

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/56270

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/56270

Manual and Automatic Authoring for Adaptive Hypermedia

By

Jonathan Gregory Kenneth Foss

A thesis submitted in partial fulfilment of the requirements for
the degree of

Doctor of Philosophy in Computer Science

Supervisor: Dr A. I. Cristea

University of Warwick, Department of Computer Science

September 2012

I

Contents

List of Figures .. XI

List of Tables .. XV

Acknowledgements ... XVII

Declarations ... XVIII

Abstract ... XXI

List of Abbreviations and Acronyms .. XXII

1 Introduction ... 1

1.1 Objectives .. 1

1.2 Research Questions ... 2

1.3 Methodology ... 3

1.4 Thesis Outline .. 4

2 Related Research .. 6

2.1 Adaptive Educational Hypermedia .. 6

2.1.1 Techniques within Adaptive Hypermedia .. 6

2.1.2 Adaptive Navigation Techniques ... 6

2.1.3 Adaptive Presentation Techniques .. 7

2.1.4 Content Adaptation Techniques .. 7

2.2 Frameworks for Adaptive Hypermedia ... 7

2.2.1 AHAM ... 7

II

2.2.2 Generic Adaptivity Model (GAM) ... 8

2.2.3 Munich Reference Model... 9

2.2.4 LAOS Model .. 9

2.2.5 Concept Adaptation Model (CAM)... 12

2.3 Authoring Systems for Adaptive Hypermedia ... 12

2.3.1 Interbook .. 12

2.3.2 AHA! ... 13

2.4 GRAPPLE .. 13

2.5 My Online Teacher .. 13

2.5.1 My Online Teacher – MOT1.0 (MOT++) ... 14

2.5.2 MOT2.0 ... 17

2.6 Adaptation Strategies in LAG .. 18

2.6.1 LAG Syntax .. 18

2.6.2 Example Strategies ... 18

2.6.3 Reusing Strategies .. 21

2.6.4 Other ‘Custom’ Strategies .. 21

2.7 Content Authoring Systems ... 23

2.8 Visualizations ... 24

2.8.1 Visualization of domain content .. 24

2.8.2 Visualization of adaptation content ... 25

III

2.9 Design Principles for Adaptive Hypermedia Authoring Systems 26

2.9.1 Separation of concerns .. 26

2.9.2 Requirements for an Adaptive Hypermedia Authoring System 26

2.9.3 Description of existing tools with respect to these principles 30

2.10 Conclusion .. 31

3 Analysing and improving basic Adaptive Hypermedia Authoring: Creating

MOT3.0 ... 32

3.1 Overview .. 32

3.2 Requirements for Improving MOT1.0 ... 32

3.3 Usability Improvements .. 34

3.3.1 Layout ... 34

3.3.2 Menus... 36

3.3.3 Visualization ... 38

3.4 Functionality Improvements ... 45

3.4.1 Compatibility with Other Systems and Standards 45

3.5 Evaluations .. 45

3.5.1 Hypotheses for the MOT3.0 comparison to MOT1.0 46

3.5.2 Testing the Hypotheses .. 46

3.6 Updating MOT3.0 based on Evaluation Results .. 51

3.7 Conclusion ... 53

IV

4 Importing Content from Linear Sources .. 54

4.1 Overview .. 54

4.2 Motivation ... 54

4.2.1 Familiar Authoring Tools .. 55

4.3 Requirements to import linear material into an AHAS 57

4.4 Recommendations for creating adaptation from linear material 62

4.5 File Formats ... 64

4.6 Semi-Automatic Authoring .. 65

4.6.1 Pre-import Editing .. 65

4.6.2 Post-import Editing .. 66

4.6.3 Two Use-Cases for Semi-Automatic Authoring 66

4.7 Case Studies for Semi-Automatic Authoring Importers 67

4.7.1 Import Case Study 1: MediaWiki.. 68

4.7.2 Import Case Study 2: Presentation Importer 80

4.8 Future Work: Extending this import principle to other formats 87

4.8.1 Microsoft Word .. 87

4.8.2 LaTeX .. 87

4.8.3 HTML .. 88

4.8.4 Portable Document Format ... 88

4.9 Conclusion ... 89

V

5 Putting it all together: The MOT Toolset ... 90

5.1 Overview .. 90

5.2 Imperatives for Authoring ... 90

5.2.1 Complexity Imperatives ... 90

5.2.2 Support Imperatives ... 91

5.3 The MOT Toolset ... 94

5.3.1 MOT3.0.1 .. 94

5.3.2 PEAL .. 95

5.4 Authoring Imperatives applied to the MOT Toolset 96

5.4.1 MOT3.0.1 .. 96

5.4.2 PEAL .. 102

5.5 Evaluations .. 105

5.5.1 Usage of MOT ... 109

5.5.2 Quantitative Analysis of Submitted Content 111

5.5.3 Qualitative Feedback.. 122

5.5.4 Usage of PEAL ... 123

5.5.5 Discussion ... 128

5.6 Future Work... 130

5.7 Conclusion ... 130

6 From a linear module to an adaptive course ... 132

VI

6.1 Overview .. 132

6.2 Scenarios.. 132

6.2.1 Content Authoring ... 132

6.2.2 Adaptation Authoring .. 133

6.3 Importing the Linear Content in MOT3.0 .. 134

6.3.1 Importing Presentation Slides .. 134

6.3.2 Importing Wikipedia Content... 136

6.3.3 Importing Moodle Content .. 137

6.3.4 Editing and Enriching the imported content...................................... 138

6.4 Creating Adaptation Strategies ... 138

6.4.1 Beginner-Intermediate-Advanced Strategy 138

6.4.2 Visual-Verbal Strategy .. 139

6.5 Combining and Enhancing Linear Input .. 141

6.5.1 Adding adaptive behaviour to linear content 141

6.5.2 Delivering adaptive courses ... 142

6.6 Evaluation and Discussion ... 142

6.7 Conclusions .. 148

7 Increasing flexibility in authoring for adaptation: Iterative development of

MOT3.1 ... 149

7.1 Overview .. 149

VII

7.2 Adaptive Delivery Engine... 149

7.3 Changes from MOT3.0 to MOT3.1 .. 149

7.3.1 MySQL Improvements .. 149

7.3.2 jQuery Frontend ... 150

7.3.3 Multiple labels/weights.. 152

7.3.4 Improved Wiki Importer .. 155

7.3.5 Relatedness Search .. 155

7.4 PEAL2 ... 158

7.4.1 Visual Programming User Interface in PEAL2 160

7.5 Delivering a course .. 161

7.6 Evaluation .. 161

7.6.1 Analysis of Created Content ... 162

7.7 Conclusion ... 172

8 Visual graph-based authoring: GAT ... 174

8.1 Overview .. 174

8.2 Related Research: The GRAPPLE Project ... 174

8.2.1 The Generic Adaptive Learning Environment (GALE) 174

8.2.2 The GRAPPLE Authoring Toolset (GAT) .. 175

8.3 Enhancing the Usability and Functionality of the GRAPPLE Authoring

Toolset .. 185

VIII

8.3.1 Interface Changes .. 185

8.3.2 Course Tool Changes .. 191

8.4 Conclusion ... 196

9 Different authoring paradigms: Comparison between MOT and GAT 198

9.1 Overview .. 198

9.2 Revisiting the Authoring Imperatives .. 198

9.2.1 Functionality Imperatives... 198

9.2.2 Complexity Imperatives ... 201

9.2.3 Support Imperatives ... 202

9.3 Applying the Authoring Imperatives ... 203

9.3.1 Functionality Imperatives... 204

9.3.2 Complexity Imperatives ... 207

9.3.3 Support Imperatives ... 216

9.4 Comparing the roles of the individual tools .. 223

9.5 Comparing the Available Adaptation Techniques 224

9.6 Evaluation of MOT versus GAT .. 227

9.6.1 Hypotheses ... 227

9.6.2 Questionnaire Results and Discussion ... 229

9.7 Conclusions .. 242

10 Integration of authoring approaches: Improving MOT based on GAT ideas ... 243

IX

10.1 Overview .. 243

10.2 Improving the MOT Toolset ... 243

10.3 Requirements... 243

10.3.1 Graphical Relationships .. 244

10.3.2 Multiple Labelling ... 244

10.3.3 Domain Properties ... 245

10.3.4 External Resources ... 245

10.4 Designing the Adaptation Languages .. 245

10.4.1 The LAF XML Format .. 246

10.4.2 Course Storage ... 250

10.4.3 The LAG4 Grammar .. 251

10.4.3.2 Multiple Labels ... 252

10.4.3.3 Domain Properties .. 253

10.5 Implementing My Online Teacher 4 .. 253

10.5.1 Terms Used... 253

10.5.2 Domain Design ... 254

10.5.3 Course Design ... 259

10.6 Evaluations ... 261

10.6.1 Evaluation of MOT4.0 .. 262

10.7 MOT4.01 .. 274

X

10.7.1 Look and Feel ... 274

10.7.2 Tooltips ... 275

10.7.3 Evaluation of MOT4.01 .. 276

10.7.4 Hypotheses ... 277

10.7.5 Example Strategies ... 278

10.7.6 Analysis of Submitted Content... 278

10.7.7 MOT4.01 Questionnaire ... 281

10.8 Conclusions .. 291

11 Conclusions and Future Work .. 293

11.1 Introduction ... 293

11.2 Summary of Evaluation Results ... 293

11.3 Importing Content from Linear Sources .. 296

11.4 Future Research ... 296

11.5 Future Applications .. 297

Appendix A: MOT3.1/PEAL2 versus GAT Questionnaire ... 299

Appendix B: MOT4 versus GAT survey ... 308

Appendix C: MOT4.01 Survey .. 315

References .. 323

XI

List of Figures

Figure 2.1: The five layer LAOS model ... 10

Figure 2.2: A basic domain and equivalent goal map within MOT1.0 16

Figure 3.1: The frame-based layout of MOT1.0 ... 35

Figure 3.2: The Ajax based layout of MOT3.0 .. 36

Figure 3.3: The separate navigation menus in MOT1.0 ... 37

Figure 3.4: The navigation menu in MOT3.0.. 38

Figure 3.5: The two stages of changing a Domain hierarchy in MOT1.0 39

Figure 3.6: The Windows 7 file manager (left) with the MOT3.0 Domain map (right)

