular
observations. This is a version of the monocular ambiguities discussed in Section 1.1.
This is particularly noticeable for scenes containing large translations (see Figure 5.9). To
resolve this, we accept an additional input in the form of a coarse and coherent per-frame
geometric proxy. From these coarse 3D correspondences, we can compute an estimate of
the scene flow, which can then be used to regularize the bending network. This greatly
reduces the effect of duplicate geometries in the canonical space as will be shown in the
ablation of Section 5.7.2.

Consider a function mi→j : R3 → R3 that returns the scene flow from frame i to j at a
point in frame i. The scene flow allows us to transform points from a frame i into another
frame j as xj = xi +mi→j(xi). Given that the bending network bi projects a point xi in
frame space into canonical space resulting in the point xc, it follows:

xc = xi + bi(xi)

= xj + bj(xj)

= xi +mi→j(xi) + bj
(
xi +mi→j(xi)

)
.

(4.35)

This expresses the idea that a point in frame i and its corresponding point in frame j
determined through the scene flowmi→j(xi) should be mapped to the same point xc in
canonical space by the bending network (see Figure 4.4). We can then formulate it as a
loss for a set Xi of points sampled in frame i space:

LFLO =
1

|Xi|
∑

xi∈Xi

||mi→j(xi) + bj
(
xi +mi→j(xi)

)
− bi(xi)||22 . (4.36)

In order to sample the set of points Xi at which to apply LFLO, we use that frame’s proxy
geometry as a guide. For each point in Xi, we first uniformly sample a vertex from the
coarse geometry, then sample a Gaussian with width λ1 centered about that vertex. This
is done since the vertices are the points from which we extrapolate the scene flow and
therefore nearby points have a higher accuracy, as well as having a higher magnitude
due to the falloff that will be given in Equation (4.38). A visualization of the extrapolated
scene flow is shown in Figure 4.5.
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Figure 4.4: Graphical depiction of the relationship between the scene flow from frame i
to frame j (i.e. mi→j(xi)) with the bending network projecting both points to the same
canonical position xc.

The scene flow from the geometric proxies can only be directly computed on the proxy
surface. However, our implicit surface representation can potentially be evaluated at
any point in R3. Thus, we extrapolate this scene flow to any point in R3 with a convex
combination over the vertices using a kernel function depending on the distance to the
vertices inspired by the spatial weighting approach in bilateral filtering [83]:

m′i→j(xi) =

∑Nv

k=1 wλ1

(
||xi − v(k)

i ||2
) (
v

(k)
j − v

(k)
i

)∑Nv

k=1 wλ1

(
||xi − v(k)

i ||2
) , (4.37)

where wλ1(x) = e−λ1x
2

is a kernel function with λ1 as a scale parameter affecting the
weighting of vertex flow estimates. Additionally, we add an attenuation term, so that the
scene flow falls off as the distance to the nearest vertex increases:

mi→j(xi) = wλ2

( Nv

min
k=1
||xi − v(k)

i ||2
)
m′i→j(xi) , (4.38)

where wλ2
(x) = e−λ2x

2

is a kernel function with λ2 as a scale parameter defining the rate
of the falloff. This falloff assumes that we are interested in modeling only the object for
which we have the coarse geometric proxy.

4.4 Summary of Loss Functions and Regularizers

Here we summarize the loss functions and regularizers of Ub4D. Our total combined
loss function is:

L = LCOL + γSEG LSEG + γEIK LEIK + γNBR LNBR + γDIV LDIV + γFLO LFLO , (4.39)

where γ are weights that are defined relative to the color loss. We perform an ablation
study in Section 5.7.1 to validate this total loss.

Color LossLCOL defined in Equation (4.17) is a reconstruction loss measuring the model’s
ability to render the correct color for each ray.

Segmentation Loss LSEG defined in Equation (4.18) is a reconstruction loss measuring
the model’s ability to localize the object. Typical values for γSEG are in the range [0.25, 1.5].

Eikonal Loss LEIK defined in Equation (4.19) is a regularizer that enforces that the SDF
network f remains an SDF. Typical values for γEIK are in the range [0.5, 1.0].

Neighbour Offset Loss LNBR defined in Equation (4.3) is a regularizer that enforces
neighbouring frames to have similar deformations. This can also be seen as a temporal
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Figure 4.5: Visualization of the extrapolated scene flow at sampled points for two
manually selected frames on right. Left shows the geometric proxies for the two frames
and the middle shows the vertex correspondences. The first frame points are colored
in green and the second frame points are colored in red. The color gradient is only
for visualization purposes. Note how the estimated scene flow is similar to the vertex
correspondences and that the sampled positions (green points) focus around the first
frame’s proxy.

smoothness regularizer since it penalizes large temporal derivatives. Typical values for
γNBR are in the range [1× 103, 50× 103].

Divergence Loss LDIV defined in Equation (4.4) is a regularizer that enforces the bending
network to have low divergence. This penalizes the model for collapsing or expanding
space and can be seen as an As-Rigid-As-Possible (ARAP) [78] prior. Typical values for
γDIV are in the range [1, 1× 103].

Scene Flow Loss LFLO defined in Equation (4.36), and discussed at length in Section 4.3,
is a novel loss expressing the concept that points corresponding by scene flow should
project to the same canonical point. Typical values for γFLO are in the range [0, 100].

