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Abstract

We examine the effect of intraday order flow volatility on option market illiquidity. We

document a robust positive relationship between order flow volatility and illiquidity,

both in time series and the cross-section of short-maturity index and individual equity

options. The impact of order flow volatility varies significantly by option maturity,

decreasing as maturity increases, underscoring the higher sensitivity of liquidity in

ultra-short maturity options. We leverage multi-exchange trading of individual stock

options to isolate the direct trade absorption costs from indirect costs. This analysis

reveals that, while both cost components are significant, indirect costs dominate, with

exchanges adjusting based on aggregate order flow risk across venues. Overall, our

results contribute to the understanding of how effectively liquidity providers provide

liquidity in this relatively novel market of short-maturity options.
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1 Introduction

Investors are turning into short-maturity options, changing the standard trading dynamics

in both the SPX options market and the market for individual stock options. In 2023,

an impressive 80% of SPX options trading focused on options with expiration less than

a month (Dim, Eraker, and Vilkov 2024, Bandi, Fusari, and Reno 2024). The increase

in option market liquidity, the rise in investor sophistication, and the growing desire to

hedge against specific events have all contributed to the shift towards option strategies with

shorter maturities and more frequent rebalancing.1 In response to this need, exchanges

promptly introduced weekly options expiring every Friday for some individual stocks, and

daily expirations for SPX options, the so-called 0DTE options.2

The surge in short-term options volumes has spurred new research exploring this novel

market, its characteristics, and its implications for market stability. The main focus of these

papers is, however, on the prices and returns of the options (Bandi et al. 2024; Almeida,

Freire, and Hizmeri 2024; Beckmeyer, Branger, and Gayda 2023), or on the impact of option

trading on the underlying market (Dim et al. 2024; Adams, Fontaine, and Ornthanalai 2024;

Brogaard, Han, and Won 2023), with limited analysis on the quality of the market itself.

This paper aims to fill this gap by studying the liquidity of short-maturity and ultra-short-

maturity options and its relation to the intraday order flow distribution, with a particular

focus on the intraday volatility of the order flow. According to standard market microstruc-

ture models (Glosten and Milgrom 1985; Stoll 1978), trading patterns that increase risks and

1See, for example, https://www.cboe.com/insights/posts/the-evolution-of-same-day-options-trading/
2In 2010, CBOE introduced the first pm-settled SPX Weeklys (SPXW) with Friday expirations. In 2016,

CBOE expanded its listings by launching SPXW options that expired on Mondays and Wednesdays. By
2022, CBOE had further broadened its listings to include SPXW contracts expiring on every weekday from
Monday through Friday.
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costs for liquidity providers should be reflected in the bid-ask spread.3 Our hypothesis is that

these effects should be especially relevant in options with very short maturities. Intuitively,

in options markets with very short times to expiration, like 0DTE options, liquidity providers

do not have time to earn a premium on their inventory (e.g., in Fournier and Jacobs 2020).

They must react quickly to the order flow, monitoring is more intense than in options with

longer maturities, and the required premium should be immediately incorporated into the

bid-ask spread. Moreover, the daily measures of order imbalances (buy minus sell orders)

used in the literature (see Christoffersen, Goyenko, Jacobs, and Karoui 2018; Muravyev 2016,

among others) may not fully capture the intraday dynamics of trading, which is important

for liquidity providers who continuously rebalance their inventory throughout the day. While

buy and sell orders might balance out over the day, resulting in a small net daily order flow,

intraday order imbalances can be highly volatile. Inventory models that explicitly account

for the stochastic nature of the order flow (see, for example Campi and Zabaljauregui 2020;

Bogousslavsky and Collin-Dufresne 2023) recognize the important role of the second moment

of the order flow distribution and its positive relation to illiquidity. Intuitively, volatile order

flow is linked to the volatility of changes in liquidity providers’ inventory, and under the

standard assumption that liquidity providers are averse to inventory variance, these models

find that more volatile order flow is associated with greater illiquidity in equilibrium. Guided

by these insights from bid-ask spread models, we investigate the impact of order flow distri-

bution on bid-ask spread in short-term options, as well as the role of option maturity in this

relationship.

We begin by documenting that, while daily order imbalances are relatively small in ab-

solute value (as documented by Dim et al. 2024), the intraday distribution of order flow

3See Foucault, Pagano, and Röell (2013) for a review of market microstructure models where the bid-ask
spread is endogenously set by liquidity providers to compensate for asymmetric information risk and/or
inventory and order processing costs.
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has been highly volatile since the years following the financial crisis. Examining the dis-

tribution of order flow on days characterized by high trading costs versus those with low

trading costs reveals that illiquidity is associated with a distribution with very high volatil-

ity and interquartile range. This suggests that more dispersed orders are risky for liquidity

providers and detrimental to overall liquidity, consistent with a standard hypothesis of liq-

uidity providers aversion to inventory variance (Ho and Stoll 1981; Stoikov and Sağlam

2009). Formal time-series and panel regressions confirm this pattern: high intraday order

flow volatility on day t is positively associated with trading costs on the same day. This

result is highly significant, applies to both the SPX options market and the market of indi-

vidual stock options (time-series and cross-section dimension), and survive the inclusion of

numerous controls, including daily measures of volumes, order imbalance, volatility, option

greeks, stock characteristics, past measures of spread, and variables that measure market-

makers rebalancing needs. Importantly, all our regressions include time-fixed effects such as

day-of-the-week, month-of-the-year, and year dummies to account for strong seasonalities in

the spread.

Next, we analyze the relation between volatile intraday order flow and illiquidity sepa-

rately for options in different maturity buckets with one-week intervals, ranging from options

expiring on the same day (zero days to maturity or 0DTE), to options expiring in one week

(1-6 days), and up to options expiring in seven weeks (42-48 days to maturity). We find

that the coefficient of the relation between order flow volatility and spread is positive for

all maturity samples and monotonically decreasing in option maturity. Particularly high are

the coefficients estimated for 0DTE options and options expiring in one week, which are two

times the coefficients estimated for the other maturities. This result confirms our hypothesis

that the shorter the expiration of the options, the more sensitive is the bid-ask spread to

risky intraday trading patterns.
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Volatile order flow can be risky or costly for liquidity providers for multiple reasons. It

implies that liquidity providers face a dispersed order flow, varying in both magnitude and

sign throughout the trading day. This variability results in increased inventory management

costs directly related to trade absorption, such as order processing and inventory rebalanc-

ing costs, as well as indirectly related costs, including heightened monitoring and greater

uncertainty about future liquidity provision. Since options on individual stocks trade across

sixteen exchanges, we can conduct a more granular exchange-level analysis by leveraging the

exchange flag in our data that identifies where each trade occurred. This unique feature

of the dataset allows us to study heterogeneous exchange-specific liquidity and the role of

trade absorption and direct costs in the volatile order flow-illiquidity relationship. Intu-

itively, the exchange that absorbs the trades and experiences an inventory shock faces both

direct and indirect costs of providing liquidity, while other exchanges are only subject to in-

direct costs. Moreover, if trade absorption costs are the primary driver of the volatile order

flow-illiquidity relationship, then exchange-specific liquidity should be more closely related

to exchange-specific order flow volatility. Conversely, if liquidity providers’ aversion to order

flow volatility extends beyond trade absorption, i.e., due to indirect costs, exchange-specific

liquidity should be more associated with total order flow volatility.

We conduct two distinct analyses: one at the intraday level and another at the daily level.

At the intraday level, we find that after a trade, the exchange where the trade took place

raises the spread by approximately 1%, while other exchanges lower their spreads by around

22 basis points. This result suggests that direct costs of liquidity provision are significant

and quickly reflected in the spread, while the spread reductions on other exchanges may

reflect efforts to attract trading volume. Additionally, past order flow volatility, measured

up to the time of trade, positively impacts spread changes across all exchanges, regardless

of where the trade occurred. This indicates that the relationship between volatile order
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flow and illiquidity is largely driven by indirect costs from one trade to the next. At the

daily level, we examine whether exchange-specific liquidity is more closely associated with

the volatility of total order flow or exchange-specific order flow volatility. The results reveal

that, although both factors are significant, total order flow volatility has a stronger influence

in both magnitude and significance. Overall, these results suggest that indirect costs have

a greater effect on liquidity and that exchanges learn from the total order flow across all

exchanges.

Our paper contributes to different strands of literature. It is primarily related to the

recent literature that studies the novel market of short-maturity options and ultra-short

maturity options (Almeida et al. 2024; Bandi et al. 2024; Dim et al. 2024; Beckmeyer et al.

2023; Adams et al. 2024). The novel aspect of our investigation is the emphasis on option

liquidity and its relation to the order flow. Relatedly, Christoffersen et al. (2018) document

a substantial illiquidity premium in the option market for longer maturity options. They

also analyze the determinants of the bid-ask spread in the cross-section of options and find

that the daily absolute value of the order imbalances from non market-makers are positively

related to illiquidity. Unlike Christoffersen et al. (2018), we focus on the intraday distribution

of the order flow and its impact on liquidity in the time-series and cross-section dimensions

of short-term options.

We also contribute to the extensive literature examining order-flow-related measures of

trading in options (see, e.g., Bollen and Whaley 2004; Garleanu, Pedersen, and Poteshman

2008; Muravyev 2016; Ni, Pearson, Poteshman, and White 2021; Cao, Jacobs, and Ke 2024;

Fournier and Jacobs 2020). Unlike these studies, we introduce in the option market the

new measure of risky, volatile intraday order flow and show that this measure is particularly

relevant for ultra-short maturity options, while previous research has focused on the first

moment of the order flow distribution.
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Finally, while order flow volatility has not been explored in the options market, it has

been studied in the equity market by Chordia, Hu, Subrahmanyam, and Tong (2019), Bo-

gousslavsky and Collin-Dufresne (2023), and in the bid-ask spread model of Campi and

Zabaljauregui (2020). While Chordia et al. (2019) and Campi and Zabaljauregui (2020)

emphasize the informational role of order flow volatility, our work is more closely aligned

with the inventory model of Bogousslavsky and Collin-Dufresne (2023). We extend their

empirical analysis to the options market, specifically examining how option maturity im-

pacts the relationship between order flow volatility and illiquidity. Additionally, we leverage

a unique feature of individual stock options data, which records the exchange where trades

occurred, enabling us to isolate the role of direct and indirect inventory management costs

in this relationship.

The paper proceeds as follows. Section 2 introduces the conceptual framework, and

Section 3 describes the data. Section 4 presents the empirical results: Sections 4.1, 4.2 and

4.3 analyze the order flow of SPX options, while Section 4.4 and 4.5 examine the cross-section

of options on individual stocks and conducts the exchange-specific analysis, respectively.

Section 5 provides additional robustness analysis, and Section 6 concludes.