 .. 40

Figure 3.7: Copying the 'Hypermedia' topic into the 'See Also' concept within

'Adaptive hypermedia' ... 41

Figure 3.8: Changing weights and labels in MOT1.0 .. 41

Figure 3.9: Labelling within MOT3.0 .. 42

Figure 3.10: Editing an attribute in MOT3.0 .. 43

Figure 3.11: The position of the buttons in MOT3.0.. 50

Figure 3.12: Copying a sub-tree of concepts ... 52

Figure 3.13: Applying the same label to more than one sublesson........................... 52

Figure 4.1: Some sample WikiText from the PHP article [106] 69

Figure 4.2: Imported Domain map in MOT3.0 based on the PHP article [106] 70

Figure 4.3: Extract from the HTML of a Wikipedia contents box – extract based on

PHP article [106] ... 77

XII

Figure 4.4: An imported Wikipedia category page, with labels and weights according

to the importance of the page ... 78

Figure 5.1: Search functionality in MOT3.0 ... 99

Figure 5.2: A domain map hierarchy created in 2008 using MOT1.0 110

Figure 5.3: A domain map hierarchy created in 2009 using MOT3.0 110

Figure 5.4: Sublessons and 'Groups of Sublessons' in MOT3.0 – extract based on

[106] ... 121

Figure 5.5: Editing a LAG Strategy using PEAL ... 125

Figure 6.1: Domain model of an imported presentation ... 135

Figure 6.2: Domain model of the imported Wikipedia PHP article [106] 137

Figure 6.3: Editing a strategy in PEAL ... 139

Figure 6.4: The strategy creation wizard in PEAL ... 140

Figure 6.5: Goal model of the imported presentation... 142

Figure 6.6: Histogram display of the responses to the MOT3.0 questionnaire 144

Figure 7.1: The layout of MOT3.1 .. 151

Figure 7.2: Adding multiple labels in MOT3.1 .. 154

Figure 7.3. Related Concept Search using TF-IDF .. 157

Figure 7.4: Part of an initialization loop in PEAL2 .. 159

Figure 7.5 An implementation loop in PEAL2 .. 159

Figure 7.6: The default implementation section in PEAL2 160

Figure 7.7: Simple code example in PEAL2 .. 160

Figure 7.8: Extract of LAG code in text mode of PEAL2 ... 161

Figure 7.9: Extract of a Beginner-Intermediate-Advanced Strategy in PEAL2 172

XIII

Figure 8.1: The Properties of the Star Concept.. 178

Figure 8.2: Part of the generated pages for the Mercury and Venus concepts 179

Figure 8.3: Part of the Milky Way example domain (the Star concept is currently

selected) ... 181

Figure 8.4: A G-Prerequisite CRT rule as displayed in the CAM tool 182

Figure 8.5: The Welcome screen in GAT .. 187

Figure 8.6: The ‘Manage Models’ screen ... 190

Figure 8.7: A truncated list of concepts and an expanded socket 192

Figure 8.8: The course tool with Rule toolbox ... 192

Figure 8.9: Selecting rules by type in the Course tool ... 194

Figure 8.10: A chain of prerequisites with a related line ... 195

Figure 8.11: Part of a course with too many related lines 196

Figure 9.1: GALE code within the PRT tool .. 222

Figure 9.2: LAG Code within PEAL .. 222

Figure 9.3: A sample question from the questionnaire – with 4 sub-questions 230

Figure 10.1: A domain in MOT4 with the concept ‘The rules’ selected 255

Figure 10.2: Adding a relationship in MOT3.1 ... 256

Figure 10.3: Adding a relationship in MOT4 .. 256

Figure 10.4: Extract of the Milkyway Domain within GAT 257

Figure 10.5: Extract of the Milkyway Domain within MOT4 257

Figure 10.6: Tree layout mode in MOT4 .. 258

Figure 10.7: Creating a domain with custom attributes in MOT4 259

Figure 10.8: A goal map in MOT3.1.. 260

XIV

Figure 10.9: A Course (Goal Model) view in MOT4.. 261

Figure 10.10: Screenshot of the course tool within MOT4 275

Figure 10.11: Screenshot of the course tool within MOT4.01 275

Figure 10.12: Tooltips when adding labels .. 276

Figure 10.13: The tree view of a Domain in MOT4.01 ... 287

Figure 10.14: The tree view of a Course in MOT4.01 .. 287

Figure 10.15: The SUS results shown as a radar graph .. 290

XV

List of Tables

Table 4.2: T-Test results compared with an expected result of 0 86

Table 5.2: Goal Map Production in both MOT1.0 and MOT3.0 120

Table 5.3: Strategies created by 2008 and 2009 Cohorts .. 127

Table 5.4: T-Test statistics for LAG Strategies .. 128

Table 6.1: The MOT3.0 questions and response frequencies 145

Table 6.2: One-Sample t-test Q4a, Q4b, Q4c (Test of mu = 0 vs not = 0) 146

Table 7.1: Domain Production with MOT3.1 (2010) compared with MOT3.0 (2009)

and MOT1.0 (2008) .. 164

Table 7.2: Effect sizes for attribute creation in 2010 ... 165

Table 7.3: Goal Map Analysis in MOT3.1 versus that of MOT3.0 167

Table 7.4: LAG Content when using PEAL2 in 2010 versus PEAL in 2009 170

Table 9.1: Comparing the various features and terminology used in the MOT and

GAT toolsets ... 224

Table 10.1: Domain Production for 2010 compared with 2009 and 2008 265

Table 10.2: Comparison the Goal Maps created using MOT4 (in 2011) to those

created in MOT3.1 (in 2010) .. 267

Table 10.3: A quantitative analysis of the strategies submitted in 2010 and 2011 268

Table 10.4: Effect size of the statistically significant differences within the

quantitative analysis of the created strategies .. 269

Table 10.5: The students 'confidence' score for the tools 272

Table 10.7: Comparing Domain Content submitted by the UK students (using MOT4)

to that submitted by the Romanian students (using MOT4.01) 280

XVI

Table 10.8: Likert-scale responses about consistency ... 282

Table 10.10: The usage of the Domain rearrangement features 285

Table 10.11: The usage of the hierarchical Domain rearrangement features......... 286

Table 10.12: Responses to each part of the SUS study .. 289

XVII

Acknowledgements

Sincere thanks to my family, friends and colleagues who have supported me during

my studies. I am particularly grateful for the support and supervision I have

received from Dr. Alexandra Cristea.

XVIII

Declarations

This research was partially supported by the GRAPPLE IST (FP7 STREP) project IST-

2007-215434 and the University of Warwick’s IATL funded APLIC project.

Some of the material in this thesis is based on papers that I have previously

published (as first author, with a contribution of over 80%) as described below.

The introduction presents my own research questions, whilst Chapter 2 describes

related research.

Chapter 3 documents the creation of MOT3.0 based on the pre-existing MOT1.0

system (which is described as related research), and is loosely based on the

following workshop paper:

Foss, J.G.K. and Cristea, A.I. (2009) Adaptive Hypermedia Content Authoring using

MOT3.0. In: 7th International Workshop on Authoring of Adaptive and Adaptable

Hypermedia, 29 Sep - 02 Oct 2009, Nice, France.

Chapter 4 was created especially for this thesis however it is based on ideas that

were published in my other papers. Parts of the evaluation section were previously

published in:

Foss, J.G.K., Cristea, A.I. and Hendrix, M. (2010) Continuous Use of Authoring for

Adaptive Educational Hypermedia: A Long-term Case Study. In: IEEE International

Conference on Advanced Learning Technologies (ICALT 2010), 5-7 Jul 2010, Sousse,

Tunisia.

http://eprints.dcs.warwick.ac.uk/74/
http://eprints.dcs.warwick.ac.uk/74/
http://eprints.dcs.warwick.ac.uk/407/
http://eprints.dcs.warwick.ac.uk/407/

XIX

Chapter 5 presents an extended version of the following paper:

Foss, J.G.K. and Cristea, A.I. (2010) The Next Generation Authoring Adaptive

Hypermedia: Using and Evaluating the MOT3.0 and PEAL Tools. In: ACM Conference

on Hypertext and Hypermedia (Hypertext 2010), 13-16 Jun 2010, Toronto, Canada.

Chapter 6 presents an extended version of the following paper:

Foss, J.G.K. and Cristea, A.I. (2010) Transforming a Linear Module into an Adaptive

One: Tackling the Challenge. In: 10th IEEE International Conference on Intelligent

Tutoring Systems (ITS 2010), 14-18 Jun 2010, Pittsburgh, USA.

Small parts of the description of MOT3.1/PEAL2 in Chapter 7 and small parts of the

comparison between MOT3.1/PEAL2 and GAT in Chapter 9 appeared on the poster:

Foss, J.G.K. and Cristea, A.I. (2011) Two competing approaches in Authoring

Adaptive Hypermedia: MOT versus GAT. In: Hypertext 2011, June 2011, Eindhoven,

The Netherlands.

The first part of Chapter 8 is based on related research that was carried out by

other members of the GRAPPLE project (as described in the chapter). My

improvements to the course tool and shared interface were based on work that

was previously carried out by Maurice Hendrix (as described in the chapter). The

improvements to the CAM were also documented in the project deliverable:

D3.3c: Final implementation of the CAM definition tool, GRAPPLE project – available

from http://www.grapple-project.org/public-files/deliverables/D3.3c-WP3-

CAMToolFinal-v1.0.pdf/view

http://eprints.dcs.warwick.ac.uk/409/
http://eprints.dcs.warwick.ac.uk/409/
http://eprints.dcs.warwick.ac.uk/1603/
http://eprints.dcs.warwick.ac.uk/1603/

XX

Chapter 11 draws conclusions from the rest of the thesis and has not been

published elsewhere.