4.5 Surface Extraction

After implicitly learning the surface with the losses described above, we extract explicit
geometry for each frame. To do this, we apply the marching cubes algorithm [45] as
described in Section 3.4 framewise. For points sampled in frame i, we transform them
from the frame space into the canonical space, i.e. xc = xi + bi(xi) where xi is a
point sampled for marching cubes and xc is the canonical space point at which we
then evaluate the SDF f . We restrict the selection of frame march points to the camera
frustum of the given frame since any space not seen in that frame is unconstrained by
our reconstruction losses and can contain aberrant geometry.
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4.6 Implementation

We base our implementation on the codebase of Wang et al. [92], which is implemented
in PyTorch [55]. Our method consists of 3 MLP networks: Bending, SDF, and Rendering
corresponding to the bi, f , and c functions, respectively. We provide a diagram showing
the networks in Figure 4.6 and give additional details in Table 4.1. We also configure
the starting weights of the SDF network using the geometric initialization method of
Atzmon and Lipman [3].

At the start of training we follow Tretschk et al. [86] and initialize the latent codes
with zeros. Section 5.8 shows that this zero initialization is important for semantically
meaningful latent codes and improving the method performance. Additionally, the last
layer of the Bending network has its weights initialized with zeros. This starts Ub4D with
straight rays and introduces bending over time as needed.

For each iteration during training, we sample 512 pixels uniformly over the image for
which to fire rays. We sample 64 positions along each straight ray, jitter these samples,
and then importance sample 64 additional positions based on the SDF values. Jittering is
performed along the straight ray for the initial 64 samples.

Network Activation Weight Normalization [66]
Bending ReLU No

SDF SoftPlus (β = 100) Yes
Rendering ReLU Yes

Table 4.1: Network parameters of Ub4D.
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Figure 4.6: Network diagram of Ub4D. PE denotes Positional Encoding (PE) [48] with
the given number of additional frequences. Otherwise, the numbers show the width of
the vectors or fully connected layer. The addition node performs element-wise addition
while the plus blocks represent vector concatenation.



Chapter 5
Experiments

The following experiments validate our design choices and demonstrate improvement
over the state-of-the-art. We first regress Ub4D on a static scene in Section 5.1. Then
in Section 5.2 we introduce our new dataset on which we conduct the subsequent
experiments. Section 5.3 compares our Signed Distance Function (SDF) implicit scene
representation to the common alternative: a density representation. Next, Section 5.4
compares Ub4D with competing methods for monocular 4D reconstruction. We then
provide additional qualitative results in Section 5.5 and show the learned canonical
geometry in Section 5.6. Section 5.7 investigates our design decisions by ablation. Finally,
in Section 5.8 we analyze the per-frame latent codes of the Bending network.

5.1 Static Scene Regression

As a first experiment, we run Ub4D on a stationary and non-deforming object from the
DTU dataset [29]. We compare against NeuS [92] since they demonstrate state-of-the-art
results for multi-view reconstruction of static objects. The colored output geometry of
Ub4D for two frames and NeuS [92] are shown in Figure 5.1. Ub4D produces geometry
that is visually indistinguishable from the NeuS [92] reconstruction and that does not
deform over the sequence. This is exactly as expected since the object is perfectly
stationary and non-deforming.

This demonstrates the ability of Ub4D to handle scenes with no deformation. As dis-
cussed in Section 4.6, at the start of training we set the bending network’s final layer
weights to be zero, which means the initial output of bi is the zero vector. This starts
learning with straight rays that should only be bent if it is necessary to model object
deformations.

30
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Figure 5.1: Static scene regression on scan 65 from DTU dataset [29]. Since our method
takes segmentations as input, we also provide the segmentation to NeuS [92]. Note that
Ub4D produces qualitatively equivalent results to NeuS and that the object does not
deform over the sequence as expected for stationary and non-deforming objects.

5.2 Novel Dataset

We now introduce our novel dataset used in evaluating our method. Ub4D differs from
other monocular 4D reconstruction techniques in that it is a scanning approach, similar
to Structure from Motion (SfM), requiring sufficient camera movement to observe the
target from multiple view points during its deformations. One can see this as needing to
build up a canonical representation. While a full 360 degree path would be ideal, we find
that 180 degree viewing range is sufficient to produce good reconstructions.

To meet this requirement on camera movement and provide different scenarios under
which to evaluate Ub4D, we introduce five scenes as a new dataset for monocular 4D
reconstruction. These five scenes are: Cactus, RootTrans, Lego, Humanoid, and RealCactus.
They are summarized in Table 5.1 and sample frames are shown in Figure 5.2. This
provides three synthetic scenes, of which two have proxies and Ground Truth (GT)
geometry, and two real world scenes.

Synthetic Scenes The synthetic scenes are Cactus, RootTrans, and Lego. These are all
created in Blender [16] which allows us to recover the GT camera parameters and
segmentations. For Cactus and RootTrans, we also extract the GT geometry as meshes.
While it is possible to extract GT geometry for Lego, the animation complexity and
detail of the model make it prohibitively expensive. Cactus and RootTrans are created
by animating rigid objects captured with COLMAP [71, 72], while Lego is created by
animating a model provided by Mildenhall et al. [48] 1. While the Lego scene includes the
first 100 frames depicting a rigid object, neither Cactus nor RootTrans include any frames
with a non-deforming object. This shows that Ub4D does not require access to a rigid
sub-sequence.