2 Conceptual Framework

According to standard models of inventory management for option market-makers (Stoikov

and Sağlam 2009; Ho and Stoll 1981; Ho and Macris 1984), liquidity providers set the bid-

ask spread in the option market to maximize their utility based on their final wealth. This

wealth is determined by the cash earned from the bid-ask spread and their inventory position.

Standard utility functions typically incorporate an aversion to inventory variance (Stoikov

and Sağlam 2009), showing that higher inventory risk leads to wider bid-ask spreads.
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Inventory risk, in turn, depends on the dynamics of option prices and order flow. To

formalize this, let qt represent the liquidity providers’ position in options at time t and Ot

the option price. The value of their inventory It at time t is It = qtOt. Assuming both qt

and Ot follow stochastic dynamics governed by Ito processes, applying Ito’s lemma gives:

dIt = qtdOt + dqtOt + d[qt, Ot].

This equation shows that inventory risk arises from two sources: the fluctuations in option

prices and the stochastic nature of order flow. Empirical research has primarily focused on

the first source, documenting that bid-ask spreads increase with the delta, vega, and gamma

of the options traded (Christoffersen et al. 2018; Stoikov and Sağlam 2009).

In this paper we focus on the second source of inventory risk: the stochastic nature of

the order flow, and we test the following hypothesis:

H0: The higher the volatility of the order flow distribution, the higher the trading costs.

This relationship would indicate that the second component of inventory risk is also

significant for liquidity providers and is reflected in bid-ask spreads, with the sign consistent

with standard utility functions. In fact, bid-ask spread models that explicitly account for the

stochastic distribution of order flow in the stock market find that, in equilibrium, illiquidity

is positively associated with order flow volatility (see Campi and Zabaljauregui 2020 and

Bogousslavsky and Collin-Dufresne 2023).

3 Data

We obtain options trade data from the CBOE’s LiveVol, including timestamp down to mil-

liseconds, trade price and size in contracts, the prevailing NBBO prices, and the contempora-
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neous best bid and offer prices of underlying security for each trade reported by the Options

Price Reporting Authority (OPRA). The dataset spans the intraday trading activity of all

equity and index options from January 01, 2004, to July 16, 2021. We merge the LiveVol

data with the Center for Research in Securities Prices (CRSP), from which we obtain daily

stock returns, trading volumes, prices, and the number of outstanding shares. Additionally,

we combine the intraday trade data with OptionMetrics, allowing us to access daily implied

volatility and Greeks for option series. For each day, option series are required to be present

in all three data sources.

We focus on S&P 500 index options and options on individual stocks which are the

constituents of the S&P500 index. We track S&P 500 constituents on a monthly basis

following the historical components file from CRSP. A stock is included in our cross-sectional

sample for a given month if it was part of the S&P500 index in the previous month.

Our focus lies on short-term options with maturities of up to one month, as these have

seen the most significant growth in trading activity over time (Almeida et al. 2024), raising

questions about the stability of the option market. Among these options, at-the-money

(ATM) options are of special interest, as they have the highest decline in value as maturity

approaches, and the highest value of gamma, which is particularly relevant for delta-hedgers

liquidity providers (see Ni et al. 2021). Moreover, the prices and spreads of ATM options are

less affected by market microstructure noise than out-of-the-money (OTM) options (Duarte,

Jones, and Wang 2019).4 Our main sample is thus composed by ATM options, defined by an

absolute delta between 0.375 and 0.625, with up to 48 days to maturity. The delta of each

option series is assessed at the close of the preceding business day; for example, an option

on day t is considered at-the-money if its absolute delta, as recorded by OptionMetrics at

4In the robustness Section 5, we analyze out-of-the-money options and find results consistent with those
observed for the at-the-money options in the baseline analysis.
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the close of day t− 1, falls between 0.375 and 0.625.

We examine all options trades recorded by OPRA between 9:30 a.m. and 4:00 p.m

US Eastern time. The OPRA database encompasses trades occurring across the sixteen

exchanges where investors can trade options. SPX index options are specifically traded only

on the CBOE exchange, with regular trading hours concluding at 4:15 p.m. Additionally,

they are available for trading during global trading hours before the market opens and after

it closes, with this time frame gradually expanding over time.5 To ensure consistency in

coverage across various securities and over time, we concentrate on the standard trading

hours of 9:30 a.m. to 4:00 p.m. for all underlying stocks and the S&P500 index.

Following the literature, we apply filters to the intraday trade data to clean obvious

errors and outlying records. We filter out the following observations: (1) cancelled trades;

(2) trades with zero or negative price, size, and/or bid-ask spread; (3) trades whose sizes are

higher than 100,000 contracts; (4) trades whose prices are below bid minus spread or above

ask plus spread; and (5) trades whose prices are below $0.10.

4 Empirical Results

This section explores the characteristics of intraday order flow distribution in short-term

at-the-money options and its relation with illiquidity. Sections 4.1, 4.2 and 4.3 focus on

the order flow of SPX options, while Section 4.4 examines the cross-section of options on

individual stocks. The analyses show that in all samples higher variance in intraday order flow

is associated with increased trading costs in the time-series and in the cross-section. Section

4.5 performs an exchange-specific analysis to investigate the role of direct and indirect costs

5In 2015, CBOE extended trading hours for SPX options to include 3 a.m. to 9:15 a.m. In 2021, the
start time moved to 8 p.m. of the day before, and in 2022, CBOE added the ‘Curb’ session from 4:15 p.m.
to 5 p.m.
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of inventory management.

4.1 Order Flow and Daily Statistics

Our primary focus is on analyzing the distribution of intraday order flow. To achieve this,

we first need to flag every trade as buy (i.e., buyer-initiated) versus sell (i.e. seller-initiated),

since the OPRA data does not explicitly provide this information.

Following the literature on high-frequency data of trades and quotes of stocks (Lee and

Ready 1991; Bogousslavsky and Collin-Dufresne 2023), trades are categorized as buys or sells

based on the quote rule and tick rule. Specifically, if a trade price is closer to the National

Best Offer, it is classified as a buy; otherwise, it is classified as a sell. If a trade price falls

at the NBBO quote midpoint, we follow Bryzgalova, Pavlova, and Sikorskaya (2023), and

apply the quote rule to the Best Bid and Offer (BBO) prices from the exchange where the

trade was executed. In cases where the trade price equals the BBO mid price, the tick rule

is applied: if the current trade price exceeds the price of the last trade in the same option,

the current trade is classified as a buy; conversely, it is classified as a sell.

In the stock market, it is well-known that the quote rule effectively classify trades that

occur without any price improvements, resulting in buyer-initiated (seller-initiated) trade

prices that are very close to the quoted ask (bid) prices. However, when a trade receives

significant price improvement, the trade classification may be prone to misclassification (Ellis,

Michaely, and O’Hara 2000). To validate our quote rule on this critical sample, we obtain a

sample of about one million option trades executed on 2024-02-02 through auctions.6 These

trades are mostly retail orders which have been automatically routed into auctions to receive

the best price-improvement. Within the auction database, we have access to the actual trade

6We thank SpiderRock Data & Analytics for providing this auction data.
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direction (buy versus sell) along with the prevailing bid and ask quotes of the exchange where

the trade occurred. Analysis reveals that, in this sample, the quote rule successfully classifies

approximately 85% of the trades.7

We then partition the trading day into equispaced time-intervals, and calculate the option

order flow on day t in each interval d by subtracting the trade size of seller-initiated trades

of all options i from that of buyer-initiated trades:

Order Flowt,d =
∑
i

Trade Size of Buysi,t,d −
∑
i

Trade Size of Sellsi,t,d. (1)

To obtain the daily order flow, which we label order imbalance and denote it with the variable

OIt, we sum the order flows across the intra-day intervals:

OIt =
∑
d

Order Flowt,d. (2)

Several choices for the length of the time intervals are possible. The optimal choice balances

the need for high frequency data and option liquidity; if the intervals are too short, we risk

having many empty intervals due to insufficient trading activity. While this might not be an

issue for SPX options, it could be problematic for some individual stock tickers. Therefore,

we opt for a 5-minute interval, which provides a suitable balance as an intermediate high

frequency.8 The first interval spans from 9:30 am to 9:35 am, while the final interval spans

from 3:55 pm to 4:00 pm, and in total we have 78 intervals per day.

7Another potential source of misclassification could occur with trades that are components of multi-leg
strategies. Li et al. (2020) propose an heuristic approach to classify such trades. However, this methodology,
relying on manual trade matching, cannot be verified without a sample containing the actual trade direction.
Additionally, Li et al. (2020) find that in their sample, 70% of vertical spreads and 60% of straddles can be
classified using the quote rule. Therefore, we opt to adhere to the standard quote rule for trade classification.

8Qualitatively similar results are obtained if we partition the day into 1-minute intervals or 10-minutes
intervals. Results are available upon request.
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The order flow measures the buy versus sell pressure in the market. It is positive when

investors are, overall, buying more options than selling them, and negative otherwise.

It is crucial to emphasize that our investigation is abstracted from which group of in-

vestors initiates or absorbs trades. Options exchanges typically classify traders as customers,

firms, and market makers. Market makers, employed by exchanges, primarily provide liquid-

ity in the options market. The roles of other participants are, on the contrary, less clearly

defined. Customers and firms can both contribute to market liquidity by placing limit orders,

effectively adding to the order book. Conversely, they can also introduce more aggressive

orders, thereby depleting liquidity from the market. Often, customers orders are matched

with other customers orders, in which case traders in same category are both demander and

supplier of liquidity. Our focus lies in examining the characteristics of the intraday distri-

bution of the total net order flow of all participants seeking liquidity in the options market.

In Section 5.1, we will closely compare our order flow measure with data on market-makers’

inventory. We find that although the two measures are negatively related, the correlation is

not notably high, suggesting that market makers are not the sole providers of liquidity in

the option market.

[Figure 1 here]

We compute the daily order flow separately for ATM calls and put options with one month

to maturity. Figure 1 displays the average daily volume (Panel A) and order imbalance

(Panel B) for put and call options in each year of the sample period. We calculate the daily

options volume by summing the number of contracts traded across all option series within

each option group (calls or puts):

Volumet =
∑
i

Trade Sizei,t (3)
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Panel A confirms the well-known upward trend in SPX option volumes since the years 2012-

2013, observed in both call and put options.

Panel B documents some important characteristics of the daily order imbalances. On

average, the order flow is positive for SPX put options and negative for SPX call options,

displaying some variability across the years; this trend corresponds with findings from Chen,

Joslin, and Ni (2019) and Jacobs, Mai, and Pederzoli (2024), among others. In the aftermath

of the financial crisis, the order flow size surged, reaching an average of 2000 contracts as net

order flow per day in 2010 (positive for put options and negative for call options). Post-crisis,

the daily order flow size remained relatively stable with occasional deviations. For instance,

during the years 2015 or 2018, we observe a modest average daily order flow in both call and

put options. Particularly noteworthy are the last two years of our sample, 2020 and 2021,

where we document an average negative order flow for both call and put options, with a

magnitude around 2000.