This thesis has not been previously submitted in any form for a degree at The

University of Warwick or any other institution.

XXI

Abstract

Adaptive Hypermedia allows online content to be tailored specifically to the needs
of the user. This is particularly valuable in educational systems, where a student
might benefit from a learning experience which only displays (or recommends)
content that they need to know.

Authoring for adaptive systems requires content to be divided into stand-alone
fragments which must then be labelled with sufficient pedagogical metadata.
Authors must also create a pedagogical strategy that selects the appropriate
content depending on (amongst other things) the learner's profile. This authoring
process is time-consuming and unfamiliar to most non-technical authors. Therefore,
to ensure that students (of all ages, ability level and interests) can benefit from
Adaptive Educational Hypermedia, authoring tools need to be usable by a range of
educators. The overall aim of this thesis is therefore to identify the ways that this
authoring process can be simplified.

The research in this thesis describes the changes that were made to the My Online
Teacher (MOT) tool in order to address issues such as functionality and usability.
The thesis also describes usability and functionality changes that were made to the
GRAPPLE Authoring Tool (GAT), which was developed as part of a European FP7
project. These two tools (which utilise different authoring paradigms) were then
used within a usability evaluation, allowing the research to draw a comparison
between the two toolsets.

The thesis also describes how educators can reuse their existing non-adaptive
(linear) material (such as presentations and Wiki articles) by importing content into
an adaptive authoring system.

XXII

List of Abbreviations and Acronyms

ADE Adaptive Delivery Engine

AEH Adaptive Educational Hypermedia

AH Adaptive Hypermedia

AHAS Adaptive Hypermedia Authoring System

AM Adaptation Model

CAF Common Adaptation Format

CAM Concept Adaptation Model

CI Complexity Imperatives

CRT Concept Relationship Type

DM Domain Model

DP Design Principles

GAT GRAPPLE Authoring Toolset

GM Goal Model

GRAPPLE Generic Responsive Adaptive Personalized Learning Environment

LAF Learning Adaptation Format

LAG Layers of Adaptation Granularity

LMS Learning Management System

MOOC Massive Open Online Course

MOT My Online Teacher

PM Presentation Model

PRT Pedagogical Relationship Type

XXIII

RI Requirement for Import

SD Standard Deviation

SI Support Imperatives

UM User Model

URI Uniform Resource Identifier

URL Uniform Resource Locator

VLE Virtual Learning Environment

WYSIWYG What You See Is What You Get

WYSIWYM What You See Is What You Mean

1

 1 Introduction

Adaptive hypermedia [1] (AH) can be used to provide relevant content according to

the profile of the user. To achieve this, the content needs to be authored in such a

way that sections of it can be shown or hidden according to various conditions. This

authoring process is different to the processes that many non-technical content

authors are used to, and so has not become widely popularised amongst a diverse

range of educators. A lack of content is therefore preventing students from being

able to utilise the benefits of adaptive hypermedia [2].

The research in this thesis investigates methods of increasing the usability of

editors for adaptive hypermedia, and describes how the editors can be extended to

allow more flexibility and functionality, thus encouraging a wider demographic of

content authors to create adaptive courses.

1.1 Objectives

The research presented in this thesis aims to create more usable authoring tools for

adaptive hypermedia. The thesis focuses on two case study authoring tools (MOT

[3] and GAT[4]) that employ different authoring paradigms. Through analysis of the

existent authoring tools, the research aims to generate a set of requirements for an

Adaptive Hypermedia Authoring System (AHAS).

The research also investigates ways of extracting content from files that have been

generated from more widely used (non-adaptive) authoring tools.

2

1.2 Research Questions

The overall research question is:

“How can the authoring process for adaptive hypermedia be simplified?”

This question is investigated from two angles

 Can more graphical user interfaces assist the author with…

o structuring content?

o labelling content?

o defining adaptation strategies?

 Can automated importers assist the author?

Based on these, the following sub-questions were also created:

1. Can visual programming methods assist authors with describing adaptation?

2. What role does the granularity of code fragments have in simplifying the

authoring process?

3. Can visual methods assist the author in separating content into a useful

Domain structure?

a. How does the ability to visualize many types of relationships (in a

graph structure) affect usability?

b. Are multiple relationship types perceived as useful?

c. Do users use more (non-parent) relationships when shown in a graph

structure?

4. Can visual methods assist the author in applying pedagogical metadata?

a. Are multiple labels/weights useful?

3

b. Do authors prefer to separate pedagogical metadata from the

adaptation strategy or do they prefer to label content using

pedagogical rules?

5. Can content creation for AH be simplified through the use of (semi-)

automatic import scripts from more traditional/linear (hyper-) media?

a. Are such imports semantically/pedagogically valid – or is more

complex or human processing required?

b. Do authors perceive importing content from wikis as useful?

c. Do authors perceive importing content from presentation slides as

useful?

6. How does the granularity of static content affect ease of authoring?

a. What granularity of static content do authors prefer?

b. Do current tools facilitate the creation of static content at a

granularity that is adequate for both author and learner?

7. Should content be authored with the domain tool or should it use external

resources?

a. Do users prefer editing content within the authoring tool to using

their own separate tools, and uploading the content separately?

b. Do such external resources automatically lead to a larger granularity

of content?

1.3 Methodology

This thesis attempts to answer these questions through continual refinement of a

number of authoring tools. During the development of the tools, a spiral model [5]

of software development was employed. This was an iterative process, allowing for

requirements to be gathered from adaptive hypermedia authors. Each prototype

piece of software was used in a long-term usage evaluation, during which time the

participants were invited to give feedback. New features designed to address the

feedback were integrated into the following prototype.

4

As well as qualitative feedback, each evaluation of the MOT toolset collected usage

data. These data were statistically analysed for their complexity, and where

appropriate the statistical significance of the data was calculated using a t-test in

SPSS[6] as described by Field[7], [8].

Some of the evaluations involved gathering feedback through questionnaires. In

many cases, the questions involved Likert-type scales [9], [10]. This data was also

analysed using a t-test, however in the case of categorical data, a χ2 test, as

described by Cairns and Cox [11] was also used.

The research also creates a list of imperatives, which are described in the context of

background research, and are later refined based on observations and feedback

from evaluations.

1.4 Thesis Outline

The rest of this thesis is structured as follows: Chapter 2 presents the related

research and describes the initial set of design principles for an adaptive

hypermedia authoring system. Chapter 3 describes how these design principles

were used to update the usability and functionality of an existing authoring tool for

static content. Chapter 4 describes methods of automatically extracting content

from linear material for use within an adaptive course. Chapter 5 describes the

creation of a pedagogical strategy tool and presents a long-term usability

evaluation of the authoring tools. Chapter 6 describes a scenario that explains how

real-world teachers could utilize the authoring tools. Chapter 7 describes the

updates that were made to the tools in response to user feedback. Chapter 8

5

describes a different authoring paradigm, as implemented within a European FP7

project. Chapter 9 describes the differences between these two authoring

paradigms, and presents a comparison evaluation. Chapter 10 then describes the

creation of an updated authoring tool based on the results of the comparison

evaluation. Finally, Chapter 11 presents conclusions and recommendations for

future work.

6

 2 Related Research

 2.1 Adaptive Educational Hypermedia

Adaptive hypermedia [1], [12], [13] allows content to be personalised according to

the needs of the user. One of the primary focuses for adaptive hypermedia is in an

educational context [14], [15], allowing content to be personalised to the needs of

the learner. For instance if ‘Page B’ requires knowledge of ‘Page A’ (i.e., ‘Page A’ is

a prerequisite of ‘Page B’) an adaptive educational hypermedia (AEH) system can

provide guidance to the user by recommending that they visit ‘Page A’ before

visiting ‘Page B’ [16]. Similarly, AEH can cater for a variety of learning styles [17–19],

allowing different users to receive educational content in a way that they are most

likely to respond to.

 2.1.1 Techniques within Adaptive Hypermedia

Brusilovsky [12], [13] defined a taxonomy of techniques that can be used within

adaptive systems. More recently, this taxonomy has been updated by Knutov et al.

[20] to particularly focus on the expansion of the presentation and the content

adaptation techniques. The taxonomies describe various techniques within three

broad areas:

 2.1.2 Adaptive Navigation Techniques

Adaptive navigation techniques involve ‘link-level adaptation’ [21], and can guide

the user’s browsing by recommending pages. This can be achieved by changing the

colour of the link [22], [23] or the colour of a bullet point next to the link, such as

7

the traffic light system used by ELM-ART[24]. Similarly, techniques such as link

hiding (making the link look like normal text) can be used [22].

 2.1.3 Adaptive Presentation Techniques

Adaptive presentation techniques involve ‘content-level adaptation’ [21] and can be

used to change the way that content is displayed to the user. Typically this involves

either hiding or showing different fragments of content (such as in AHA! [25]), or

even modifying the system’s entire layout (as demonstrated by GALE [26]).

 2.1.4 Content Adaptation Techniques

Whereas Brusilovsky’s updated taxonomy [13] considers content adaptation as part

of the adaptive presentation techniques, Knutov’s taxonomy [20] makes a clearer

distinction between the two techniques. Like adaptive presentation, content

adaptation is also classed as ‘content-level adaptation’, and specifically involves the

hiding/removing of fragments (such as that made available by Interbook [27] or

AHA! [28]) or the altering of fragments (such as that available in GALE [26]).

 2.2 Frameworks for Adaptive Hypermedia

To simplify the design of adaptive hypermedia systems, various frameworks have

been developed.