1Released under CC-BY-3.0 and modifications are made to create the Lego dataset. Original model was
created by Blend Swap user Heinzelnisse.

https://creativecommons.org/licenses/by/3.0/legalcode
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Figure 5.2: Sample frames for each scene in our novel dataset. Further details about
each scene are contained in Table 5.1. Note that images are not to scale.
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Geometric proxies are computed for Cactus and RootTrans in very different manners. The
Cactus scene uses geometric proxies computed by heavily decimating the GT meshes.
While the use of even decimated GT meshes is not optimal, it allows for a sanity check:
if performance does not increase with access to decimated GT meshes, then estimated
meshes would not provide a benefit. The RootTrans scene uses geometric proxies com-
puted by fitting a SMPL model to each frame [6]. This provides a much fairer comparison
to evaluate the impact of our novel scene flow loss. Sample images and proxies, as well
as GT geometry, from both Cactus and RootTrans are shown in Figure 5.4.

We use the Lego scene in Section 5.3 to compare geometry representation options. The
Cactus and RootTrans scene are used for comparing with competing methods in Section 5.4
and for our ablation studies in Section 5.7.

Real World Scenes The real world scenes are Humanoid and RealCactus. Both scenes are
captured with a Google Pixel 2 smartphone camera, illustrating that our method can
operate on input from consumer-grade capture equipment. In order to estimate camera
parameters, we employ the freely available and open-source COLMAP [71, 72]. For
determining segmentations, we manually annotate a handful of frames (∼10) and then
train a segmentation network, based on the U-Net architecture [63], to predict segmen-
tations from RGB images. We use the Humanoid and RealCactus scenes in Section 5.5 to
demonstrate generalization of Ub4D to real-world scenes. While the first approximately
100 frames of RealCactus depict a non-deforming object, Humanoid includes no frames
with a rigid object. This shows that our method does not require a rigid sub-sequence to
produce plausible results on real-world input.

Name Creation Frames Resolution Geometric Proxies? GT?
Cactus Blender [16] 150 1024×1024 Yes (decimated GT) Yes

RootTrans Blender [16] 150 1024×1024 Yes (SMPL [6]) Yes
Lego Blender [16] 150 800×800 No No

Humanoid Real World 171 960×1280 No No
RealCactus Real World 150 1080×1920 No No

Table 5.1: Summary of the datasets introduced in this work. GT indicates access to GT
geometry in the form of per-frame meshes. Synthetic scenes are above the dashed line,
real-world captures below.

5.3 Geometry Representation Comparison

In this section, we use the Lego scene to justify the choice of using an SDF to represent our
scene rather than a density network. Previous works focusing on static surface extraction
have used SDFs as their implicit representation [92, 97], whereas works focusing on novel
view synthesis of both static and dynamic scenes have used density networks [48, 54, 86].
We compare to NR-NeRF [86] in Figure 5.3 to show the benefits of SDF scene repre-
sentation for surface reconstruction, as well as motivate the choice to use a neighbour
penalization of the bending network. The surface of the density network is computed by
applying marching cubes [45] as described in Section 3.4 for an empirically determined
suitable threshold. Note the noisy nature of the surface extracted from NR-NeRF [86]
and the inability to model large deformations. Ub4D produces more accurate geometry,
particularly under large deformations.
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Figure 5.3: Comparison of Ub4D using an SDF scene representation (without scene flow
loss) to a density-based scene representation, called NR-NeRF [86]. To generate surfaces
for NR-NeRF, we apply marching cubes [45] with a threshold of 50. The density-based
representation leads to an overall noisier surface compared to our approach. Further,
NR-NeRF fails to model the large deformation in the bottom row due to its absolute
length regularization of bending. Instead, we penalize neighbouring frame offsets, which
allows to accurately reconstruct such larger deformations.

5.4 Method Comparison

We compare with state-of-the-art monocular 4D reconstruction methods from the liter-
ature. These methods are LASR [95], N-NRSfM [75], and DDD [99] representing very
different approaches to solving the problem.

LASR [95] This method is a template-free approach that deforms a sphere in order to
match the observations. It also regresses an articulated bone structure to explain the
deformations. Despite being template-free, it does assume a genus-0 representation.
This is a very strong assumption (see Figure 5.3 for an example of a high genus object),
which Ub4D does not make. LASR operates on input monocular RGB images and
segmentations. It does not require camera parameters.

N-NRSfM [75] This method is a Non-Rigid Structure-from-Motion (NRSfM) approach
that uses a structured latent representation with an auto-decoder to deform a mean
shape. This neural extension of NRSfM only produces a deformed plane, whereas Ub4D
reconstructs the complete watertight object geometry. N-NRSfM operates on input Multi-
Frame Optical Flow (MFOF) that is computed from our monocular RGB images and
segmentations using Ansari et al. [2].

DDD [99] This method is a template-based approach that deforms the input template
to match the observations. It optimizes the vertex reprojections to satisfy an energy
formulation, which includes regularizers such as an As-Rigid-As-Possible (ARAP) term
and a temporal smoothness term. DDD assumes a fixed camera and models the object
motion as camera-relative.
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Our primary metric is the Chamfer Distance (CD) between the reconstruction and the
ground truth. For N-NRSfM and Ub4D, we also report the Hausdorff Distance (HD)
since the reconstruction for this method is only a planar surface which can be unfairly
penalized by the back-face of the ground truth. We present both CD and HD metrics in
Section 3.3. A quantitative method comparison using these metrics is shown in Table 5.2.
In order to fairly compare all methods, we apply Iterative Closest Point (ICP) [5] in order
to align the output to the ground truth. Since Ub4D also takes camera parameters as
input, this operation is not necessary for our reconstruction; however, we also report the
metrics after apply ICP for completeness. Note that Ub4D quantitatively outperforms
these other methods.