Overall, the graph illustrates that, despite the surge in option volumes (as evident in

Figure 1, Panel A), buy and sell orders remain relatively balanced throughout the day,

resulting in no significant increase in the overall size of the daily net order flow, consistent

with results documented by exchange analysts and recent literature.9 The next section

will offer a new perspective on order flow patterns by analyzing the intraday distribution,

revealing that even when the daily order flow is small, there can be substantial intraday

variation.

9See, for example, https://www.cboe.com/insights/posts/volatility-insights-evaluating-the-market-impact-
of-spx-0-dte-options/
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4.2 Intraday Order Flow Distribution

In this section, we start our novel analyzes of the intraday distribution of the order flow.

Every day we calculate mean, standard deviation, skewness, and quartiles (q0.25, q0.5, and

q0.75) of the seventy-eight 5-minute intervals order flows calculated according to equation 1.

[Table 1 here]

Panels A1 and B1 of Table 1 present the average of the daily statistics over the years

for ATM SPX call and put options.10 Figure 2 complements Table 1 by illustrating the

time-series of the average 5-minute order flow with intraday confidence intervals.11

[Figure 2 here]

The intraday order flow distribution appears largely symmetric over the entire sample

period, with an average 5-minute order flow across the years of -6 for ATM call options

and 9 for ATM put options. These statistics exhibit variability over the years, ranging from

a minimum of -28.76 (recorded in 2020 for ATM calls) to a maximum of 32.65 (recorded

for ATM puts in 2016). However, the mean 5-minute order flow does not display any time

trend, as apparent from Figure 2. Skewness estimates, which are consistently low in all years,

further confirm the overall symmetry of the intraday order flow distribution. Despite the

small magnitude, the data indicates that the ATM call market typically exhibits a negatively

skewed order flow distribution, whereas the ATM put market shows varying skewness signs

10In this preliminary analysis in which we are comparing the intraday order flow distribution over the
years, we present results only up to 2020, as our sample ends in July 2021. The first half of 2021 will be
included in the formal regression analysis in the subsequent sections.

11Specifically, for every day in the sample, we compute the average intraday 5-minute order flow, µt, with
its confidence interval µt ± Z σt√

n
, where σt is the standard deviation of the intraday 5-minute order flows.

The figure displays the monthly averages of these daily quantities.
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across different years. Standard deviation values have consistently been high, fluctuating

from a minimum of 229.68 (recorded in 2004 for ATM calls) to a maximum of 1764.67

(recorded in 2011 for ATM puts), resulting in relatively wide confidence intervals for the

average 5-minute order flow. For instance, in 2011, while the average 5-minute order flow for

put options stands at 6.22 contracts, the standard deviation averages 1764.67. This leads to a

confidence interval for the average order flow in the 5-minute interval of [−385, 398] contracts,

indicating a high variability of the 5-minute order flow during the day and across days. The

median and the 0.25-0.75 quartiles confirm the overall symmetry of the distribution. By

looking at the time-series of the average standard deviation by year, depicted in Figure 2,

we find that the distribution initially exhibited a higher degree of concentration in the early

years of the sample. Subsequently, it became more dispersed during the financial crisis in

2007, and, for ATM call options, it then stabilizes with some notable spikes around 2018. For

ATM puts, the pattern is similar, with notable spikes in 2011 (concurrent to the European

financial crisis), and 2018 (concurrent with the Volmageddon incident). The interquantile

range, calculated as q0.75 − q0.25 and presented in Table 1, shows a mild increase over the

years.

Overall, this analysis shows that, beginning with the financial crisis in 2007, the distribu-

tion of intraday order flow has remained stable over the years. It exhibits high symmetry but

also a very high level of standard deviation. Notably, in the ATM put market, this standard

deviation peaks during years marked by significant turbulence in volatility markets.

To gain a deeper insight into the relationship between intraday order flow distribution

and option market quality, we compare the distribution of intraday order flow during days

characterized by high transaction costs with those characterized by low transaction costs.

Our goal is to identify the distribution characteristics that are significant for liquidity.

In accordance with Christoffersen et al. (2018) and Bogousslavsky and Collin-Dufresne
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(2023), we measure the cost of trading options with the effective spread incurred by option

traders. Specifically, for each trade i on day t, we define the percent effective spread as:

Effective Spreadi = 2| lnPi − lnMi| (4)

where Pi is the price of the trade i and Mi is the prevailing midpoint of the NBBO. For

each day, the daily effective spread is the volume-weighted average of effective spreads across

trades within the same option category (ATM calls and puts), where the volume is the total

number of contracts traded.

[Figure 3 here]

Figure 3 displays the time series of the daily effective spread (Panel A) and daily changes

in effective spread (Panel B) across the entire sample period for our samples of ATM SPX

call (left graphs) and put options (right graphs). We denote the two variables as ESt and

∆ESt, respectively. The graph illustrates a downward trend in the spread throughout the

sample period, along with recurrent spikes that may suggest seasonal patterns in both the

spread and the daily changes in the spread. We will account for seasonalities and time-trends

in the regression analysis of Section 4.3 and 4.4.

We compare the intraday distribution of order flow on days characterized by low and

high trading costs as follows: for each year in the sample, we identify the days falling in the

bottom 10% and top 10% based on their ∆ESt values.12 We then calculate the summary

statistics (mean, standard deviation, skewness, and quartiles) shown in Table 1 for each of

these subsamples. Panels A2 and B2 of Table 1 present the difference in these statistics

between days with low and high transaction costs, segmented by year.

12Similar results are obtained when splitting the sample according to ESt instead of ∆ESt. Results are
provided in the Online Appendix. We use ∆ESt as the main measure of trading costs in this preliminary
analysis to be consistent with the regression analysis of section 4.3.
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The results are qualitatively similar across the years for both call and put options markets.

Days with low transaction costs have a distribution of intraday order flow that consistently

shows lower standard deviation and smaller interquartile range compared to days with high

transaction costs. Meanwhile, the distribution remains symmetric in both subsamples, as

evidenced by the minimal change in skewness and median. The table also reports the re-

sults of testing whether the differences reported are statistically significant within each year.

Although these statistical tests have limited power, we find that for half of the years, the

differences in standard deviations and first and third quartiles are statistically significant.

None of the other statistics show the same consistent pattern. The table also reveals no

time-trend in the difference between the standard deviation of order flow on days with low

and high trading costs, indicating that extreme distribution days have not become more

pronounced over time. However, the current high levels of volumes in the option market

represent a mass of traders which could potentially generate a very volatile order flow. This

underscores the importance of understanding the implications of volatile intraday order flow

distributions.

In summary, the findings of this section suggest that the distribution of intraday order

flow holds significant economic implications for market liquidity. Specifically, days in which

the average 5-minute order flow is more volatile, as measured by the standard deviation of

the distribution and the interquantile range, appear to coincide with days with low option

market liquidity. Next section formally tests this pattern through a regression analysis.

4.3 Volatile Order Flow and Option Market Liquidity

In this section, we conduct a formal examination of the relationship between option market

liquidity and the standard deviation of the intraday order flow distribution, which were
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shown to be highly related in the previous section.

We conduct separate time-series regressions for SPX calls and put options using the

following specification:

∆ESt = α+ β1log(SDt) + β2log(Volumet) + β3|OIt|+ Time Controls + Other Controls + εt,

(5)

where ∆ESt measures the daily change in the effective spread paid by investors for trading

options on day t, log(SDt) denotes the logarithm of the standard deviation of the intraday

order flow distribution on day t, log(Volumet) is the logarithm of the daily volume calculated

according to equation 3, and |OIt| is the absolute value of the daily order imbalance calculated

according to equation 2. We use the absolute value of the order imbalance, following the

findings of Christoffersen et al. (2018), who demonstrated that this measure is strongly

related to illiquidity through a market-maker inventory channel. Time controls include

day-of-the-week, month-of-year, and year dummies, while other controls include the market

return and VIX level on day t, the absolute value of the average delta, vega and gamma

of the options on day t, and one-day and two-day lags of ∆ESt. We further segment call

and put option samples into maturity buckets with one-week intervals, ranging from options

expiring on the same day (zero days to maturity or 0DTE), to options expiring in one week

(1-6 days), and up to options expiring in seven weeks (42-48 days to maturity). All variables

are calculated separately for ATM calls and put options in each maturity bucket on day

t13, and standard errors are calculated using Newey-West with the optimal lag suggested by

Andrews and Monahan (1992).

[Table 2 here]

13For 0DTE options we considered the greeks recorded on day t− 1.
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Table 2 presents the summary statistics of the dependent and independent variables

included in the regressions, and Panels A1 and B1 of Table 3 presents the regression results

segmented by option maturity buckets.

[Table 3 here]

The results consistently reveal a positive and statistically significant relationship between

the intraday volatility of order flow log(SDt) and the effective cost of trading, indicating that

days characterized by greater volatility of intraday order flow correspond to lower liquidity.

This result holds across various maturity buckets and put call samples, and remains robust

after accounting for numerous controls. The breakdown of results into maturity buckets

reveals a significant trend in the coefficient of log(SDt): the coefficient is higher for short-

term options and decreases almost monotonically with option maturity.

[Figure 4 here]

Figure 4 presents the coefficient plot of the estimates for increasing maturities along with

their confidence bounds. The statistical significance is so high that the confidence bounds

are remarkably narrow, and the monotonicity of the estimates stands out clearly from the

picture. This pattern indicates that the liquidity of the market for short-term options is more

heavily influenced by the intraday distribution of order flow. To formally test for differences

in coefficients between the ultra-short maturity sample, including 0DTE options, and other

maturities, we conduct a pooled regression of ∆ESt on log(SDt), with dummies identifying

each maturity bucket. Specifically, we introduce seven dummies, D1−6, D7−13, D14−20, D21−27,

D28−34, D35−41, and D42−48, representing each maturity bucket except 0DTE. The coefficient

of log(SDt) measures the sensitivity of illiquidity to volatile order flow in 0DTE options,

while interactions of log(SDt) with these dummies assess whether the coefficient differs in
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other maturity buckets compared to the 0DTE bucket. Panels A2 and B2 of Table 3 present

the results. The log(SDt) coefficient is positive and significant, with a magnitude consistent

with the estimate for the 0DTE sample alone. The interaction term coefficients are all

negative and significant, confirming the lower sensitivity to order flow volatility in options

with longer maturities.