 2.2.1 AHAM

The AHAM model [29], [30] extends the Dexter hypermedia model [31] to describe

adaptation. The Dexter model contains a ‘Runtime layer’, a ‘Storage layer’ and a

‘Within Component layer’. AHAM extends this principle through the definition of

the following three models.

8

 The ‘domain model’ is used to store fragments of information, and describes

how these fragments are structured. Specifically, the domain model

contains ‘concepts’ (representing the subject), with each concept containing

a number of attributes.

 The ‘user model’ stores information about the user, by defining an overlay

model. This means that the user model can separately address each

concept, thereby storing properties that describe the user’s knowledge of

the concept. Moreover, the user model can store other properties that link

the user to the concept, such as a property that denotes the concept has

been read.

 The ‘adaptation model’ [32] (previously known as the ‘teaching model’[30])

describes how the relationships between the concepts (from the domain

model) should be interpreted to form pedagogical relationships that interact

with the user model and can therefore be used to guide the user around the

course.

 2.2.2 Generic Adaptivity Model (GAM)

GAM [33] was created to provide a more generic abstraction of AHAM. Specifically,

it removes the dependence on hypermedia and expresses the process of adaptation

as a state-machine. The model consists of a ‘domain model’, ‘adaptation model’ and

‘user model’, which are all similar to that used by AHAM. One of the main

differences between GAM and AHAM is that since GAM is not specifically used

within hypertext, the structure of the domain is not specified in terms of concepts.

Moreover, the domain model only specifies the usage of attributes, and leaves the

9

actual structure of the domain model to the designer of the system. Similarly, GAM

introduces an ‘interface model’ which defines the possible events that can be

triggered by the user, and how such events might affect the adaptation model.

 2.2.3 Munich Reference Model

The Munich Reference Model [34] uses UML to specify three separate meta-

models; the ‘domain meta-model’, the ‘adaptation meta-model’, and the ‘user

meta-model’. Like AHAM, the Munich model’s meta-models all occur within the

‘Storage Layer’ of the Dexter hypermedia model. Each model performs a similar

role to its namesake from AHAM, yet the Munich model’s specification focuses on a

more formal object-oriented approach.

 2.2.4 LAOS Model

The LAOS model [35] is based around the AHAM model, and consists of five

separate layers. It is designed to reduce the complexity of the authoring process by

allowing the author to focus their attention on the design of each individual layer,

rather than being concerned with authoring the entire content and adaptation

specification in one process. LAOS therefore adheres to the ‘Separation of

Concerns’ principle, described in Section 2.9.1 .

Figure 2.1 (previously published in [35]) shows the relationship between the five

models of the LAOS model.

10

Figure 2.1: The five layer LAOS model

A description of each individual layer is provided below.

 Domain model (DM): Similar to the domain model in AHAM, the Domain

layer contains the information content in the form of concepts and

attributes. The domain model also defines how the information is structured

(but contains no pedagogical information). Although the domain model

stores relationships that define the structure of the content, the domain

model does not define the order in which the content should be studied

(unlike the domain model in AHAM). In the implementations of the LAOS

domain model within MOT, an example of a domain model concept would

11

be a topic such as ‘Computer’, whilst an attribute could be ‘introduction’

containing some hypertext introducing the topic.

 Goal and Constraints model (GM): The goal model references concept

attributes within the domain model so that pedagogical metadata can be

defined about each concept. The goal model also stores information about

the order and structure of the content. This allows different authors to

produce goal maps that use the same domain but order/structure the

content in a different way. In the implementations of the LAOS goal model

within MOT, authors can add labels and weights to sublessons to represent

when the corresponding content should be delivered. For instance, the

sublesson corresponding to the ‘introduction’ domain attribute could be

labelled ‘beginner’ so that it can be delivered to beginner users (see Section

2.6.2).

 User model (UM): As with AHAM, the user model contains an overlay of the

goal model, therefore allowing the storage of information that relates the

user to each individual concept. For instance, an implementation of LAOS

would be able to store a user’s characteristics to label the user as ‘beginner’.

 Adaptation model (AM): As with AHAM, the adaptation model contains the

code that determines how the course will adapt to the needs of the user.

Within LAOS, the adaptation is usually specified in the form of a LAG

strategy[36].

 Presentation model (PM): The presentation model contains information

about how the content is delivered, allowing the content to be assembled

12

into a form that can be interpreted by the browser (usually using HTML). In

more recent implementations (described in Chapter 10), the presentation

model has also been used to adaptively change the screen layout.

 2.2.5 Concept Adaptation Model (CAM)

The Concept Adaptation Model (CAM) [37] was developed as part of the GRAPPLE

project [38], and inherits features from both the AHAM and LAOS models.

Adaptation is specified using Concept Relationship Types (CRTs). Like both AHAM

and LAOS, there is a domain model and a user model. However, rather than

specifying adaptation within a single layer, CAM allows adaptation to be spread

between multiple layers. The implementation of the CAM within the GRAPPLE

project is described in Chapter 8 .

 2.3 Authoring Systems for Adaptive Hypermedia

A number of authoring systems have been developed for adaptive hypermedia.

 2.3.1 Interbook

Interbook [27] allows content to be authored based on a Microsoft Word [39] file.

The domain concepts are automatically identified according to the formatted

headings within the document. However, the author must apply a special

annotation (a comment in the Word file), to specify related and background

concepts (pre-requisites). The document is then converted to an HTML file, whilst

the annotations are used to create adaptation rules that are generated using the

LISP programming language. The author can also use LISP to specify extra

adaptation rules. However, this means that beginner users (non-programmers who

cannot use LISP) may have difficulty creating complex adaptation.

13

 2.3.2 AHA!

AHA! [23], [32] follows the AHAM [29], [30] adaptation framework, and allows

adaptation to be defined using a graphical tool. Content comes in the form of

(X)HTML pages and fragments which can be created using any (X)HTML authoring

tool. Content is associated with concepts, which are connected through concept

relationships (such as prerequisites) using the ‘Graph author’ tool. In addition to

this, using special AHA!-specific tags, it is possible to conditionally include/exclude

fragments of (X)HTML content [40], [41]. However, adding such AHA!-specific tags

would necessitate the mixing of adaptation rules with the domain content, so this is

not recommended.

 2.4 GRAPPLE

The GRAPPLE [42] project created a delivery tool, GALE[26], and an authoring tool

called the GRAPPLE Authoring Toolset (GAT). GAT exports files using the CAM

format [43] (see Section 2.2.5), and as such contains three separate tools; the

Domain Model tool [44], the Pedagogical Relationship Type tool (also known as the

Concept Relationship Type tool) [45] and the Course tool (also known as the CAM

tool)[46]. The design and implementation of GAT is detailed in Chapter 8.

 2.5 My Online Teacher

This section describes the basic authoring paradigm employed by the My Online

Teacher tool [47].

14

 2.5.1 My Online Teacher – MOT1.0 (MOT++)

Unlike Interbook [27] or AHA! [48], which are designed for both delivery and

authoring, MOT++ [47], [49] is a purpose-built authoring tool1 for use with a

separate delivery system and is based around the LAOS framework [36]. Please

note that although many previous publications refer to MOT++, it has since been

renamed to MOT1.0 for ease of comparison to other tools. The XML-based CAF file

format [3] has been defined to store the first two layers of the LAOS framework, the

domain model and the goal model. This enables interoperability with compatible

delivery engines, such as AHA!, ADE [50], or GALE, the GRAPPLE FP7 STREP project’s

adaptation engine [26]. This section explains the basic functionality made available

by MOT1.0, however actual implementation and usability specifics are described in

Chapter 3 .

 2.5.1.1 Domain Maps

Domain maps form a hierarchical tree structure of concepts. Each concept must

have a title attribute and can have any number of other attributes that describe the

concept. Each attribute has a type such as ‘text’, ‘keywords’, ‘image’, ‘video’,

‘introduction’ or ‘conclusion’. Each attribute can contain the static domain content

(either HTML or plaintext). MOT1.0 provides a basic interface to allow authors to

author the content of each attribute (Chapter 3 explains the interface in detail).

MOT1.0 also allows authors to copy concepts between domain maps, allowing

authors to reuse domain content (either their own, or those made by other users).

1 http://prolearn.dcs.warwick.ac.uk/MOT/

15

It is important that the content of each attribute is standalone – that is to say that

the content does not specifically require the presence of another attribute. For

instance, if a concept is described using two attributes ‘diagram’ and ‘text’ the text

attribute should not contain phrases such as “as can be seen in the diagram”, since

(depending on the adaptation strategy) it is not possible to guarantee that the user

can see the diagram.

Similarly, the author must consider the granularity of the content [51]. A resource

with coarse-grained (also known as ‘large’ or ‘low’) granularity has a large amount

of content that is stored within a single object/page/concept [52]. However,

resources with fine-grained (also known as ‘small’ or ‘high’) granularity divide the

content into smaller chunks. Using resources with fine-grained granularity means

that if the content is reused in other courses the author has greater freedom in

choosing which parts of the content to reuse. Similarly, coarse-grained content

offers less flexibility in terms of personalisation since the learning object may

contain information that is irrelevant to the user but cannot be specifically removed

by the strategy. The issues surrounding granularity are also investigated in Chapter

9 .

 2.5.1.2 Goal Maps

A goal map is a hierarchical tree structure of groups of ‘sublessons’. Usually, goal

maps are created by using MOT1.0’s feature for converting domain maps into goal

maps. Goal maps initially follow the structure of the associated domain map, with

each attribute represented by an individual sublesson. Figure 2.2 shows how

16

sublessons are arranged into groups based on the domain concept to which they

belong.

Figure 2.2: A basic domain and equivalent goal map within MOT1.0

MOT1.0 allows authors to rearrange the structure/order of concepts. Goal maps

can contain links to any number of domain maps. This means that a course author

can reuse domain content in a different goal map.