Scene Method CD (HD) (↓)

Cactus

LASR [95] 20.23
N-NRSfM [75] 102.00 (5.74)

DDD [99] 34.71
Ub4D (ours) 3.06 (2.42)

Ub4D after ICP 2.71 (2.24)

RootTrans

LASR [95] 0.39
N-NRSfM [75] 0.38 (0.09)

DDD [99] 0.26
Ub4D (ours) 0.23 (0.14)

Ub4D after ICP 0.03 (0.02)

Table 5.2: Quantitative comparison to previous work. We report the Chamfer Distance
(CD) between the ground truth object geometry and the respective reconstructions
averaged over the sequence. Since N-NRSfM [75] produces only a planar surface (not a
watertight mesh), we additionally report the Hausdorff Distance (HD) averaged over
the sequence for it and our method. Lower is better for both CD and HD. Note that we
quantitatively outperform the previous work.

Figure 5.4 gives a qualitative comparison of the methods. Note that all other methods
demonstrate a clear tendency to overfit to the particular input view. Ub4D is the only
method that is able to capture medium scale details like the rim of the pot in Cactus and
the end of the character’s shorts in RootTrans.
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Figure 5.4: Qualitative comparison for select frames of our synthetic sequences rendered
from novel views. Note that competing methods struggle with reconstructing the dense
and deforming surface, while our method captures the large scale deformations as well
as medium scale details.

5.5 Qualitative Results

Further qualitative results on our synthetic scenes are shown in Figure 5.5 and Figure 5.6
for the Cactus and RootTrans scenes. In addition to the colored reconstruction, we also
provide a visualization of the error where dark blue is zero error and red is any error
over half-way between the mean and max error, taken over the entire sequence. This
provides a stable coloring that gives a sense of the highest errors throughout the entire
sequence. Note that the majority of high error regions occur due to monocular ambiguity
as discussed in Section 1.1.

In particular, rows 1 and 3 of Figure 5.5 show this effect. Row 1 demonstrates a very
convincing input view reconstruction; however, the error coloring and novel view show
that the method has created an erroneous large spur on the right arm. Row 3 shows that
the method vertically misplaces the left arm due to the monocular ambiguity. We can
also see the monocular ambiguity resulting in a high error region due to misplacing the
character’s right arm along the depth channel in row 4 of Figure 5.6.
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Figure 5.5: Results for our Cactus sequence. We include error coloring where blue is zero
error and red is high error, relative to the entire sequence.
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Figure 5.6: Results for our RootTrans sequence. We include error coloring where blue is
zero error and red is high error, relative to the entire sequence.



39

Figure 5.7 shows results on the real-world scenes: RealCactus and Humanoid. Note that
our reconstruction overlays accurately on the input image and also produces geometry
that looks plausible from a novel view. Neither of these sequences provide geometric
proxies and our reconstruction is still high quality for motions with large deformations.

Figure 5.7: Qualitative results of Ub4D on RealCactus and Humanoid exhibiting large
deformations. No 3D geometric proxies are used in these experiments. Note that the
recovered geometry nicely overlays onto the input image but also looks plausible from a
novel 3D viewpoint.
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5.6 Canonical Space Visualization

In addition to extracting the per-frame geometry, we can also extract the canonical
representation. To do this, we simply use the procedure described in Section 3.4 to the
SDF network without applying the bending network. Figure 5.8 shows the canonical
space for each of our introduced sequences. This suggests that Ub4D can also be seen as
jointly constructing an object template in the canonical space and non-rigidly animating
that template with the bending network. Note that sometimes the canonical space
does not directly correspond to the object itself, as in the case of Humanoid, and this is
discussed in Section 6.1.

Figure 5.8: Visualization of the canonical spaces for each sequence. Note how similar
they appear to a template of the object despite there being no explicit requirement that
the canonical space be meaningful.
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5.7 Ablation Studies

We validate our major design decisions through ablation studies on the Cactus and
RootTrans sequences. In Section 5.7.1, we examine the quantitative effect of ablating our
loss formulation. Our novel scene flow loss is examined in Section 5.7.2 with a qualitative
demonstration of its importance.

5.7.1 Loss Ablations

Our full supervision (Equation (4.39) in Section 4.4) consists of six loss terms: LCOL, LSEG,
LEIK, LFLO, LNBR, and LDIV. We compare the full method to removing the terms: 1) LFLO,
which is our novel flow loss, 2) LEIK, which directly regularizes the SDF network and
indirectly regularizes the bending network, and 3) LFLO, LNBR, and LDIV, which are all
direct bending network regularizers. We report the quantitative results for these loss
ablations with both HD and CD metrics (see Section 3.3) in Table 5.3. Most importantly,
the full combination of losses provides the best result validating the contribution of each
term.