The coefficients in Table 3 related to volumes and the absolute value of order imbalance

also offer important insights and connection with the literature. We find that log(V olumet)

is generally positively related to option illiquidity with few exceptions (call options with 1-6

days to maturity and 28-34 days to maturity, and puts with 0 days to maturity and 1-6 days

to maturity). While standard market-microstructure models posit that volume should be

negatively related to market illiquidity (Kyle 1985), in the options market, higher volumes

may also increase inventory risk for liquidity providers, thereby diminishing their beneficial

impact on market quality.14 The absolute value of daily order imbalance, |OIt|, captures the

imbalances between buy and sell trades throughout the entire day. It has been utilized in the

literature as a measure of demand pressure (Bollen and Whaley 2004; Garleanu et al. 2008)

or as an indicator of changes in option market-maker positions and their associated inventory

risk (Muravyev 2016). While this variable proves significant in certain specifications, it does

not overshadow the significance of order flow volatility, particularly for options in very short

maturity buckets. Essentially, these two variables gauge distinct aspects of order flow and

are not interchangeable. For instance, a day could witness balanced buy and sell orders,

resulting in a very low absolute value of order imbalance, yet the orders may be distributed

14Specifically, we find that volumes are generally positively related to the bid-ask spread and daily changes
in the bid-ask spread in the time-series analysis of SPX options (see Table IA.3 in the Online Appendix and
Table 3). This positive relationship also appears in the panel regression of individual stocks (Table 4).
Conversely, in the Fama-MacBeth regression (reported in Tables IA.5 and IA.6 in the Online Appendix),
volumes are negatively related to the bid-ask spread and daily changes in the bid-ask spread, consistent with
the findings of Christoffersen et al. (2018).
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in a highly dispersed manner throughout the day.

4.4 Volatile Order Flow and Option Market Liquidity in Individ-

ual Stock Options

The previous section documents a strong positive relationship between the time-series of

the cost of trading SPX options and the volatility of the intraday order flow distribution.

The relationship is stronger for ultra-short maturities and decreases for longer maturities.

This section documents that the same relationships also hold in the market for options on

individual stocks.

We consider the constituents of the S&P 500, tracking them monthly from the beginning

of our sample. A stock-day is included in our sample if the stock was part of the S&P 500

index in the preceding month. Figure 5 illustrates the number of individual stocks within

our sample over the years. At first, the count varies between 100 and 200 during the initial

years, and later settles between 300 and 400 from 2009 onward. This trend indicates an

expansion in the options market, incorporating a larger number of individual stock tickers.

[Figure 5 here]

Panel B of Figure 1 displays the average daily volumes and order imbalances of at-the-

money call and put options with up to 48 days to maturity written on the stocks that are

part of the S&P500 index. Unlike SPX options, we find that investors trade more call options

than put options on individual stocks, with the difference in volumes significantly increasing

from 2020 onwards. The bar graph on the right indicates that the daily order imbalance is,

on average, positive for both call and put options. Our findings are novel but qualitatively

align with the summary statistics provided by Bryzgalova et al. (2023) and Bogousslavsky
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and Muravyev (2024) on retail trading, which accounts for a substantial portion of volumes

in options on individual stocks in recent years.

Our primary variable of interest, log(SDs,t), is the logarithm of the daily standard devi-

ation of the seventy-eight 5-minute order imbalances. It is constructed separately for each

stock s using the same procedure as for SPX outlined in section 4.1. Since options on indi-

vidual stocks may not be traded as frequently as SPX options, we include a stock-day option

type (call/put) in the sample if the option group has at least ten non-empty intervals out of

the seventy-eight. The other variables related to daily volumes, order imbalance, and effec-

tive cost of trading are also constructed separately of each stock-day option-type following

equations 3, 2, and 4, respectively.

We perform a panel regression of ∆ESs,t on log(SDs,t) with stock-fixed effect, controlling

for volumes and the absolute value of the order imbalance on day t.15 Other controls include

the average implied volatility of options on stock s and day t, IVs,t, and the average of the

options greeks, i.e., gamma, vega, and the absolute value of delta on stock s and day t.16

We also control for stock characteristics, as stock return, firm size and stock volume. Time

fixed-effects include day-of-the-week, month-of-the-year, and year controls. Standard errors

are computed are clustered at the day and stock level.

[Table 4 here]

Table 4 presents the results for call options (Panel A) and put options (Panel B). The

samples are further divided into options with maturities of up to 24 days and those with

maturities between 25 and 48 days. The results are robust, showing a strong positive rela-

tionship between the standard deviation of the order flow and illiquidity for both call and

15Qualitatively similar results are obtained using a cross-sectional Fama-MacBeth regression instead of
the panel regression, and they are presented in the Online Appendix.

16For 0DTE options, we use the greeks recorded on day t− 1.
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put samples. This relationship remains robust even after controlling for volumes and order

imbalance. Additionally, the coefficient is higher for very-short maturity options (up to 24

days to expiration), confirming that the term structure observed in SPX options also applies

to the individual stock option market: the shorter the option’s maturity, the higher the

sensitivity of the trading cost to intraday order flow volatility.

4.5 An Analysis by Exchange

The previous sections document a robust positive relationship between volatile order flow and

illiquidity in the time series of SPX options and options on individual stocks. This section ex-

amines the mechanism behind this relationship and investigates the role of inventory shocks.

Indeed, inventory management costs include costs directly related to trade absorption and

inventory shocks, such as transaction costs and those associated with inventory rebalancing,

as well as indirect costs, such as monitoring and anticipatory inventory management. In an

ideal setting, where we could track the spreads quoted by individual liquidity providers, if

costs related to inventory shocks are driving the relationship, those absorbing more trades

would quote higher spreads when order flow is volatile. Conversely, if liquidity providers’

aversion to order flow volatility extends beyond actual trade absorption, the relationship

between liquidity and volatile order flow would remain consistent across providers.

While we do not have this granularity of data on liquidity providers, we can exploit the

fact that individual stock options are traded simultaneously across sixteen exchanges. The

OPRA database provides the exchange identifier for each trade, along with the contempora-

neous best bid and offer quotes across all exchanges. Every exchange designates a primary

market-maker, which generally differs across exchanges.17 As long as liquidity providers are

17The current list of designated market makers for each ticker on CBOE and NASDAQ, for example, is
publicly available on the website of the exchanges.
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heterogeneous across exchanges, exchanges are heterogeneously exposed to inventory shocks,

allowing us to isolate the role of inventory shocks in the observed relationship. Muravyev

(2016) utilizes a similar multi-exchange setting to quantify the inventory and non-inventory

components of a trade’s price impact. In contrast, our focus is on the spread and its relation

to the standard deviation of the order flow.

We conduct two separate analyses: (i) a trade-by-trade analysis that investigates the

differential change in spread after a trade between the exchange that absorbed the trade

and the other exchanges, and (ii) a daily analysis that tests whether changes in effective

spread across exchanges are more closely linked to the volatility of the total order flow or

to exchange-specific order flow volatility. For these analyses at the exchange level we focus

on the constituents of the Dow Jones which have been part of the index since the start of

our sample period, January 2004. Our sample comprises the following sixteen tickers: AXP,

BA, CAT, DIS, DOW, HD, IBM, INTC, JNJ, JPM, KO, MMM, MRK, MSFT, PG, WMT.

As in the main analysis, we consider the sample of one-month (up to 48 days to maturity)

at-the-money call and put options, with moneyness determined by the delta recorded by

OptionMetrics at the end of the preceding day.

For the trade-by-trade analysis, we track, for every ticker and trade, the change in the

quoted spread across all exchanges. For simultaneous trades occurring on the same option

and exchange, we consolidate them into a single observation. This aggregated observation

has a trade size equal to the signed sum of the individual trade sizes and a trade price that is

the average of the individual trade prices. All other filters align with those previously applied

in the daily analysis. We analyze an average of ten million records for call trades and six

million of records for puts trades per stock. Microsoft (MSFT) has the largest option market,

with forty million records in the call option sample and eighteen million records in the put

option sample. DOW and 3M (tickers DOW and MMM) have the smallest option markets,
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but their sample still encompass approximately two million records in the call market and

one million records in the put market.

We perform the following pooled regression separately for each stock:

∆Spreadi,j,τ = α + β1Dummyi,j,τ−1 + β2log(SD0,τ ) + β3log(SD0,τ )Dummyi,j,τ−1 + ετ , (6)

where ∆Spreadi,j,τ is the change in the quoted spread in exchange i for option j from the

trade time τ − 1 to the next trade time τ . We measure the quoted spread as the difference

between the quoted ask and bid prices on the exchange, divided by the exchange mid price.

Dummyi,j,τ−1 is a dummy variable which equals one for exchange i where the trade in option

j occurred at time τ−1. It is zero for all other exchanges. The dummy variable thus captures

the differential liquidity response between the exchange that absorbed the trade versus the

others. log(SD0,τ ) measures the logarithm of the standard deviation of the order flow from

the start of the day until time τ .18 The primary measure considers the order flow across

all exchanges, though we will also examine an exchange-specific measure later. Finally, the

variable log(SD0,τ )Dummyi,j,τ−1 is the interaction between the standard deviation of the

order flow and the dummy.

[Table 5 here]

Table 5 presents the results, segmented by stock and option-type (Panel A for calls and

Panel B for puts). All regressions include day fixed effect, and the standard errors are

clustered at the day and exchange levels. ∆Spreadi,j,τ are also winsorized at the 1% and

18The first trades of the day lack sufficient trading history to calculate log(SD0,τ ) using the 5-minute
order flow as done in the daily analysis. Therefore, we will only consider trades recorded after 10 a.m.
Additionally, we implement a higher frequency version of log(SD0,τ ) by considering the standard deviation
of all signed trade sizes from the start of the day until time τ . Similar results are obtained by calculating
log(SD0,τ ) using 1-minute order flow.
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99% levels to eliminate instances of apparently unrealistic quotes reported by OPRA. All

coefficients are multiplied by 100.

The first specification includes only a constant and the dummy, and thus tests if the

change in spread after a trade is the same between the exchange where the trade occured

and all the other exchanges. We find consistent and robust results across stocks, as well as

across call and put samples, indicating that the constant is negative while the coefficient of

the dummy variable is positive. Following a trade, the spread decreases by ten to twenty basis

points across all exchanges, while it increases in the exchange where the trade was recorded.

The actual change in spread in the trading exchange is the sum of these two coefficients,

approximately amounting to 1%. Thus, the primary impact of a trade on illiquidity stems

from inventory costs, while the non-inventory impact is smaller and negatively related to

illiquidity. This last result might indicate an effort from the exchanges that did not absorbed

the trades to attract volumes.