Authors can add a label and a weight to each sublesson, for use as pedagogical

metadata. There are no built-in keywords to define the meaning of weights and

labels. The meaning of the weights and labels depends purely on the adaptation

strategy.

 2.5.1.3 Adaptation Strategy

Within the MOT authoring paradigm, adaptation must be authored within a LAG file

[53]. Most strategies make use of the pedagogical metadata defined by the goal

map, or even the attribute types used within the domain. The LAG file is responsible

for the definition of the Adaptation Model, User Model and Presentation Model.

Section 2.6 describes some of the strategies that can be defined.

17

 2.5.1.4 Delivery

As described above, MOT1.0 is specifically designed as an authoring tool, rather

than a combined authoring and delivery system. For this reason, the formats

generated by the MOT authoring paradigm need to be converted into a format that

can be delivered by an external tool. Previous research has created a method of

importing content from MOT into WHURLE[54], [55], however the main target for

MOT1.0 was AHA![3], [56]. However, subsequent research (described in Chapter 7)

created ADE [50], which is a delivery engine that was specifically created to work

with CAF and LAG files.

 2.5.2 MOT2.0

MOT2.0 [57], [58] was created to research the potential of Web 2.0 style

interaction within e-learning. Rather than utilising adaptation strategies, it

encourages learners to interact with each other through collaborative tools, such as

online chat messaging, tagging and rating. MOT2.0 is therefore not a direct upgrade

of MOT1.0, however it does inherit some of its domain model and goal model

principles from LAOS[36] to form Social LAOS (SLAOS) [59].

Although MOT2.0 had different functionality to that of MOT1.0, some of the

interface and functionality aspects of MOT2.0 could clearly be brought into the

MOT1.0 authoring paradigm. Specifically, MOT2.0 introduced a WYSIWYG HTML

editor, and a graphical way of displaying the hierarchical structure of a course.

Similarly, MOT2.0 introduced methods of importing content from widely used e-

learning formats [60]. These features are further described (and used) in Chapter 3.

18

 2.6 Adaptation Strategies in LAG

As described above, the MOT authoring paradigm uses LAG for the definition of

adaptation strategies [53], [61]. This section describes the basic principles of LAG,

and defines a few sample strategies that will be used as examples throughout this

thesis.

 2.6.1 LAG Syntax

There are two sections to each LAG file, an initialization section, and an

implementation section.

 Initialization: Code within the initialization section is only run when the

learner first registers onto the course (i.e., first visits the course). Typically,

the initialization code resets the user model variables, and hides all initially

unsuitable concepts (via ‘PM.GM.Concept.show = false’).

 Implementation: The implementation section is run for every concept every

time the user clicks on a concept. Note that the expression GM.Concept

within LAG is actually used to refer to an individual sublesson rather than an

entire domain concept. Although the implementation is run for every

concept, the expression “UM.GM.Concept.access == true” can be

used to address the concept(s) that are currently being viewed.

 2.6.2 Example Strategies

This section describes some of the basic strategies that are often used to

demonstrate the functionality of MOT and AHA!. The example strategies provided

19

on the website [62] also contain comments that provide natural language

descriptions of what the strategy does and the required labels/weights/structure.

 2.6.2.1 Beginner-Intermediate-Advanced

The beginner-intermediate-advanced strategy has three separate knowledge

variables; beg, int and adv, with the current value stored in the user model variable

UM.GM.knowlvl. When users first register onto the course, they are classified as

a beginner user, meaning that all sublessons that have been labelled with int or adv

will be hidden from the user. In AHA!, this means that the links to the intermediate

and advanced topics will be black (looking like normal text – link hiding) with a red

bullet point. In ADE, such intermediate/advanced concepts will not be offered on

the navigation menu at all.

The initialization part of the strategy looks at all concepts and counts how many

sublessons have each label and increments the user model variable counters

UM.GM.begnum, UM.GM.intnum and UM.GM.advnum accordingly. When

the user views one of these sublessons, the relevant counter will decrement. When

a beginner user’s UM.GM.begnum counter reaches zero (meaning they’ve visited

every beginner sublesson), their level will be changed to int, and they will be

granted access to the intermediate concepts. Similarly, when an intermediate user’s

UM.GM.intnum counter reaches zero, they will be promoted to an advanced

user.

 2.6.2.2 Rollout

The goal map for a rollout strategy involves two label types; showatmost and

showafter. The weight associated with each of these labels is also used. The

20

strategy counts the number of times each sublesson has been shown. If a sublesson

has a label showatmost with a weight of w1 (where w1 is a number greater than

zero) it will only be shown the first w times that the concept is requested – after

which time it will be hidden. Similarly, a sublesson that is labelled with showafter

with a weight of w2 (where w2 is a number greater than zero) will only be shown

after the concept has been requested w2 times.

 2.6.2.3 Visual-Verbal Strategy

This strategy uses the label type ‘visverb’ (anything that doesn’t have this label is

shown under all circumstances). The weight belonging to the visverb label is then

used to determine how visual or verbal a sublesson is. Verbal sublessons (e.g. long

pieces of text or audio clips) are labelled ‘visverb’ with a weight between 50 and

100. Visual sublessons (images, videos, etc.) have a weight between 0 and 50.

When the user first registers, the initialization assumes the user is neutral, so sets

their UM.GM.visverb preference to 50. Users can then only see sublessons that

have a label that is within a predefined threshold of their visverb preference. For

example, if the threshold was 30, a neutral user would see all concepts that have

weights between 20 and 80. If the user clicks on a sublesson that is labelled with

‘setvisverb’, the strategy will set the user’s UM.GM.visverb preference to the

weight of that sublesson. This allows the user to manually choose whether they

prefer visual or verbal information; however variations on this strategy allow the

strategy to gradually modify the user’s visverb preference according to their

behaviour within the system.

21

 2.6.2.4 Multimedia Strategy

A multimedia strategy is similar to the visual-verbal strategy; however it can be

used to specify a variety of different media (such as text, images, audio, or video). If

a concept is represented by a variety of different media styles, the strategy can

deliver the appropriate content based on the user’s preference, past behaviour or

available bandwidth [63]. Rather than using a single label (like the visual-verbal

strategy uses), a simple implementation could achieve this using a variety of

categorical labels (such as ‘text’, ’image’, ’audio’ or ‘video’). Moreover, a ‘type-

based’ strategy could be used, where instead of relying on the goal model labels the

strategy would simply choose the media according to the attribute type.

 2.6.3 Reusing Strategies

Keeping all adaptation specification in a separate file (LAG) to that of the static

content information (CAF) allows for greater flexibility in reuse. Specifically, this

separation is designed so that non-programmers can choose a strategy, read its

description, and then use the MOT tool to edit/label their content in such a way

that it can be used with the adaptation strategy.

 2.6.4 Other ‘Custom’ Strategies

Many of the above strategies are intentionally generic enough to be applied to a

wide variety of content. However, the LAG language aims to provide authors with

the flexibility to present their content according to whatever pedagogical strategy

they feel appropriate. Indeed, some of these strategies may be domain specific, or

contain parameters that must be defined within the LAG strategy.

22

 Revision strategies: A number of authors have implemented strategies that

show the ‘summary’ of a concept if the main information in the concept has

already been read. The theory behind this type of strategy is that if the

learner has already read the concept, they only need basic information

(such as bullet points, or an image) in order to remember the content. This

type of strategy has been implemented in a variety of different ways, with

different weights and algorithms to determine when a concept can be

considered as ‘read’.

 Quiz strategies: Various quiz strategies have previously been implemented.

A basic quiz could be based around a Type-based strategy, which would only

show the sublessons of type ‘answer’ when the corresponding ‘question´

had been read. However, it is also possible to create a strategy that requires

users to choose the answer to a multiple choice question (by clicking on a

corresponding concept). If the user clicks on the correct concept, the

strategy could increment a UM.GM.score variable.

 Combined strategies: Many previous authors have combined some of the

more common strategies in order to create new strategies. For instance, a

Visual-Verbal strategy could be combined with a Beginner-Intermediate-

Advanced strategy to ensure that the appropriate type of content is

delivered (an ‘Adaptive Presentation’ technique) whilst providing the

learner with guidance about what to study next (an ‘Adaptive Navigation’

technique).

23

 2.7 Content Authoring Systems

The research presented in this thesis attempts to simplify the process of authoring

adaptive hypermedia. Ideally, a large variety of content authors would be able to

create their own content in such a way that it could be used in an adaptive system.

This would greatly increase the amount of educational material that could be

personalised to the needs of the learner. The lack of tools that can be used by an

averagely computer literate content author is therefore a major bottleneck to

domain authoring [64] and therefore the widespread usage of adaptive

hypermedia.

However, there are some non-adaptive tools that are widely used by a wide variety

of educators. For instance, many educational institutions use learning management

systems (LMSs) such as Moodle[65] or Sakai [66]. Using such systems, educators are

able to structure an online course through the creation of web pages and the

uploading of lecture slides.

The success of projects such as Coursera2 demonstrate a growing importance on e-

Learning [67]. It is therefore important that e-learning tools can be populated with

content from a wide variety of content authors. Although educators may now be

familiar with the process of authoring for such linear authoring tools, the process of

authoring for adaptive hypermedia requires content to be structured and labelled

for use within some form of adaptation (or pedagogical strategy).

2 https://www.coursera.org/

24

 2.8 Visualizations

 2.8.1 Visualization of domain content

As previously described, the process of authoring static content for use within an

adaptive hypermedia system is rather different to the process of authoring linear

content. The author must think carefully about how their domain content is

structured, and what relationships exist between the individual concepts. For this

reason, the authoring tool must allow the user to create and view relationships

between different pieces of content (concepts).