Scene Method HD (↓) CD (↓)

Cactus

w/o LFLO 4.67 † 8.32 †

w/o LEIK 3.58 5.47
w/o LFLO, LNBR, LDIV 3.27 † 5.34 †

Ub4D (Ours) 2.42 3.06

RootTrans

w/o LFLO 32.39 60.25
w/o LEIK 0.16 0.29

w/o LFLO, LNBR, LDIV 2.20 † 3.83 †

Ub4D (Ours) 0.14 0.23

Table 5.3: Quantitative ablation study. We report the Chamfer distance (CD) between the
ground-truth scene geometry and the respective reconstructions, as well as the Hausdorff
distance (HD) from reconstruction to ground truth, both averaged over the sequence. †

denotes that some frames for this ablation do not produce any geometry and we compute
the average without these frames. Lower is better. Note that our full method provides the
best result in both scenes and for both metrics, which validates the proposed combination
of losses.

Concerning 1), our flow loss especially helps for the large root translation and arm motion
of the RootTrans sequence. Without using this loss, multiple different geometries are
synthesized, which fit the reconstruction losses. Then, the bending network can “switch”
between the different copies throughout the sequence. This results in overfitting to the
camera pose and allows exploiting monocular depth ambiguities to generate geometry
that is not seen in other views. Section 5.7.2 demonstrates this in detail.

Regarding 2), we found that not using LEIK leads to overall noisier surfaces and thus
the quality is reduced. Finally concerning 3), without any explicit regularization of the
bending network, the deformations can be almost arbitrary again leading to overfitting
to individual frames by violating 3D consistency resulting in a reduced accuracy. We
even observed that the network was not able to produce any geometry for some frames,
which further validates the necessity of explicit regularization of the bending network.
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5.7.2 Scene Flow Loss Ablation

A key problem unique to our formulation, i.e. specifically when deforming to a canonical
space with given camera parameters, is the duplication of geometry in the canonical
space. While such duplication would not be a problem if it aided the reconstruction,
the reality is that this severely reduces the reconstruction quality (see e.g. Table 5.3).
The reason for this reduced quality is that the duplicated geometry typically exploits
monocular ambiguities resulting in the reconstruction being incorrectly placed along the
depth channel. This causes inconsistent shapes and large single frame discontinuities in
reconstruction position.

Figure 5.9 demonstrates this problem and shows that our novel scene flow loss resolves
this ambiguity. Column 3 (without scene flow loss) shows three different canonical copies
in rows 1, 2, and 3 being used to satisfy the reconstruction loss without the scene flow
loss. Note that our frustum culling from Section 4.5 removes the other copies when they
would be outside the camera view. While LNBR penalizes this, it can easily enter a local
minimum that uses large single frame deformations to “switch” which canonical copy
lies in the camera frustum. Our geometric proxy guides the bending network to follow
the scene motion resulting in a single consistent copy with a correct scale.

Figure 5.9: Qualitative ablation of the scene flow loss (LFLO) on the RootTrans sequence.
Note that without the proposed scene flow loss, the network can produce multiple
distinct copies of the character at different scales by exploiting the monocular depth
ambiguity. The scene flow loss prevents such behaviour, and therefore our method does
not overfit to individual frames leading to a single, consistent moving 3D geometry.
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5.8 Per-Frame Latent Code Analysis

In Ub4D, the entirety of the model’s understanding of time is encoded into a per-frame
latent code provided to the bending network (Section 4.1). Initializing these latent codes
with zeros (Section 4.6) gives our latent space a valuable property: a smooth, semantically
meaningful latent representation. Demonstrating such a latent representation allows us
to interpolate latent codes for certain applications, e.g. temporal super-resolution. It also
opens the door for employing such deformation models using latent codes to analyze
motion (e.g. periodicity detection, metrically comparing deformation states).

To validate the semantic meaning of our latent representation we perform Principal
Component Analysis (PCA) [56] on the 64 dimensional learned latent codes. The results
are shown in Figure 5.10. Note that even though the latent space is never directly
constrained in Ub4D, neighbouring frames (i.e. similar colors in Figure 5.10) tend to be
nearby.

Figure 5.10: 2D PCA of learned 64D latent codes for the RootTrans, Cactus, Lego, and
Humanoid scenes. The first two Principal Components (PCs) explain 38%, 32%, 25%, and
24% of the variance, respectively. The colors correspond to frames. Note how similar
colors are nearby.

We wish to compare against the standard latent code initialization approach: random
Gaussian initialization. However, the same concept of performing PCA [56] does not
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suffice. This is because PCA uses directions of maximum variance and randomly ini-
tialized latent codes could structure themselves “inside” of the variance. While a more
complex dimensional reduction technique (e.g. t-SNE [88]) could yield results, a failure
to visualize a meaningful structure would not definitively show that such a structure
does not exist. Therefore, we use a reduced latent code dimension allowing visualization
without dimensional projection.

Taking the Cactus scene, we train using 2D latent codes: once initializing with zeroes
as proposed in Tretschk et al. [86] and once initializing with random Gaussian samples.
We show the resulting learned latent codes in Figure 5.11. Note how spatially coherent
the zero-initialized latent codes become during training, whereas the random Gaussian
initialized latent codes do not have this property. Observing the particular structure of
the zero-initialized case and slight clustering of similar frames in the random Gaussian
initialization, one could imagine these latent codes as charged molecules, with similar
states attracting and differing states repelling, resulting in a particular fold.

Figure 5.11: Learned 2D latent codes for the Cactus scene showing the latent code
provided to the network without any dimensional projection. We initialize with zeroes
on the left and random Gaussian samples on the right. The colors correspond to frames.
Note how similar colors are nearby for zero-initialized latent codes, whereas the random
Gaussian initialization does not give rise to such a property.