In the second specification, we augment the regression with the addition of the standard

deviation of the order flow up to time τ . We introduce the variable log(SD0,τ ) and its

interaction with the dummy variable. The hypothesis we test is whether uncertain order flow,

previously shown to be positively associated with illiquidity in the main analysis, plays a

more significant role in the liquidity of the exchange that just experienced an inventory shock.

The results consistently document a positive coefficient for log(SD0,τ ) and an insignificant

coefficient for the interaction, indicating that all exchanges are affected similarly by order

flow volatility, with no distinction for the exchange that just absorbed the trade.

Finally, we re-estimate the panel regressions using an exchange-specific measure of un-

certain order flow, log(SDi,0,τ ). Specifically, for each exchange, we calculate the standard

deviation of the order flow up to time τ by considering only the trades that occurred on that

exchange. Similar to before, our hypothesis to test is that if uncertain order flow is primarily

26



related to illiquidity through an inventory shock channel, we would expect exchanges with

the highest levels of log(SDi,0,τ ) to revise their spreads more. Moreover, this effect should be

more pronounced for the trading exchange. Specification 3 in Table 5 presents the results,

documenting that both the coefficients of log(SDi,0,τ ) and its interaction with the dummy

are insignificant.

Overall, the high-frequency analysis by exchange confirms that exchanges adjust their

spreads more when order flow volatility is high, consistent with our earlier findings. Addi-

tionally, the results show that it is the volatility of the total order flow, rather than exchange-

specific order flow, that correlates with illiquidity, with no difference between the exchange

that just absorbed the trades and the others. These findings highlight an aversion to volatile

order flow by liquidity providers that extends beyond inventory shock-related costs.

From these results alone, we cannot conclude that trade-related costs do not play any role

in the daily relationship documented in the main analysis, as daily rebalancing requirements

may not be fully captured by this intraday analysis. Therefore, we also perform a daily

analysis.

Specifically, to examine the role of trade absorption at the daily level and align closely

with the analysis in Section 4.4, we investigate the heterogeneous changes in daily effective

spreads across exchanges and their relationship with log(SDs,t) (total order flow volatility)

and log(SDs,i,t) (exchange-specific order flow volatility).

[Table 6 here]

The results are presented in Table 6. The dependent variable, ∆ESi,s,t measures the

change in effective spread calculated using only trades recorded on exchange i for stock s

on day t. The results show that, for both call and put options, the strongest relationship,

in terms of both magnitude and significance, is between the spread and log(SDs,t). The
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coefficient for log(SDs,i,t) is also significant, indicating that at the daily level the distribution

of exchange-specific order flow has also an impact on the exchange liquidity, however the

coefficient is nearly ten times smaller than that for log(SDs,t).

In summary, the results of this section show that exchange-specific liquidity is mainly

driven by the volatility of the total order flow, regardless of whether the order flow was

absorbed by the exchange or by others. While exchange-specific order flow dynamics are

significant in the daily regressions, their impact is smaller compared to the effect of global

order flow. These findings suggest that volatile order flow imposes costs and risks on liquidity

providers that extend beyond those solely related to trade absorption, and exchanges are

revising their spread based on the distribution of the total order flow.

5 Robustness

This section presents the findings from various robustness analyses. Section 5.1 tests the

robustness of our results by including variables commonly used in the literature to capture

market-maker inventory size and rebalancing needs. Section 5.2 provides results using the

spread in levels rather than changes, as well as the volatility of order flow scaled by volume.

Section 5.3 shows that the results also hold in the out-of-the-money options sample. Finally,

Section 5.4 presents additional analysis documenting that the relationship between volatile

order flow and illiquidity is not driven by i) retail trading, ii) market opening and closing

sessions, and that it remains robust when time fixed effects are excluded. The tables of

Sections 5.2, 5.3, and 5.4 are reported in the Online Appendix.
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5.1 Market Makers Rebalancing Needs

As discussed in Section 4.1, our analysis is abstracted from which group of investors initiates

or absorbs trades, as our main focus is on the overall market liquidity supplied by those

investors who absorb initiated trades, referred to here as liquidity providers.

Among market participants, market-makers are unique in that they are employed by

exchanges specifically to provide continuous liquidity in the market. The literature has

documented that variables measuring the order flow absorbed by market makers (Cao et al.

2024; Christoffersen et al. 2018; Muravyev 2016) and their inventory risk (Fournier and

Jacobs 2020; Ni et al. 2021) are significant determinants of option market liquidity and

future returns.

In this section, we complement our main analysis of Table 3 and test if our results

are robust to the inclusion of variables that more precisely measure the inventory and the

rebalancing needs of market makers. We consider the following variables: i) the absolute

value of the non market-maker order imbalance on day t instead of the absolute value of the

order imbalance calculated from the signed order flow as in Section 4.3, ii) the market-makers

cumulative net inventory at time t − 1, and iii) the overall gamma of the market-makers

inventory at t − 1, calculated following Ni et al. (2021). We calculate these variables using

the CBOE’s Open-Close database19, which provides the daily numbers of buy and sell orders

for SPX options from non-market makers.

[Table 7 here]

Table 7 presents the results and show that, for all options maturities, the relationship

between the volatility of the intraday distribution of order flow and liquidity remains robust

19See Jacobs et al. (2024) for a detailed description of the Open-Close database along with filtering and
merging procedure.
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even with the inclusion of new controls. When comparing the non-market-maker order

imbalance with our measure of order imbalance from the order flow in Section 4.1, we find

a positive relationship between the two measures. However, the correlation is notably low

(less than 10%), indicating that market-makers are not the sole liquidity providers in the

options market.

5.2 Spread in Levels and Scaled log(SDt)

In this section, we first assess the robustness of our findings by using the daily effective

spread ESt instead of ∆ESt as the dependent variable, following Christoffersen et al. (2018).

Table IA.1 and Table IA.2 provide the preliminary analysis and the descriptive statistics for

ESt. This analysis shows that on days with low transaction costs, the intraday order flow

distribution consistently exhibits lower standard deviation and a smaller interquartile range

compared to days with higher transaction costs. Tables IA.3 and IA.4 present time-series

regressions for SPX options and panel regressions for individual stock options using ESt as

the dependent variable. The main results and conclusions remain consistent. Figure IA.1

plots the coefficients of log(SDt) from Table IA.3, confirming the monotonicity of estimates

across maturity buckets and illustrating that short-term option market liquidity is more

sensitive to the intraday distribution of order flow.

We further test the robustness of our results by scaling the volatility of order flow and

order imbalance by daily volume, resulting in log(SD/volume)t and |OI/volume|t variables.

Tables IA.7 and IA.8 report the time-series regression for SPX options and the panel regres-

sion for individual stock options using these scaled variables. The findings confirm a positive

relationship between the intraday volatility of order flow log(SD/volume)t and illiquidity,

consistent with our baseline results.
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5.3 Out-of-the-money (OTM) Option Sample

In this section, we assess the robustness of our findings by varying the sample used in the

baseline analysis, specifically examining the relationship between option market liquidity

and the standard deviation of intraday order flow distribution for out-of-the-money (OTM)

options with up to 48 days to maturity instead of at-the-money (ATM) options. An option

on day t is classified as OTM if its absolute delta, as recorded by OptionMetrics at the

close of day t − 1, lies between 0.125 and 0.375. Tables IA.9 and IA.10 present the time-

series regression for SPX options and the panel regression for individual stock options using

OTM options, respectively. The results align with those of our main analysis, showing a

positive and statistically significant relationship between the intraday volatility of order flow

and trading costs. The effect is even stronger than in the ATM sample, with coefficients

decreasing as option maturity increases.

5.4 Additional Robustness

In this section, we further examine if there is any bias in our main results due to controlling

for day-of-week, month-of-year, and year fixed effects (see Jennings, Kim, Lee, and Taylor

(2024)). Tables IA.11 and Table IA.12 report the time-series regression for SPX options and

the panel regression for individual stock options excluding day-of-week and month-of-year

controls. While the adjusted R2 values mildly decrease after removing these time controls,

the primary results and inferences remain consistent.

Finally, we assess to which extent our results are due to: i) retail trading, and ii) the

opening and closing trading sessions. Tables IA.13 and IA.14 present the results of Table 3

re-estimated by excluding retail trades (identified with the ‘SLAN’ flag following Bryzgalova

et al. 2023) and excluding the first and last half an hour of trading, respectively. The results
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consistently demonstrate a positive relationship between intraday order flow volatility and

illiquidity, indicating that retail trading and the opening and closing trading sessions are not

the main drivers of this effect.

6 Conclusion

The recent surge in volumes in option contracts with increasingly shorter expirations has

raised concerns among academics and regulators about the stability of this expanding market.

A key characteristic of the options market is its high level of intermediation, leaving an open

question as to how effectively liquidity providers can absorb large, potentially imbalanced

order flows while maintaining an efficient and well-functioning market.

Our analysis documents economically and statistically significant positive relationship

between intraday order flow volatility and illiquidity in options market. The absolute magni-

tude of the effect decreases with maturity, highlighting the importance of order flow volatility

for very short-term options. The effect is pervasive: it holds in the time-series and cross-

sectional dimension, and it significantly outweighs the significance of more traditional daily

first-moment measures of order flow dynamics, such as volumes or absolute order imbalances.

Indeed, even if buy and sell orders balance over the day, resulting in a small net order flow,

substantial intraday volatility can still occur. An exchange-specific analysis further shows

that liquidity providers are averse to unpredictable order flows even when they do not di-

rectly absorb them, highlighting the role of indirect costs and future liquidity provision risk

in the observed relationship.