As described in Section 2.5.1.1 , MOT1.0’s approach to this is to display content in a

hierarchical tree structure. However, this means that only parent relationships can

be clearly displayed to the author. The GRAPPLE project, however, displays content

in the form of a graph structure [44], which allows more relationship types to be

visualized. A full comparison and evaluation between the two implementations is

provided in Chapter 9 .

A similar comparison between graph-based and tree-based visualization of domain

maps was carried out by Freire and Rodriguez [68] using the WOTAN tool. Their

evaluation involved a small number of participants, with each participant using

both a tree design and a graph design over a short time period. They focussed on

the time each participant took to complete a number of certain tasks, and found

that participants were faster using their second tool rather than the first – i.e., the

actual representation appeared to have little effect. However, they did conclude

25

that the graph tool is “perceived as harder to use and takes longer to get used to

than the tree tool, but seems to provide better understanding of the course layout”.

 2.8.2 Visualization of adaptation content

Whilst the above section describes how static content could be visualized, adaptive

hypermedia also requires some form of adaptation strategy to be created. As

described in Section 2.6 , the MOT authoring paradigm allows non-technical authors

to reuse LAG strategies that have been created by programmers. However, in order

to provide flexibility, it is important that non-programmers should also be able to

specify their own adaptation.

Most current adaptation specifications involve the pedagogy specialist writing code.

For this reason, this thesis investigates methods of visualizing an adaptation

strategy, and therefore enabling it to be understood and modified by a non-

programmer.

This clearly has parallels with tools that allow non-programmers to design their own

software. For example, Scratch [69] is a tool that is aimed at introducing children to

program. This is achieved by using small fragments of code which are represented

as ‘building blocks’ that can be simply pieced together to form a basic program.

Similarly, App Inventor [70] can be used to program basic smartphone apps.

Although neither of these tools provides access to a full programming language,

they do allow non-programmers to specify their own code. Similarly, Microsoft’s

on{X} project [71] aims to allow programmers to share ‘recipes’ for smartphones

26

with smartphones, allowing non-programmers to visually change parameters of the

recipe for their own personal use.

 2.9 Design Principles for Adaptive Hypermedia Authoring Systems

 2.9.1 Separation of concerns

The separation of concerns principle is designed to ensure reusability and flexibility.

The principle ensures that (e.g.) adaptation specification is separated from the

domain content. The layered structure of the AHAM model (and therefore AHA!), is

designed to keep the domain, adaptation and user models separate from each

other. Wu et al. [29] noted the need within AHAM for separating the adaptation

model from the domain model, however adaptation content was also often stored

within the static content. For this reason, the goal and constraints layer added to

LAOS [35] was designed to ensure that only the factual domain content is stored in

the domain model, and pedagogical information is shifted to the goal model. The

separation of concerns is inherited from object-oriented programming [72]. It is

also closely related to the ‘separation of content from presentation’ principle that is

employed with XHTML2.0 and CSS [73], which allows authors to change the

presentation of a number of web pages by simply redefining the CSS files – thus

promoting reuse.

 2.9.2 Requirements for an Adaptive Hypermedia Authoring System

Based on this related research, we can identify an initial set of principles that are

necessary for an adaptive hypermedia authoring system.

27

DP1. Use of Frameworks. The frameworks described in Section 2.2

demonstrate how the frameworks already implement the separation of

concerns principle to some extent. For this reason, it is recommended that

any new adaptive (delivery or authoring) system follows a framework.

Broadly, the frameworks all specify that there are two different types of

content that need to be specified; static content, and adaptive content.

a. An AHAS should adhere to a Static Content Specification. As the

above background research has demonstrated, most adaptive

hypermedia systems use HTML. However, there are no widely-

accepted standards for describing the static content used within

adaptive hypermedia. There are, however, many standards (such as

IMS-CP, IMS-QTI, IMS-LD3 and SCORM4) that are widely used within

e-learning systems. In the absence of any static content standards

for adaptation, Ghali [60] created methods of allowing such e-

learning standards to be utilised within an adaptive course.

Moreover, Chapter 4 further explores standards and formats that are

frequently used for creating educational content.

b. An AHAS should adhere to an Adaptive Content Specfication. Some

previous systems (such as Interbook [27] and early versions of AHA!

[74]) combined the static content with the adaptation specification.

Using some form of specification (such as LAG, or potentially a more

3 http://www.imsglobal.org/

4 http://www.adlnet.gov/Technologies/scorm/

28

generic scripting language) the adaptive content can more easily be

separated from the content, and thus be reused. In this context, we

consider all user model and presentation model issues to be directly

related to the adaptation – and therefore also covered by this

principle.

DP2. An AHAS should support reuse. To remove the burden of authoring

new content, it is important that the authoring system allows the author to

reuse existing content. This requirement was used by Cristea et al. when

comparing frameworks in [75] and can be divided into two sub-

requirements.

a. An AHAS should allow linear content import. As Section 2.7

described, many authors will already have prepared linear resources

in various kinds of media and file formats for use within other

environments – either real-world universities (such as presentation

slides) or in virtual learning environments (such as course pages

authored in Moodle or Sakai[66]). The adaptive hypermedia

authoring system should accommodate file formats that have

already been created for other purposes and, where possible,

enhance the value of these files via adaptation. Ghali [60] previously

researched integration with learning management systems and

Chapter 4 details methods of extracting content from other linear

sources.

29

b. An AHAS should support the author with reuse. Within an adaptive

system, it is likely that authors will want to reuse educational

content that has already been created. The system should provide a

way of helping the user to maintain and reuse currently stored

content (and searching through it). This could be content that they

themselves had previously created, or the author may wish to use

content that has been created by another author, thereby allowing a

collaborative process such as that used by Baloian et al. [76].

Similarly, it is also important that reuse also applies to the

adaptation strategy, thereby allowing non-technical users to take

advantage of the code that has been implemented by programmers.

DP3. An AHAS should ensure an acceptable level of usability. To encourage

non-technical content authors to use the AHAS, the tool must be usable.

This principle can be divided into two main sections.

a. An AHAS should be consistent with other applications. The authoring

system should provide consistency [77] with other well-known

applications, especially functions that are common to more generic

authoring systems should be easily recognizable to beginner users.

b. An AHAS must have a shallow learning curve. The application should

also allow users of all abilities to create complex adaptive content

that utilizes all possible benefits of adaptive hypermedia. Such

functionality will need to be presented simply to the user, requiring a

shallow learning curve.

30

 2.9.3 Description of existing tools with respect to these principles

In this section, three adaptive hypermedia authoring tools are described with

respect to the above requirements.

Interbook does not use a particular framework (DP1), and therefore has no way of

separating static content from the adaptation rules (DP1.a and DP1.b). There is

scope for limited adaption reuse in Interbook, through the use of LISP. Interbook

inherits many of its user interface features from Microsoft Word. This means

authors can import existing Word documents into the system to use as the basis for

their material, and also reuse any documents prepared for adaptive hypermedia

(DP2.a and DP2.b). Although much of the interface is Microsoft Word (DP3.a), the

author still requires understanding of how to apply adaptation rules (DP3.b).

AHA! uses the AHAM [30] framework, but also allows mixing adaptation rules with

static content (DP1.a and DP1.b). Content must be authored in (X)HTML, for which

many authoring tools exist (DP2.a and DP2.b). AHA! comes with a tool to import

content (to upload it to an AHA! server). Adaptation in AHA! can be defined

graphically, without any knowledge of the adaptation rule language (DP3.a and

DP3.b). However, authors do need knowledge of the adaptation rule language in

order to define new complex adaptation rules.

Due to the combination of the LAOS framework, the HTML content, and the ability

to export to CAF, MOT1.0 fulfils requirements DP1, DP1.a and DP1.b. In terms of

content reuse, HTML can be used as a basis for static content (DP2.a). MOT1.0 also

allows static content to be copied and linked to other static content – this makes

31

reusing information from other domain maps, possible (DP2.b). MOT is a web-

based tool, and therefore inherits many user control paradigms from general web

design principles. For example, hierarchies in MOT1.0 are rendered using static

HTML. However, the interface used in MOT1.0 is inconsistent with other

applications, therefore not completely fulfilling requirement DP3.a. Previous

evaluations highlighted usability issues within MOT [46], [78] (such as too much

complexity in the process of labelling content, and the hierarchy display), therefore

highlighting problems with the interface, DP3.b. These usability issues are discussed

and addressed in Chapter 3.

Based on these requirements, MOT1.0 demonstrates the most flexibility for

authoring. However, the requirements also highlight areas that could be improved

within MOT.

 2.10 Conclusion

The principles defined in Section 2.9 are the minimum requirements, which have

been extracted based on the related research presented in this chapter.

Since authoring for adaptive hypermedia is a complex task, it is vital to have greater

acceptance of the tools we propose to the users. The creation of such intuitive

authoring tools is therefore an important research challenge. The next chapter

details the basic usability and functionality issues that were identified in MOT1.0,

and describes the steps that were taken to improve them.

32

 3 Analysing and improving basic Adaptive Hypermedia

Authoring: Creating MOT3.0

 3.1 Overview

This chapter describes the initial usability issues that existed in MOT1.0 and

describes the steps that were taken to create a new version of My Online Teacher

named MOT3.0.

The chapter also describes an evaluation that was carried out to compare the

usability (and functionality) of MOT3.0 to that of MOT1.0.

 3.2 Requirements for Improving MOT1.0

The previous chapter described the motivation for improving the authoring tools.

The first step to improving the authoring tools was to examine the feedback from

previous evaluations[78], and to make observations about the tools compared with

similar authoring tools. The results of this analysis led to the following issues with

MOT1.0 being identified.

Issue 1. The usability of MOT1.0 needed to be increased.

a. Visualization was too basic and not always intuitive.

b. The system did not assist the author with creating formatted static

content – i.e., the attribute editor only allowed plaintext (or hand-

coded HTML) content.

c. The layout of the interface was not appropriate in some cases –

specifically common features were hidden away in sub-menus.

d. The look-and-feel of the interface was somewhat out-dated.