Comparing metrics for the 2D latent codes between zero initialization versus random
initialization gives Chamfer Distances (CDs) of 2.37 and 4.56, respectively. This shows
a clear quantitative benefit to zero initialization of the latent codes in the 2D case. The
pattern also exists for 64D latent codes with CDs of 3.06 for zero-initialized and 11.43 for
random-initialized. However, note that the CD is actually better when using 2D latent
codes than 64D in both cases. The optimal latent code dimensionality is likely some
function of scene complexity and this suggests that it is closer to 2 dimensions rather than
64. More interesting and general would be to determine some way of computing that
optimal latent dimensionality from an analysis of structure in the higher dimensional
learned latent codes.



Chapter 6
Discussion

Ub4D introduces a new approach to monocular 4D reconstruction through the use
of Implicit Scene Representations (ISRs). Despite the significance and novel technical
insights of this work, there still remains much to be done in the future. We first present
some limitations of the current approach in Section 6.1. Then, Section 6.2 discusses the
potential for extracting 3D correspondences and Section 6.3 shows the unexplored ability
to generate entirely new geometry with novel latent codes. We investigate runtime
improvements for Ub4D in Section 6.4. Finally, Section 6.5 explores future work into
the relationship between volumetric ISRs, Partial Differential Equations (PDEs), and the
Fourier transform.

6.1 Limitations

One limitation of Ub4D is that errors in the geometric proxy can adversely impact our
reconstruction. Our scene flow loss is designed such that it does not require highly
accurate correspondences to allow us to handle large deformations and prevent multiple
canonical copies; however, we still inherit errors from the geometric proxy. Figure 6.1
illustrates this for a geometric proxy that is offset from the ground truth which results
in the region with a high error on our reconstruction. Note that our method still results
in a decreased Chamfer distance for this frame compared to the geometric proxy (0.76
vs 0.92) despite this failure. This indicates that Ub4D improves on the geometric proxy
through its use of image observations.

Another limitation is that acquiring a geometric proxy may limit application if results
without the scene flow loss are not satisfactory. Figure 6.2 shows one example of an issue
encountered without the scene flow loss. In this case, an additional appendage is used
to satisfy the reconstruction losses while not grossly violating the other regularizers of
our method. It is possible that the use of image space keypoint matches could be used in
order to penalize such a duplication without requiring a complete 3D geometric proxy.

45
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Figure 6.1: Impact of a significant geometric proxy error. Red regions have a higher
Chamfer distance to the ground truth.

Figure 6.2: Example of our method using an additional appendage to satisfy the
reconstruction losses.

6.2 Extraction of 3D Correspondences

One very important output that could be leveraged by many applications is the extraction
of 3D correspondences. Unfortunately, Ub4D as presented in Chapter 4 produces non-
corresponding per-frame geometry. This is because we execute marching cubes on
every frame, mapping each point to the canonical space where we evaluate the SDF. An
alternative approach would be to execute marching cubes once in the canonical space
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(producing geometry as shown in Figure 5.8) and then map each vertex to its frame space
point. We refer to this approach as animating canonical space and it would provide 3D
correspondences throughout the scene.

Unfortunately, finding the corresponding frame space point for a given canonical space
point is the opposite of our bending network which projects points from frame space
into canonical space. We could attempt to solve this with the following minimization
problem:

xi = arg min
x∗

||x∗ + bi(x
∗)− xc||22 . (6.1)

Results for this approach are shown in Figure 6.3. Note that it fails for large deformations
likely due to two reasons. First, the mapping between frame space and canonical space
is not necessarily a bijection, meaning multiple frame space points can map to the same
canonical space point. Second, we have no direct spatial smoothness regularizer on our
bending network and this likely results in local minima.

Figure 6.3: Animating the canonical space to extract correspondences. Note that while
such an approach works for small deformations, there are significant local failures for
larger deformations.

Another approach to extracting corresponding geometry would be to simultaneously
train an inverse bending network with a cycle-consistency loss [100]. This could allow
for mapping points from canonical space into frame space directly by using this inverse
bending network.
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6.3 Novel Latent Codes

Some applications require semantically meaningful latent codes which we have shown in
Section 5.8. This allows us to generate entirely new geometries by providing novel latent
codes along some desired path. Figure 6.4 shows samples of a novel latent path for the
2D latent codes from the left-hand side of Figure 5.11. This ability is likely constrained by
the convex hull of the observations; however, for large scale datasets this could provide
the ability to generate non-rigid transitions between different animation cycles. A further
investigation is required into the ability to generate novel geometries from novel latent
codes, particularly when using higher dimensional latent codes.

Figure 6.4: Synthesizing entirely new geometries with novel latent codes. Red dot
in latent space plot shows the provided latent code while grey dots show the original
sequence. Note the smoothness and plausibility of the deformation.

6.4 Runtime Improvements

A natural question for many computational applications is investigating performance
improvements. This thesis did not consider the runtime of Ub4D and still leaves much
to be done for improving it, both for training the model and extracting the geometry.
Training times for each scene are given in Table 6.1 and the time for extracting the
geometry as a function of the grid resolution is shown in Table 6.2.

Many proposed performance improvements for ISRs focus on improving the inference
runtime by constructing approximate data structure representations of the learned neural
radiance field [25, 43, 60, 98]. While modifications to these data structures could be made
to account for bent rays, Ub4D only performs inference to extract geometry which takes
at most the same time as training in a naïve implementation. An initial simple approach
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could be to construct one of the described data structures for each timestep; however,
a more interesting approach would be to consider using a separate data structure for
time-dependent spatial warping. Replacing the bending network’s output with learned
coefficients of some basis representation (e.g. cosine functions) may allow for faster infer-
ence, additional interpretability, and is already a common idea in works for representing
spatial motion [1, 89, 94]. Future work investigating novel geometry synthesis or novel
view synthesis of deformable ISRs could motivate the development of faster inference
for interactive simulation or rendering.