Our findings underscore the potential risks posed by high volumes in short-term option

contracts, which can amplify intraday order flow volatility and challenge market stability. We

show that as intraday order flow volatility rises, liquidity providers widen bid-ask spreads
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to manage the elevated risk, resulting in higher hedging costs for investors increasingly

dependent on short-term rollover strategies over long-term hedges. This spread widening, in

turn, can impair market efficiency by reducing liquidity and price discovery, which may in

turn elevate systemic risk. These dynamics highlight critical aspects that regulators should

consider to maintain stability and market quality in financial markets.
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Figure 1: Daily Volumes and Order Imbalances

Panel A: SPX options

Panel B: Individual Stock Options

This figure displays the average daily volumes and order imbalance for at-the-money (ATM) options
with maturities up to one month (48 days), across each year in our sample period. Daily volume is
the total number of contracts traded, and daily order imbalance is the difference between buy and
sell initiated trades. Panel A displays the average daily volumes and order imbalance for SPX call
and put options. Panel B plots for call and put options written on the stocks which are part of the
S&P500 index, where we compute average daily volume and order imbalance for each stock-year,
and then we take the cross-sectional averages for each year.
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Figure 2: Intraday Order Flow Distribution Over the Years
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This figure displays the time-series of the average intraday 5-minute order flow for SPX ATM call
and put options with confidence intervals. The graph is obtained by dividing each trading day into
seventy-eight equal intervals, each covering five minutes, and calculating the order flow (buys minus
sells) of put and call options within each interval. The solid lines display the daily average of these
5-minute order flows, µt, while the dotted lines depict the 95% confidence intervals, calculated as
µt± Zσ√

n
, where σ is the intraday standard deviation of the seventy-eight order flows. For readability,

the graph displays the monthly averages of these daily quantities.
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Figure 3: Time-Series of ESt and ∆ESt

Panel A: SPX Options

Panel B: Individual Stock Options

The figure presents the time-series of the daily effective spread and the daily changes in effective
spread for ATM call and put options. Panel A presents the graph for SPX options while Panel B
presents the graphs for individual stocks options, where a stock-day is included in our sample if
the stock was part of the S&P 500 index in the preceding month.
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Figure 4: Estimated Coefficients of log(SDt) Across Maturity Buckets

The figure plots the estimated coefficients for log(SDt) from the time-series regressions of ∆ESt
across different option maturity buckets, as detailed in Table 3. The plot includes 99% confidence
intervals, with points highlighted in blue.
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Figure 5: Daily Number of Stocks in the Sample

This figure plots the daily number of stocks in the equity options sample for ATM call options and
ATM put options. A stock-day is included in our sample if the stock was part of the S&P 500
index in the preceding month. We include equity options with maturities between 0 and 48 days.
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Table 1: Intraday Order Flow Distribution Over the Years

Panel A: SPX Calls

A1: Five-minute Order Flow Summary Statistics A2: Difference in Distribution Between Low and High ∆ES Days

Year Mean Std Skewness Q25 Q50 Q75 ∆Mean ∆Std ∆Skew ∆Q25 ∆Q50 ∆Q75

2004 2.3 229.7 -0.2 -31.4 3.0 41.9 -20.03 -75.14 0.17 -1.56 -3.70∗∗ -19.54∗∗

2005 3.0 350.2 0.2 -48.6 -0.2 48.5 22.72 -147.68∗∗ 1.24 34.85∗∗∗ 2.10 -22.01
2006 1.2 510.3 -0.2 -68.3 2.0 82.3 0.55 -49.53∗∗∗ 0.17 33.18∗ -2.77 -27.08
2007 5.0 917.1 -0.2 -129.8 3.2 148.6 -17.52 -400.03 -0.36 65.30 -6.31 -111.37∗

2008 -3.4 969.6 -0.5 -128.0 3.1 153.9 -21.21 -290.95 -0.43 53.27 -4.38 -69.80
2009 -6.9 1047.3 -0.1 -113.1 1.3 111.8 -47.94 -217.78 -0.29 4.13 3.06 -16.14
2010 -21.3 971.2 -0.6 -119.9 1.6 125.0 -76.44 -149.49 -0.80 20.41 5.21 -63.75
2011 18.7 922.0 -0.2 -127.6 6.9 151.9 -10.13 -198.46 -0.62 47.00 7.71 -73.89
2012 -6.9 723.4 -0.2 -121.6 3.9 125.0 16.16 -139.37 0.52 18.35 -1.80 -13.82
2013 -24.0 875.9 -0.1 -152.2 -6.6 121.3 -61.56∗ -329.71∗∗∗ -1.43∗∗ 31.05 -8.69 -39.49
2014 -19.3 846.8 -0.2 -152.2 -4.9 135.0 -11.94 -200.53∗∗ -0.74 77.78∗∗ 9.69 -59.50∗∗

2015 -3.1 792.5 -0.3 -133.6 3.2 140.5 -8.54 -273.39∗∗ -0.07 29.65 0.04 -63.61
2016 6.9 852.8 -0.1 -164.5 2.1 179.9 -68.78∗∗ -94.13 -0.55 23.68 -7.52 -106.34∗∗

2017 -22.2 1157.6 -0.3 -179.1 -4.4 160.3 106.68∗ -419.93 1.46 108.29∗∗∗ 8.35 -49.64
2018 -1.6 1121.6 0.0 -196.3 -1.6 189.7 36.70 -716.95∗ 0.54 125.31∗∗∗ 2.38 -154.20∗∗∗

2019 -2.1 1020.2 0.1 -161.0 -2.2 148.3 39.55 -501.96∗ 0.20 81.86∗∗∗ -7.81 -95.55∗∗∗

2020 -28.8 597.3 -0.4 -155.8 -12.9 124.1 111.31∗∗∗ -214.14 0.84 152.23∗∗∗ 48.21∗∗∗ 29.88

Panel B: SPX Puts

B1: Five-minute Order Flow Summary Statistics B2: Difference in Distribution Between Low and High ∆ES Days

Year Mean Std Skewness Q25 Q50 Q75 ∆Mean ∆Std ∆Skew ∆Q25 ∆Q50 ∆Q75

2004 10.9 267.7 0.4 -34.2 3.4 50.5 -19.29 -90.45∗∗ 0.02 0.16 -1.08 -14.05
2005 0.8 385.8 -0.1 -54.1 2.4 62.7 10.43 -144.95∗∗ -0.28 38.44∗∗ 3.94 -16.07
2006 6.7 486.3 0.1 -76.5 1.3 87.6 56.71∗∗ -67.53 1.70∗∗ 57.95∗∗ 3.25 -14.99
2007 3.9 1011.2 0.0 -163.0 2.3 178.7 -43.73 -279.26∗ -0.47 74.28∗ -7.63 -106.35∗∗∗

2008 -12.1 1071.0 -0.3 -186.4 -1.3 180.0 29.80 -406.20∗∗ 1.24∗ 144.97 10.06 -149.65∗∗

2009 15.6 980.6 0.1 -90.8 4.9 111.0 -19.59 -298.88 -0.19 41.76 0.21 -61.96∗

2010 28.8 1279.4 0.4 -111.4 9.4 143.7 60.99 -635.74∗ 1.02 58.80∗ -15.13 -85.95∗

2011 6.2 1764.7 -0.1 -143.4 10.4 183.5 19.82 -313.39 0.26 52.75 15.90 -71.73
2012 13.5 864.5 0.0 -122.6 3.8 140.2 -89.85∗∗ 59.02 -1.25 -4.61 -5.32 -49.92
2013 19.6 811.9 0.2 -118.5 7.2 145.2 -25.11 -305.34∗∗ -1.29 9.17 1.62 -40.78
2014 25.5 858.4 0.3 -131.9 11.3 179.5 -36.73 -154.60 -0.81 70.44∗∗ -11.87 -92.18∗∗

2015 -8.6 803.4 -0.2 -154.0 4.5 161.2 -5.02 -405.08∗∗∗ 0.43 119.59∗∗∗ -6.44 -143.34∗∗∗

2016 32.7 756.7 -0.1 -145.8 14.2 214.9 -47.87 -185.71∗ 0.24 91.71∗∗∗ -17.73∗∗ -185.39∗∗∗

2017 22.6 678.1 -0.1 -155.8 8.5 194.3 -19.72 -123.96 -0.59 68.61∗ 8.17 -83.64∗∗∗

2018 9.7 1027.6 0.1 -197.5 7.9 232.5 9.52 -197.15 0.77 82.91 13.65 -96.30
2019 14.0 662.5 0.1 -158.1 2.6 171.0 -18.03 -199.89∗∗∗ 0.14 102.56∗∗∗ -4.87 -121.63∗∗∗

2020 -27.1 563.1 -0.1 -180.1 -22.9 129.0 30.80 -120.59 -0.94 134.09∗∗∗ 47.06∗∗∗ -27.03

This table displays averages of intraday order flow distribution statistics for SPX ATM call (Panel
A) and put options (Panel B). We divide each trading day into seventy-eight equal intervals, each
covering five minutes, and we compute the order flow (buy minus sell orders) within each interval.
Panels A1 and B1 display the daily mean, standard deviation (Std), skewness, first quartile (Q25 ),
median (Q50 ), and third quartile (Q75 ) of the five-minute order flow distribution. Panels A2 and
B2 display differences in these average statistics (mean, std, skewness, and quantiles) between low
and high liquidity days, classified annually into low liquidity (top 10%) and high liquidity (bottom
10%) days based on ∆ES values. Significance levels are denoted by *, **, and ***, representing
the 10%, 5%, and 1% levels, respectively.
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Table 2: Descriptive Statistics of ∆ ES, log(SD), Volume and Order Imbalance.
SPX Options

Panel A: Calls

∆ ES log(volume)

0 1-6 7-13 14-20 21-27 28-34 35-41 42-48 0 1-6 7-13 14-20 21-27 28-34 35-41 42-48

Mean -0.16 -0.24 -0.10 -0.18 -0.19 -0.16 -0.10 -0.26 9.07 8.62 8.77 8.40 8.21 8.36 7.86 7.62
Std 798.58 996.08 275.24 206.24 167.58 173.54 153.62 162.16 1.14 1.59 1.03 1.25 1.38 1.58 1.92 1.98
Skewness 0.20 -0.33 -0.27 0.07 0.04 -0.28 -0.09 -0.07 -0.72 -1.18 -0.68 -0.33 -0.15 -0.15 -0.06 -0.13
Kurtosis 23.21 404.46 16.94 6.15 3.77 12.80 5.11 8.27 0.82 1.03 1.61 0.31 -0.35 -0.54 -1.08 -1.09
ρ -0.46 -0.49 -0.44 -0.45 -0.40 -0.46 -0.43 -0.48 0.21 0.56 0.42 0.53 0.56 0.58 0.64 0.60

N 1038 2990 2899 2797 2735 2596 2362 2165 1038 2990 2899 2797 2735 2596 2362 2165

log(SD) |OI|
0 1-6 7-13 14-20 21-27 28-34 35-41 42-48 0 1-6 7-13 14-20 21-27 28-34 35-41 42-48

Mean 4.79 4.89 5.18 5.05 5.00 5.22 4.86 4.70 1.52 1.87 2.24 2.24 2.14 2.93 2.88 2.37
Std 0.85 1.21 0.98 1.14 1.20 1.29 1.63 1.71 2.01 2.95 3.64 3.82 3.80 5.18 5.37 4.35
Skewness -0.42 -0.60 -0.17 -0.19 -0.18 -0.34 -0.22 -0.32 3.02 3.97 5.25 4.86 4.22 3.66 3.43 3.48
Kurtosis 0.51 0.47 0.38 -0.11 -0.32 -0.12 -0.72 -0.74 13.68 24.02 46.83 41.30 24.84 17.15 15.82 16.33
ρ 0.06 0.41 0.32 0.41 0.36 0.41 0.50 0.47 0.03 0.17 0.18 0.23 0.20 0.26 0.27 0.25