33

e. There were inconsistencies in the interface (e.g., some menu items

had different positions, depending on which page the user was on).

f. There were few usability conventions/affordances[79] employed.

g. The existent functionality was not always obvious.

h. The search facilities were very minimal.

i. There were a number of security flaws in MOT1.0.

Issue 2. The functionality of MOT1.0 needed to be extended.

a. The number of weights and labels for pedagogical metadata

annotations was limited. This limited the opportunities for

adaptation strategies.

b. The interoperability with other formats was limited – some limited

integration with the semantic desktop had already been

implemented [80], however there was no method of automatically

populating content with teaching materials that originated from

other sources.

Issue 3. The complexity of MOT1.0 needed to be addressed.

a. MOT1.0 was limited with respect to standards that could be used.

Specifically, only HTML was supported as a presentation format, with

no support for commonly used e-learning standards.

b. It was not clear whether the separation of concerns (defined by the

LAOS model) was understood by and useful to the different types of

authors.

34

To address the limitations found in MOT1.0, MOT3.0 was developed. The existing

Perl code was hard-coded to the needs of the MOT1.0 interface. It was therefore

decided to design MOT3.0 as a complete rewrite of the previous system using PHP.

This was because PHP provides a wide variety of modules that are readily available

on many server installations and is directly compatible with many existing web-

based tools. These modules provided simple integration with external tools such as

MySQL, and allowed for the more advanced client-side scripts (AJAX/JavaScript) to

be easily generated.

The basic principle of MOT was retained, keeping desired functionality and

improving on some of it, as well as adding new required functionality.

 3.3 Usability Improvements

 3.3.1 Layout

One of the most immediately obvious usability issues with MOT1.0 is its frames-

based layout (Issue 1.d – see Figure 3.1). The frames-based layout was originally

designed to allow concepts to be shown alongside the current domain map without

needing to refresh the entire page (and thus regenerate the entire domain map).

There are two main reasons why a page refresh is undesirable in this context:

1. It transfers a lot of data, and causes the web server to perform database

queries and text processing to generate the data – this presents problems

with scalability.

35

2. The time taken for the network, web server and web browser to transfer,

process and render the HTML data can be frustrating, and visually

distracting for the user.

Using the frame layout helps to minimize the number of page refreshes, thus

reducing some of the problems caused by the data transfer issue. However, the

speed and visual distraction effect still occurs when using frames, since the frame

on the right still needs to update frequently.

Figure 3.1: The frame-based layout of MOT1.0

To improve the layout, it was decided to use Ajax [81][82], which allows small

fragments of the page to be requested and downloaded in the background

(asynchronously), and only shown to the user when the information is ready. The

updated layout is shown in Figure 3.2.

36

Figure 3.2: The Ajax based layout of MOT3.0

 3.3.2 Menus

Another problem arising from the use of frames is the distance between the two

menus (Issue 1.c). Figure 3.1 shows that the main Domain map menu is on the far

left of the screen, whilst the menu relating to the selected concept is on the left of

the right frame. This means that if a user doesn’t know where to find a particular

menu item, they will have two separate menus to search through. Moreover, some

of the items (such as ‘Copy concept from other DM’) actually spanned two lines.

This makes the item look like two separate items (‘Copy concept from’ and ‘other

DM’), which could make it more difficult for the user to find the correct item. There

was also an inconsistency with the terminology used by the menu, with the first

two items referring to Domain Maps and the other items referring to DMs.

Providing a clearer terminology within the MOT3.0 menu, and making all top-level

functions (such as Loading/Creating a Domain or Goal map) available from the main

menu was designed to demonstrate the functionality that was available within

MOT3.0 (and thus improve the system with respect to Issue 1.g).

Furthermore, in MOT1.0 the options on the menu were hard-coded into each page,

and so the menu layout changed slightly on every page (Issue 1.e). For instance, the

two menus shown in Figure 3.3 are from two slightly different parts of the domain

37

tool (list of domains, and the domain editing pages respectively). In this instance,

the ‘Create Domain Map’ link changes from a button to a textual link. Moreover,

the two icons at the top change appearance and functionality between the two

pages. In some cases this was an attempt to provide an adaptive menu – however

feedback provided during usage had shown that it confused the user, with the lack

of a global navigation menu disorientating some users. Similarly, having the “My

On-line Teacher (MOT)” title at the top of each frame made the two frames look

rather separate from each other.

Figure 3.3: The separate navigation menus in MOT1.0

For MOT3.0, it was decided to create the menu in a single PHP source file, which

ensures that the menu appears in the same way on every page. This menu was

designed to provide a consistent navigation menu that appears on all screens and

provides access to all major features of the system, as shown in Figure 3.4.

38

Figure 3.4: The navigation menu in MOT3.0

The menu provides quick-access to all major areas of MOT3.0, with the structure of

the menu designed to help the user understand the structure of the site [83].

Functions that are specific to the current context are kept separate to the main

menu and closer to the area of the screen that is affected by the action. These

functions are made available through the use of graphical icons.

Figure 3.2 also shows the five icons that appear above the domain map hierarchy;

‘Copy Concept’, ‘Link to Concept’, ‘Save Hierarchy’, ‘Add Concept’ and ‘Delete

Concept’. Only icons that have readily understandable graphical metaphors [84]

were chosen so that they could be immediately recognised by the user.

Furthermore, each icon was given an HTML title attribute, so that the user could

hover over the icon to discover its meaning. Other (more specialized) functions

were kept as text links (such as those relating to calculating relations), since their

meaning could not be easily conveyed in an icon.

 3.3.3 Visualization

The visualization in MOT also needed to be improved for the display of both

Domain maps and Goal maps (Issue 1.a). MOT represents both types of map as a

tree structure, but in MOT1.0 this was displayed as static HTML. This meant that

every time the user wanted to rearrange a hierarchy, s/he had to click the ‘cut’

(textual) link next to the source concept, and then click on the ‘paste’ link next to

the concept that was to become the parent of the source concept. This caused

39

many page refreshes, causing similar scalability and time delay issues as described

for the frames interface.

Figure 3.5: The two stages of changing a Domain hierarchy in MOT1.0

When cutting and pasting within the same Domain map, the above process all

occurs within a single frame.

MOT3.0 uses the JavaScript component dhtmlxTree5. A similar JavaScript tree

structure had also been implemented by Ghali in MOT2.0[57], but was mainly for

the purposes of the presentation of content, rather than for assisting with the

authoring process.

5 http://www.dhtmlx.com/docs/products/dhtmlxTree/index.shtml

40

Figure 3.6: The Windows 7 file manager (left) with the MOT3.0 Domain map (right)

This type of hierarchy visualization is more familiar to users, as it is similar to many

file manager applications, such as Explorer used in Windows 76 (see Figure 3.6), this

therefore makes the interface more consistent with other applications, employing

more usability conventions and affordances (Issue 1.f).

Nodes (concepts in the case of domain maps, and sub-lessons in the case of goal

maps) can be dragged-and-dropped within the hierarchy. As with MOT1.0, MOT3.0

supports the copying/linking of concepts between different domain models. A

similar drag-and-drop technique is therefore implemented to allow concepts to be

copied between domain maps – see Figure 3.7. Similar rearrangement techniques

were created to allow the rearrangement of Goal Maps.

6 http://windows.microsoft.com/en-GB/windows7/products/home

41

Figure 3.7: Copying the 'Hypermedia' topic into the 'See Also' concept within 'Adaptive hypermedia'

The new hierarchy is sent back to the server using Ajax when the user clicks on the

Save button. This allows the user to change their mind about the structure,

whereas the rearrange methods in MOT1.0 had instantly overwritten the previous

structure (with no Undo feature).

Another visualization issue that was improved in MOT3.0 is that of visualizing the

labels and weights within the hierarchy. Figure 3.8 shows the interface for adding

labels and weights within MOT1.0, whereas Figure 3.9 shows the interface for the

same functionality within MOT3.0.

Figure 3.8: Changing weights and labels in MOT1.0

42

Figure 3.9: Labelling within MOT3.0

Specifically, the MOT3.0 tree allows the labels and weights of sublessons to be

easily viewed, whereas in MOT1.0 the author needs to actively select a sublesson

and choose to change its labels before being able to discover the current values of

the labels and weights. MOT3.0 also removes the AND-OR relations that existed in

MOT1.0 (and are described in [35]) since they had no meaning within the

implemented LAG language. Similarly, the percentage sign next to the weight

textbox was removed because the weight need not be considered as a percentage,

and can represent any numerical value depending on the selected strategy.

 3.3.3.1 Editor

MOT3.0 adds a WYSIWYG HTML editor (FCKEditor7) for editing attributes in the

domain model. The editor (shown in Figure 3.10) had been previously used by Ghali

in MOT2.0 [85]. As described in Chapter 2, MOT2.0 had different functionality to

that of MOT1.0 – MOT3.0 therefore brings this high usability editor into the

mainstream adaptive authoring implementation. MOT1.0 had simply provided a

plain textbox for users to input either plain text, or hand-coded HTML.

7 http://www.fckeditor.net/

43

Adding the WYSIWYG HTML editor ensures all authors are able to create courses

with HTML content, thus improving MOT with respect to Issue 1.b.

Figure 3.10: Editing an attribute in MOT3.0

 3.3.3.2 Search functionality

MOT1.0 contained no built-in search feature, although it did contain a feature

called ‘View all keywords of all conceptmaps’, which generated a page that

contained the contents from every attribute named ‘keywords’ and then allowed

the user to use their web-browser’s ‘Find’ feature to look for the appropriate topic.

There are four main disadvantages to this.

1. It provides a (non-scalable) CPU overhead for the server.

2. It relies entirely on the author populating the keywords attribute.

3. It only considers Domain maps, and not Goal maps.

44

4. The large list of generated content could be confusing, overwhelming and

difficult for the user to interpret.