More relevant for the application of ISRs to monocular 4D reconstruction, is reducing
the time spent to train a model. This direction has also seen recent progress [42, 80].
Since these works focus on general Multi-Layer Perceptron (MLP) integration [42] and
coordinate-based neural representations [80], they can be utilized in Ub4D without
significant modification. A more tailored approach exploiting temporal and motion
priors may also provide a benefit for training time by initializing the bending network or
even replacing it with learning coefficients for a specific basis, as mentioned above.

Another approach to accelerating training could be through leveraging the multigrid
paradigm, which has seen success for efficient solution of Partial Differential Equations
(PDEs) [8, 10]. Such an approach could work particularly well with a basis representation
of spatial deformation, where relaxations and prolongations can be easily defined. A
variant of Ub4D allowing the extraction of 3D correspondences could also leverage its
own coarse correspondences through the scene flow loss during training. While this
would not perform the same objective as using a coarse geometry proxy (i.e. guiding the
network towards a single canonical copy), it could improve the training time through a
coarse-to-fine learning approach.

Scene Iterations (1000) Train Time (hours)
Cactus 300 17.0

RootTrans 450 26.4
Lego 450 19.9

RealCactus 450 22.1
Humanoid 450 21.5

Table 6.1: Number of iterations and training time for Ub4D. Given for each of the scenes
from Section 5.2.

Resolution March Time
(seconds) (hours)

64 14 0.00
128 69 0.02
256 536 0.15
512 4224 1.17
1024 34.99×106 18.32

Table 6.2: Time required to march geometry (without frustum culling). Frustum culling
time is insignificant relative to the network evaluation time given here.
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6.5 Volumetric ISRs, PDEs, and the Fourier Transform

The Fourier Transform is an integral transform first described by Joseph Fourier for
solving the heat Partial Differential Equation (PDE) in 1822 [18]. It is impossible to state
the extent to which the Fourier transform, and integral transforms more generally, have
impacted all scientific and technical pursuits. Therefore, the proposal to investigate the
dedicated application of the Fourier transform is hardly novel; however, there exists
deeper connections surrounding ISRs using volumetric rendering equations that motivate
interest in this direction.

Indeed, some works have already achieved success with related ideas. The Fourier
Neural Operator (FNO) NN layer proposed in Li et al. [40] replaces a standard CNN
layer with a multiplication in the Fourier domain that allows the modeling of global inter-
actions more efficiently. They show that this FNO architecture performs remarkably well
for learning the solutions to PDEs given the initial conditions [40]. Lange and Kutz [37]
propose a method called FC2T2 using the Taylor series [81] and Fast Multipole Method
(FMM) [22] to efficiently approximate convolutions. Despite these works, there still
remains a specific gap at the intersection of volumetric ISRs, PDEs, and the Fourier
transform.

The core of this remaining gap is in the fundamental relationship between ISR rendering
and the mathematics behind the medical imaging technique of Computed Tomography
(CT). Volumetric rendering as the basis for ISRs was presented in Section 3.1. It was
shown in its differential form in Equation (3.1) before integrating to the more familiar
(for the graphics community) integral form in Equation (3.2), which makes clear the
fundamental connection to PDEs. CT solves the same problem as learning an ISR from
images: given 2D images, solve for the density of the 3D scene.

The mathematical idea used in CT to solve for the 3D volume from 2D integral projection
images is the Fourier Slice Theorem (FST). The FST was originally described in 2D
by Bracewell [7] for solving a radio astronomy problem and generalized to arbitrary
dimensions by Ng [49]. The generalized FST of Ng [49] can be formulated with operators
as:

Fm ◦ Pnm ◦ B = Snm ◦ B−1 ◦ Fn , (6.2)

where Fm and Fn are m and n dimensional Fourier transforms, respectively; Pnm is an
integral projection from n tom dimensions; Snm is a slice operator from n tom dimensions;
and B and B−1 are a basis transformation and its inverse, respectively. This is used in CT
imaging for m = 2, n = 3 by reconstructing the right-hard side (i.e. undoing the slice
operator) from the 2D Fourier transforms of captured projection images (i.e. 2D x-rays),
then applying the basis transformation and taking the inverse 3D Fourier transform to
recover the 3D density function [11]. Critically, by taking the inverse mth-dimensional
Fourier transform on both sides, we get:

Pnm ◦ B = F−1
m ◦ Snm ◦ B−1 ◦ Fn . (6.3)

Unlike in CT imaging, this relationship gives an alternative method for rendering images.
Such a method may provide benefits in terms of render speed or intermediate represen-
tation, particularly if the right-hand side of Equation (6.3) can be approximated, either
entirely or in part, with a neural operator [33].