N 1038 2990 2899 2797 2735 2596 2362 2165 1038 2990 2899 2797 2735 2596 2362 2165

Panel B: Puts

∆ ES log(volume)

0 1-6 7-13 14-20 21-27 28-34 35-41 42-48 0 1-6 7-13 14-20 21-27 28-34 35-41 42-48

Mean -2.72 -0.19 -0.15 -0.18 -0.14 -0.17 -0.18 -0.12 9.23 8.69 8.78 8.41 8.18 8.27 7.88 7.69
Std 681.15 649.04 251.79 198.32 172.47 149.13 154.74 150.78 1.12 1.54 1.08 1.28 1.40 1.57 1.86 1.92
Skewness -0.29 -0.35 -0.18 -0.05 -0.10 -0.11 0.00 -0.21 -0.82 -1.11 -0.64 -0.20 0.06 0.02 -0.04 -0.04
Kurtosis 7.43 12.52 4.97 12.59 8.74 4.46 18.85 5.26 1.03 1.00 1.62 0.17 -0.45 -0.57 -0.94 -0.98
ρ -0.48 -0.47 -0.43 -0.46 -0.43 -0.44 -0.45 -0.44 0.32 0.56 0.41 0.55 0.61 0.66 0.67 0.63

N 1038 2960 2903 2791 2738 2618 2374 2216 1038 2960 2903 2791 2738 2618 2374 2216

log(SD) |OI|
0 1-6 7-13 14-20 21-27 28-34 35-41 42-48 0 1-6 7-13 14-20 21-27 28-34 35-41 42-48

Mean 4.88 4.94 5.19 5.06 4.97 5.11 4.82 4.67 1.78 1.91 2.22 2.20 2.20 2.77 2.47 2.43
Std 0.84 1.16 0.98 1.12 1.21 1.30 1.55 1.68 2.17 3.15 3.84 4.67 4.59 6.00 5.20 5.79
Skewness -0.73 -0.60 -0.20 -0.12 -0.12 -0.15 -0.31 -0.19 2.34 5.77 5.95 7.60 5.90 5.88 5.35 6.21
Kurtosis 1.23 0.60 0.76 0.13 -0.27 -0.07 -0.58 -0.73 7.35 67.03 53.34 85.58 52.17 50.96 42.34 56.23
ρ 0.12 0.37 0.33 0.42 0.45 0.50 0.55 0.54 0.16 0.16 0.21 0.34 0.24 0.33 0.37 0.26

N 1038 2960 2903 2791 2738 2618 2374 2216 1038 2960 2903 2791 2738 2618 2374 2216

The table reports the time-series mean, standard deviation, skewness, excess kurtosis, AR(1) co-
efficient (ρ), and total number of observations (N) of daily difference in effective spread (∆ES),
logarithm of daily volume (log(volume)), logarithm of volatility of order-flow (log(SD)), and ab-
solute value of daily order flow (|OI|) across option matuturity buckets. Panel A presents the
results for call options while Panel B presents the results for put options. Absolute value of daily
order-flow is divided by 1000 while ∆ES is in basis points.
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Table 4: Panel Regressions of ∆ESs,t on log(SDs,t) for Individual Stock Options

Panel A: Calls Panel B: Puts

0-24 25-48 0-24 25-48

log(SD)s,t 0.008∗∗∗ 0.004∗∗∗ 0.007∗∗∗ 0.004∗∗∗

(46.58) (48.97) (39.04) (41.77)

log(volume)s,t -0.005∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.003∗∗∗

(-29.22) (-44.01) (-21.55) (-35.42)

|OI|s,t -0.003∗∗∗ 0.005∗∗∗ -0.003∗∗∗ 0.003∗∗∗

(-4.75) (7.78) (-3.99) (5.44)

Returns,t -0.209∗∗∗ -0.056∗∗∗ 0.098∗∗∗ 0.038∗∗∗

(-38.34) (-24.20) (17.27) (15.80)

IVs,t 0.012∗∗∗ -0.008∗∗∗ 0.014∗∗∗ -0.006∗∗∗

(19.08) (-18.48) (22.17) (-14.16)

Stock FE Yes Yes Yes Yes
Time Controls Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes

Adj. R2 0.431 0.389 0.446 0.356

This table presents the results of panel regressions of ∆ESs,t on log(SDs,t) for ATM call options
(Panel A) and put options (Panel B) written on the stocks that are the constituents of the S&P500.
The results are presented for two maturity buckets: 0-24 days to maturity and 25-48 days to
maturity. ∆ESs,t is the daily change in the effective spread on day t for options on stock s.
log(SDs,t) is the logarithm of the standard deviation of the intraday order flow distribution on day
t for options on stock s, log(volumes,t) is the logarithm of the daily options volume, and |OIs,t|
is the absolute value of the daily order imbalance (scaled by 10,000). Returns,t is the return of
underlying stock on day t, and IVs,t is the average implied volatility of the options on stock s on
day t. Other controls include firm size, stock volume, one-day and two-day lags of ∆ESs,t, and
absolute values of the average delta, vega and gamma of the options on day t. Time controls include
day-of-the-week, month-of-year, and year dummies. Standard errors are clustered at the day and
stock level. The corresponding t-statistics are presented in parentheses. *, **, and *** denote
significance at the 10%, 5%, and 1% level.
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Table 5: Intraday Change in Spread After a Trade

Regression of ∆Spreadi,j,τ
Panel A: Call Options

Specification 1 Specification 2 Specification 3

Ticker N obs α Di,j,τ−1 α Di,j,τ−1 log(SD0,τ ) log(SD0,τ )× α Di,j,τ−1 log(SDi,0,τ ) log(SDi,0,τ )×
Di,j,τ−1 Di,j,τ−1

AXP 3,326,546 -0.22∗∗∗ 1.15∗∗∗ -0.63∗∗∗ 1.52∗ 0.15∗∗∗ -0.13 -0.16∗ 1.09∗∗ -0.01 0
BA 25,018,432 -0.14∗∗ 2.03∗∗ -0.26∗∗∗ 2.12∗ 0.05∗∗∗ -0.03 -0.04 2.08∗ -0.06∗ 0.01
CAT 9,699,156 -0.15∗∗∗ 0.89∗∗∗ -0.40∗∗∗ 1.80∗∗ 0.09∗∗∗ -0.32. -0.10∗∗ 0.84∗∗∗ -0.01 0
DIS 16,290,675 -0.14∗∗∗ 1.77∗∗ -0.41∗∗∗ 2.11∗ 0.10∗∗∗ -0.12 -0.09∗∗∗ 1.78∗ -0.02 0
DOW 2,035,970 -0.32∗∗∗ 1.38∗∗∗ -0.65∗∗∗ 2.32∗∗ 0.11∗∗ -0.28∗ -0.30∗∗∗ 1.30∗∗∗ 0 0
HD 7,114,453 -0.18∗∗∗ 1.58∗∗ -0.57∗∗∗ 2.97. 0.15∗∗∗ -0.48 -0.15∗ 1.82∗ -0.02 0
IBM 9,188,497 -0.13∗∗∗ 1.03∗∗∗ -0.33∗∗∗ 1.21∗ 0.07∗∗ -0.06 -0.07. 0.88∗∗∗ -0.02∗ 0
INTC 15,281,754 -0.13∗∗∗ 0.85∗∗∗ -0.42∗∗∗ 1.40∗∗ 0.08∗∗∗ -0.14 -0.13∗∗∗ 0.87∗∗∗ 0 0
JNJ 4,250,672 -0.19∗∗∗ 1.57∗∗∗ -0.65∗∗∗ 2.29∗ 0.17∗∗∗ -0.25 -0.20∗∗ 1.83∗∗ 0.01 0
JPM 15,712,097 -0.10∗∗∗ 0.69∗∗∗ -0.28∗∗∗ 1.31∗ 0.05∗∗∗ -0.17 -0.05∗ 0.63∗∗∗ -0.01. 0
KO 4,091,749 -0.22∗∗∗ 1.59∗∗∗ -0.62∗∗∗ 2.31∗ 0.13∗∗∗ -0.22 -0.23∗∗ 2.07∗∗ 0 0
MMM 1,972,024 -0.29∗∗∗ 1.58∗∗∗ -0.77∗∗∗ 2.74∗ 0.21∗∗∗ -0.43 -0.32∗ 1.93∗∗ 0.01 -0.01
MRK 2,991,683 -0.22∗∗∗ 1.86∗∗∗ -0.66∗∗∗ 3.13∗ 0.14∗∗∗ -0.37 -0.36. 2.40∗∗ 0.01 0
MSFT 41,399,546 -0.07∗∗∗ 1.12∗∗∗ -0.32∗∗∗ 2.05∗ 0.08∗∗∗ -0.27 -0.04. 1.19∗∗ -0.01∗ 0
PG 3,051,203 -0.19∗∗∗ 1.14∗∗∗ -0.63∗∗∗ 1.56. 0.15∗∗∗ -0.14 -0.17. 1.16∗∗ 0.01 0
WMT 10,666,867 -0.15∗∗∗ 1.42∗ -0.45∗∗∗ 2.24. 0.10∗∗∗ -0.27 -0.08. 1.54∗ -0.02 0

Panel B: Put Options

Specification 1 Specification 2 Specification 3

Ticker N obs α Di,j,τ−1 α Di,j,τ−1 log(SD0,τ ) log(SD0,τ )× α Di,j,τ−1 log(SDi,0,τ ) log(SDi,0,τ )×
Di,j,τ−1 Di,j,τ−1