Unfortunately, direct application of the FST to volumetric rendering is known not to
work due specifically to occlusion [36, 38, 85]. Revisiting the volume rendering equation
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(Equation (3.5)) for a volume without any surface and ignoring all scattering:

L =

z∑
i=1

(
1− exp

(
−δi µa(xi

))
︸ ︷︷ ︸

attenuation

Le(xi,d)

i−1∏
j=1

exp
(
−δj µa(xj)

)
︸ ︷︷ ︸

occlusion

, (6.4)

identifies the occlusion portion that violates the requirements on the projection operator
Pnm in the generalized FST of Equation (6.2). However with only the attenuation portion
in Equation (6.4), as in x-ray images, we can trivially apply the FST and directly render
images from the density function with Fourier transforms [36, 38, 85].

This suggests the existence of a non-integral method of rendering images from a spatial
scene description. Additionally, the similarity of volumetric ISRs to the derivative of the
scene light field provides a possible connection to PDEs and their solution methods. Such
a connection warrants further exploration into the nature of the limitations preventing
the application of the FST to volumetric ISR rendering.

A final note on this topic is to acknowledge the effect of Positional Encoding (PE) pro-
posed in Mildenhall et al. [48] or the periodic activation functions of Sitzmann et al. [76]
on the Fourier transform of the learned ISR. Both of these ideas use periodic functions
either to modulate MLP inputs [48] or internally in the NN architecture [76]. This affects
the Fourier transform of the learned scene representation in ways that may be exploitable
in some meaningful way, either in conjunction with the above FST/PDE relationship or
on their own. For example, PE without any DC component, results in an input that is
infinite in support and periodic, thus having a finite-support Fourier transform.



Chapter 7
Conclusion

Many challenging problems that have long remained out of reach for industry application
are seeing renewed interest with novel neural approaches. These range from formulating
a portion of a classical approach using a Multi-Layer Perceptron (MLP) network to
reformulating the objective as a learning problem. This work lies in the latter camp;
while we take inspiration from the Non-Rigid Structure-from-Motion (NRSfM) and
template-based tracking approaches, we apply recent advances from the disparate area
of neural Implicit Scene Representations (ISRs) to the problem. We learn an ISR for the
non-rigidly deforming object, from which we then extract explicit geometry.

In this work we demonstrated the use of ISRs for the problem of monocular 4D re-
construction for non-rigidly deforming objects. Our method, Unbiased 4D or Ub4D,
showed state-of-the-art results in reconstructing a range of object types. Applying ISRs,
and in particular deforming ISRs, to monocular reconstruction problems is a promising
new approach capable of enabling new applications. Moreover, there exist unexplored
frontiers in latent modeling and in the complex relationship between volumetric ISRs,
Partial Differential Equations (PDEs), and the Fourier transform.
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Appendix A
Experimental Details

We present hyperparameters and additional details for the experiments with respect to
our method and previous works. Sections A.1, A.2, A.3, and A.4 give the experimental
details for Ub4D, LASR, DDD, and N-NRSfM, respectively.

A.1 Ub4D

The hyperparameter settings for the experiments presented are contained in Table A.1.
Refer to Equation 4.39 for the meaning of each γ hyperparameter and Section 4.3 for
the meaning of the λ hyperparameters. Additionally, for the RealCactus experiment we
use constant γNBR and γDIV weights, rather than a 1

100 factor exponentially increasing
schedule as suggested by Tretschk et al. [86].

Scene γSEG γEIK γNBR γDIV γFLO λ1 λ2

Cactus 1.0 0.5 20000 200 10 700 75
RootTrans 1.0 0.5 20000 200 10 700 75

Lego 0.75 0.25 10000 100 0 - -
RealCactus 1.0 0.75 50000† 1000† 0 - -
Humanoid 1.25 0.25 2500 2 0 - -

Table A.1: A subset of hyperparameters used in acquiring results presented. † indicates
a constant weight without the increasing schedule of Tretschk et al. [86].

A.2 LASR

We run LASR [95] in the manner shown in their code2. We progressively increase the
number of bones and faces in a coarse-to-fine manner following the configurations
provided. This progression is shown in Table A.2. For the RootTrans sequence, we use a

2https://github.com/google/lasr
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slightly modified version of the code. This was to prevent a complete failure case where
bone re-initialization without CNN re-initialization results in the mesh entering a local
minimum that no longer reprojects on the image. This code modification was made with
the assistance of the lead author of LASR [95]3.

Step Bones Faces Hypotheses Epochs
r1 21 1280 16 20
r2 26 1600 1 10
r3 31 1920 1 10
r4 31 2240 1 10
r5 36 2560 1 10

final 36 2880 1 10

Table A.2: A subset of parameters used when running LASR [95].

A.3 Direct, Dense, Deformable

We run the method of Yu et al. [99] in the manner shown in their code4. We empirically
explored a set of values and found those of Table A.3 to perform best when comparing
results after rigid alignment with ICP [5] to the ground truth.

Parameter Value
Photometric weight 1

ARAP weight 20

Table A.3: A subset of parameters used when running the method of Yu et al. [99].

A.4 Neural NRSfM

We run Neural NRSfM (N-NRSfM) in the manner shown in their code5. In order to
acquire the Multi-Frame Optical Flow (MFOF) W matrix used as input by this implemen-
tation, we use the code of Ansari et al. [2]. Additionally, this implementation requires
input in a specific format which is computed using proprietary code provided by the
authors. The loss function weights used are given in Table A.4.

Parameter Value
β 1

γ 1× 10−4

η 1

λ 0

Table A.4: A subset of parameters used when running the method of Sidhu et al. [75].

3https://github.com/google/lasr/issues/7
4https://github.com/cvfish/PangaeaTracking
5http://vcai.mpi-inf.mpg.de/projects/Neural_NRSfM/
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