AXP 2,420,146 -0.23∗∗∗ 1.14∗∗∗ -0.60∗∗∗ 1.32∗ 0.14∗∗∗ -0.07 -0.13∗ 0.88∗∗∗ -0.02 0
BA 12,972,646 -0.15∗∗∗ 2.08∗ -0.33∗∗∗ 2.49∗ 0.07∗∗∗ -0.15 -0.13∗ 2.36∗ -0.02. 0
CAT 7,212,261 -0.15∗∗∗ 0.85∗∗∗ -0.36∗∗∗ 1.19∗∗ 0.07∗∗∗ -0.11 -0.09∗∗∗ 0.71∗∗∗ -0.01 0
DIS 7,507,297 -0.15∗∗∗ 1.80∗ -0.52∗∗∗ 2.46. 0.14∗∗∗ -0.23 -0.11 1.87. -0.02 0
DOW 1,152,225 -0.38∗∗∗ 1.26∗∗∗ -0.83∗∗∗ 1.86∗ 0.17∗∗ -0.2 -0.08 0.85∗∗∗ -0.06 0
HD 4,137,262 -0.18∗∗∗ 1.34∗∗ -0.47∗∗∗ 2.12. 0.11∗∗∗ -0.26 -0.16∗ 1.31∗ 0 0
IBM 7,006,937 -0.13∗∗∗ 1.01∗∗∗ -0.36∗∗∗ 1.27∗ 0.08∗∗∗ -0.09 -0.07. 0.80∗∗∗ -0.02. 0
INTC 8,912,057 -0.14∗∗∗ 0.83∗∗∗ -0.44∗∗∗ 1.09∗∗∗ 0.08∗∗∗ -0.07 -0.12∗∗∗ 0.79∗∗∗ 0.01 0
JNJ 2,382,666 -0.18∗∗∗ 1.28∗∗∗ -0.69∗∗∗ 1.27∗ 0.19∗∗∗ 0 -0.13 1.08∗ 0.01 0
JPM 9,725,906 -0.11∗∗∗ 0.65∗∗∗ -0.25∗∗∗ 1.01∗ 0.04∗∗∗ -0.11 -0.05∗ 0.54∗∗∗ -0.01 0
KO 2,172,693 -0.24∗∗∗ 1.29∗∗∗ -0.63∗∗∗ 1.95∗ 0.14∗∗∗ -0.21 -0.27∗ 1.54∗ 0.02. 0
MMM 1,341,136 -0.31∗∗∗ 1.46∗∗∗ -1.08∗∗∗ 2.17∗∗ 0.34∗∗∗ -0.26 -0.19∗ 1.18∗∗∗ -0.02 0
MRK 1,657,527 -0.21∗∗∗ 1.55∗∗∗ -0.72∗∗∗ 2.07. 0.19∗∗∗ -0.15 -0.25. 1.27∗∗∗ 0.01 0
MSFT 18,485,005 -0.07∗∗∗ 1.08∗∗∗ -0.38∗∗∗ 1.82∗ 0.10∗∗∗ -0.22 -0.07. 1.14∗∗ 0 0
PG 2,070,349 -0.20∗∗∗ 1.01∗∗∗ -0.64∗∗∗ 1.10. 0.16∗∗∗ -0.04 -0.08 0.68∗∗ -0.01 0
WMT 5,080,495 -0.16∗∗∗ 1.06∗∗ -0.53∗∗∗ 1.51. 0.13∗∗∗ -0.15 -0.11 0.93∗ 0 0

The table presents the results of panel regressions of the changes in spread after each trade across
exchanges. The dependent variable, ∆Spreadi,j,τ , measures the change in the quoted spread for
option j in exchange i from trade τ − 1 to the next trade τ . The change in spread is regressed on
the following variables and their interactions: a constant (coefficient α), a dummy variable Di,j,τ−1,
which is equal to one if the trade of option j at time τ − 1 was executed on exchange i, and the
variables log(SD0,τ ) and log(SDi,0,τ ) which measure the volatility of the order flow from the start
of the day up to trade τ across all exchanges or only for exchange i, respectively. The regressions
are computed separately for each ticker and for calls (Panel A) and put options (Panel B). All
regressions include day fixed effect, and standard errors are clustered at the day and exchange
level. Coefficients are multiplied by 100.
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Table 6: Panel Regressions of Exchange-Specific ∆ESi,s,t on log(SD)

Daily regressions of ∆ESi,s,t

Panel A: ATM Calls 0-48 Panel B: ATM Puts 0-48

(1) (2) (3) (1) (2) (3)

log(SDs,t) 0.0016∗∗∗ 0.0015∗∗∗ 0.0016∗∗∗ 0.0017∗∗∗ 0.0016∗∗∗ 0.0017∗∗∗

(10.05) (8.88) (9.75) (9.37) (7.91) (9.74)
log(SDs,i,t) 0.0002∗ 0.0002∗∗ 0.0002∗ 0.0003∗∗∗ 0.0002∗∗∗ 0.0003∗∗∗

(2.31) (2.62) (2.25) (4.03) (3.95) (4.01)
log(Volumei,s,t) 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002

(1.06) (1.23) (1.2) (1.13) (0.87) (0.94)
|OI|s,t -0.0011∗ -0.0008 -0.0011∗ -0.0018∗ -0.0018∗ -0.0018∗

(-2.23) (-1.46) (-2.22) (-2.11) (-2.40) (-2.10)
Stock Returns,t -0.1476∗∗∗ -0.0790∗ -0.1476∗∗∗ 0.0288 0.0645∗ 0.0288

(-3.66) (-2.36) (-3.66) (1.21) (2.43) (1.2)
IVs,t 0.0027 0.0003 0.0027 0.0044 0.0012 0.0044

(0.85) (0.1) (0.84) (1.63) (0.37) (1.63)
Stock FE Yes Yes Yes Yes Yes Yes
Day FE No Yes No No Yes No
Exchange FE No No Yes No No Yes
Time Controls Yes No Yes Yes No Yes
Other Controls Yes Yes Yes Yes Yes Yes

Adj. R2 0.06 0.12 0.06 0.04 0.09 0.04

This table presents the results of panel regressions of exchange-specific ∆ESi,s,t for ATM call and
put options with one-month to maturity written on the constituents of the Dow Jones analyzed
in Table 5. ∆ESi,s,t is the daily change in the effective spread on day t for stock s in exchange
i, log(SDs,t) is the logarithm of the standard deviation of the intraday order flow distribution on
day t for stock s, and log(SDs,i,t) is the logarithm of the order flow volatility using only trades
recorded in exchange i. log(V olumei,s,t) is the logarithm of the daily options volume for stock s
in exchange i, |OIs,t| is the absolute value of the daily order imbalance (scaled by 10,000 ), Stock
Returns,t is the return of underlying stock on day t, and IVs,t is the average implied volatility of
options on stock s on day t. Other controls include firm size, stock volume, and absolute value
of the average delta, vega and gamma of the options on stock s on day t. Time controls include
day-of-the-week, month-of-year, and year dummies. Standard errors are clustered at the day, stock
and exchange level. The corresponding t-statistics are presented in parentheses. *, **, and ***
denote significance at the 10%, 5%, and 1% level.
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Table 7: Market-Maker Inventory Variables

Panel A: SPX Calls

Days to Maturity 0 1-6 7-13 14-20 21-27 28-34 35-41 42-48

log(SD)t 0.02∗∗∗ 0.011∗∗∗ 0.006∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.003∗∗∗ 0.002∗∗∗

(4.33) (5.51) (5.43) (4.88) (6.92) (8.36) (5.94) (4.87)
log(volume)t 0.001 -0.0001 0.003∗∗ 0.002∗∗ 0.001 -0.002∗∗∗ -0.0001 0.001∗

(0.3) (-0.03) (2.3) (2.28) (1.55) (-3.05) (-0.3) (1.68)
|Order Imbalancet| -0.008 0.009∗ -0.001 -0.001 0.002 0.0001 0.002 0.001

(-0.58) (1.9) (-0.31) (-0.47) (1.19) (0.27) (1.42) (0.94)
|MM NetInventoryt−1| -0.026∗∗ -0.008 -0.001 -0.001 -0.001 -0.001 -0.001∗ -0.001

(-2.01) (-1.36) (-1) (-0.99) (-1.55) (-0.81) (-1.87) (-1.26)
|MM GammaInventoryt−1| 1.026∗ 0.575∗ 0.061 0.0001 0.164 0.146 0.327∗∗∗ 0.257

(1.71) (1.77) (0.57) (0.0001) (1.33) (1.26) (2.7) (1.4)
RM,t -1.921∗∗∗ 0.179 0.02 0.0001 0.009 -0.129 0.02 0.025

(-3.97) (1.07) (0.19) (0.0001) (0.23) (-1.26) (0.5) (0.6)
VIXt -0.084∗∗ -0.094∗∗∗ -0.04∗∗∗ -0.017∗∗ -0.014∗∗ -0.015∗ -0.007 -0.004

(-2.13) (-4.89) (-3.9) (-2.48) (-2.25) (-1.78) (-0.94) (-0.47)
Time Controls Yes Yes Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes Yes Yes Yes
N 996 2642 2838 2747 2685 2542 2307 2111
Adj. R2 0.471 0.512 0.384 0.358 0.316 0.362 0.33 0.349

Panel B: SPX Puts

Days to Maturity 0 1-6 7-13 14-20 21-27 28-34 35-41 42-48

log(SD)t 0.024∗∗∗ 0.014∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.003∗∗∗

(5.48) (5.98) (5.83) (6.03) (5.56) (4.31) (3.72) (5.4)
log(volume)t -0.011∗∗∗ -0.0001 0.002∗ 0.002∗∗ 0.001∗ 0.001 0.0001 0.0001

(-2.6) (-0.18) (1.82) (2.34) (1.85) (1.22) (0.99) (0.23)
|Order Imbalancet| -0.009 0.006 0.002 -0.0001 0.001 0.002∗ 0.002 0.001

(-0.84) (1.43) (0.87) (-0.11) (0.57) (1.67) (1.49) (0.66)
|MM NetInventoryt−1| -0.021 -0.006 -0.001 -0.001 -0.0001 -0.001 -0.001∗∗ -0.001

(-1.52) (-1.31) (-0.64) (-1.28) (-0.01) (-1.07) (-2.29) (-1.37)
|MM GammaInventoryt−1| 0.852 0.342 0.05 0.079 0.06 0.024 0.255∗∗ 0.252∗

(1.52) (1.26) (0.33) (0.83) (0.7) (0.23) (2) (1.75)
RM,t -1.921∗∗∗ 0.179 0.02 0.0001 0.009 -0.129 0.02 0.025

(-3.97) (1.07) (0.19) (0.0001) (0.23) (-1.26) (0.5) (0.6)
VIXt -0.084∗∗ -0.094∗∗∗ -0.04∗∗∗ -0.017∗∗ -0.014∗∗ -0.015∗ -0.007 -0.004

(-2.13) (-4.89) (-3.9) (-2.48) (-2.25) (-1.78) (-0.94) (-0.47)
Time Controls Yes Yes Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes Yes Yes Yes
N 990 2619 2824 2727 2679 2554 2307 2151
Adj. R2 0.449 0.494 0.342 0.347 0.327 0.302 0.316 0.326

This table presents time-series regressions of ∆ESt on log(SDt) and market-maker inventory vari-
ables, calculated using the CBOE Open-Close database, for SPX ATM call and put options across
different maturity buckets. |Order Imbalancet| is the absolute value of the difference between non-
market maker buy and sell orders (divided by 10,000), |MM NetInventory t−1| is the absolute value
of the net market-maker inventory position on day t − 1, and |MM GammaInventory t−1| is the
absolute value of the market-maker inventory position scaled by gamma on day t − 1. The other
variables are analogous to those analyzed in the baseline regression in Table 3. Standard errors
are computed using Newey-West with the optimal lag suggested by Andrews and Monahan (1992),
and corresponding t-statistics are presented in parentheses. *, **, and *** denote significance at
the 10%, 5%, and 1% level. 49
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