MOT3.0 provides a search page, which allows users to type a search term, where

the user can select any combination of a number of search scopes (Concept Maps,

Goal Maps, Keywords and Concept Titles). The result is then displayed to the user

using Ajax. This makes searching for particular pieces of content easier, and thus

the system more user friendly, and therefore contributes towards Issue 1.h.

 3.3.3.3 Security Improvements

Various security features were added to MOT3.0. For example, the teacherid

variable was passed in plaintext over a GET request [86]. This meant that when a

user navigated to a concept map, they would see a URL such as:

MOT/conceptmap/concept_frameset.cgi?teacherid=203&mapid=

379

However, a malicious user could easily change the teacherid parameter from their

own id (which in the above example is 203) to that of another account.

In MOT3.0 the teacherid is stored in a session cookie, and it is therefore harder for

the attacker to switch to another user’s account, thus improving on Issue 1.i.

45

 3.4 Functionality Improvements

 3.4.1 Compatibility with Other Systems and Standards

MOT3.0 retains support for the CAF format. Moreover, MOT3.0 can now also use

standard formats for e-learning content, such as IMS-CP8 and SCORM9, and the

standard format for testing and questionnaires, IMS-QTI10, through integration of

the import scripts that were originally created by Fawaz Ghali for MOT2.0 [58], [60],

[87]. The scripts were designed to enhance interoperability with more commonly

used (non-adaptive) LMS systems such as Sakai11 or Moodle12. This extension is part

of the work in support of Issue 2.a. Further work on this requirement, and work to

address Issue 2.b is presented in Chapter 4 .

 3.5 Evaluations

To determine whether or not these features have enhanced the functionality and

usability of the MOT3.0 system, user testing has been carried out. The first

evaluation compared the MOT3.0 system with the MOT1.0 system13.

8 http://www.imsglobal.org/content/packaging/

9 http://www.adlnet.gov/Technologies/scorm/

10 http://www.imsglobal.org/question/

11 http://www.sakaiproject.org/

12 http://www.moodle.org/

13 Please note we don’t compare to the MOT2.0 system since it was designed to research

Web2.0 principles – which is not the purpose of MOT3.0

46

 3.5.1 Hypotheses for the MOT3.0 comparison to MOT1.0

For the purpose of the evaluation a series of hypotheses were created, as follows.

H3.1 Browsing Domain Maps is easier in MOT3.0.

H3.2 Browsing Goal Maps is easier in MOT3.0.

H3.3 Creating Domain Maps is easier in MOT3.0.

H3.4 It is easier to add and delete concepts in MOT3.0.

H3.5 It is easier to modify the hierarchy of domain and goal maps in MOT3.0.

H3.6 Searching through Domain Maps and Goal Maps is easier in MOT3.0.

H3.7 It is easier to copy domain maps concepts and link goal maps in MOT3.0.

H3.8 It is easier to manually build a goal map by inserting sub-lessons from

concept attributes in MOT3.0.

H3.9 The more consistent menu style in MOT3.0 makes it easier to find the

correct function (such as converting/exporting maps).

H3.10 The FCKEditor is useful within the context of editing attributes.

 3.5.2 Testing the Hypotheses

The first phase of the evaluations was carried out with two groups of students from

the Department of Engineering Studies in Foreign Languages, Politehnica University

of Bucharest, Romania. One group contained 25 3rd year students registered for the

course ‘Web Application Development’, and the other group had 39 4th year

students from the ‘Semantic Web’ course. Although the MOT3.0 system is primarily

47

targeted at teachers, it is important that the system is able to appeal to a wide

variety of content authors. Due to the web-related nature of their course, they

were expected to be proficient at traditional web design/development. It is

therefore important to gain the approval of this demographic when developing

adaptive hypermedia authoring tools.

Sets of similar14 scenarios were created for both MOT1.0 and MOT3.0. In order to

remove any bias, each group was divided into two subgroups. The first subgroup

began the evaluation using MOT1.0, whilst the other began with MOT3.0. When a

student had completed each of the scenarios, their work was checked by a lab

assistant, and the participant was asked to complete a questionnaire about the

functionality and usability of the system. The student was then asked to perform

the same tasks using the other system, and then complete a questionnaire.

Answering the questionnaire was not obligatory, 13 of the 25 Web Application

Development students and 18 of the 39 Semantic Web students responded. Each

question in the questionnaire used a very simple four-point Likert scale (Very Easy,

Easy, Difficult and Very Difficult). After each question, students were asked to

provide comments about their choice of answer. This is due to the fact that non-

native English speakers tend to find other scales unclear – e.g., words like “quite” or

“cumbersome” that appear on the popular System Usability Scale questionnaire

(SUS) [88], are not appropriate for such students. It was also decided to not provide

an ‘average’ option, to encourage students to state a preference between the two

14 Where possible, the scenarios were kept identical. Only where the functionality of

MOT1.0 and MOT3.0 differed greatly were there deviations in the scenarios.

48

systems. To eliminate bias, the questions all started with “What do you think

about…” (rather than asking directly whether they liked or preferred a particular

system):

Q1. … browsing other author’s a) domain maps and b) goal maps?

Q2. …creating new a) domain maps and b) adding/deleting concepts?

Q3 …reordering the hierarchies for a) domain maps and b) goal maps?

Q4 …searching for concepts?

Q5 …copying concepts and linking between concept maps?

Q6 …manually creating goal maps?

Q7 …navigating around the menu?

Q8 …using the HTML editor to edit attributes?

Each Likert item was assigned a value (1 represents ‘Very Easy’, and 4 ‘Very

Difficult’). These values assume a monotone scale, which is a reasonable

assumption since the natural language and the presentation of the options within

the questionnaire should lead the participants to understand that (e.g.) ‘Very

Difficult’ is the opposite of ‘Very Easy’.

To evaluate the differences between the two systems, a two-tailed paired t-test

was performed for each question. The t-test assumes equal variances for the results

of both systems, and it assumes a normal distribution. For each question, the

49

MOT3.0 score was subtracted from the MOT1.0 score, with the difference reported

in Table 3.1.

Question Average

Difference

Standard

Deviation of

Difference

T-Test

Result

P(T <= t)

two-tail

Hypothesis Hypothesis

Confirmed?

Q1a 0.06 0.68 0.6 H3.1

Q1b 0.16 0.73 0.23 H3.2

Q2a 0 0.68 1 H3.3

Q2b -0.12 0.99 0.47 H3.4

Q3a 0.61 0.88 0 H3.5 Yes

Q3b 0.61 0.92 0 H3.5 Yes

Q4 0.35 0.91 0.04 H3.6 Yes

Q5 0.19 1.14 0.35 H3.7

Q6 -0.23 0.88 0.17 H3.8

Q7 0.32 0.94 0.07 H3.9 Yes

Table 3.1: Comparison of answers to questionnaire about MOT1.0 and MOT3.0

Based on the results of the t-test and applying a 95% confidence level, we can

accept hypotheses H3.5 and H3.6. This suggests that it is easier to modify the

50

hierarchies of domain maps and goal maps in MOT3.0. It is also easier to search for

concepts in MOT3.0. The menu layout for MOT3.0 is also preferred, but the

hypothesis for this (H3.9) can only be confirmed when applying a 90% confidence

level.

There is no statistical evidence to show that MOT3.0 improves on MOT1.0 with

respect to browsing Domain/Goal maps (H3.1 and H3.2), creating Domain maps

(H3.3), copying/linking between goal maps (H3.7). Moreover, with regard to

adding/deleting concepts (H3.4), and manually building goal maps (H3.8), there is a

small (but statistically insignificant) reason to suggest that students prefer MOT1.0.

For adding and deleting concepts, some users reported JavaScript errors in MOT3.0,

and they also felt that the buttons “were not obvious” – see Figure 3.11. Similarly,

some users stated that the icons did not represent their function very clearly. Some

users also reported errors when manually creating goal maps, which seemed to be

related to the JavaScript tree display.

Figure 3.11: The position of the buttons in MOT3.0

51

The students were also asked for their opinions about the HTML editor (Q8). Since

there was no HTML editor in MOT1.0, the students were only asked for their

opinions about the editor in MOT3.0, and therefore had nothing to compare it

against. However, 20 out of 31 students said they thought the editor was Easy to

use, a further 9 thought it was Very Easy to use, and only 2 said it was Difficult (with

0 saying Very Difficult).

Many users appreciated the ability to use the FCKEditor editor to create HTML

content, but some users said they found the editor “slow to load”. These comments

provided a good basis for the next iteration of development on the system.

 3.6 Updating MOT3.0 based on Evaluation Results

The initial Romanian evaluation provided some valuable feedback, which allowed

MOT3.0 to be updated. Firstly, the issues with the JavaScript tree display were

corrected by replacing dhtmlXTree with jsTree15 (as shown in Figure 3.12), which

provided more functionality.

15 http://www.jstree.com/

52

Figure 3.12: Copying a sub-tree of concepts

This allowed a new feature to be added, allowing multiple sublessons to be selected

at once (using the Control key), thus making it easier to apply the same label to

more than one sublesson (see Figure 3.13).

Figure 3.13: Applying the same label to more than one sublesson

53

Similarly, the issues with the HTML editor were improved by moving to the HTML

editor component of the YUI16 library. These changes were implemented to create

MOT3.0.1, which is evaluated in Chapter 5 .

 3.7 Conclusion

This chapter has described the initial set of usability and functionality issues that

existed in MOT1.0 and then describes how the implementation of MOT3.0

improves on these usability issues.

The chapter also presented the results of a usability evaluation that was performed

to assess the usefulness of these modifications. The evaluation results have shown

that overall MOT3.0 progressed according to the requirements, as well as identified

areas for further development.

This chapter has primarily focussed on the improvements made to the usability of

the tool. However, the initial requirements (described in Section 3.2) also identified

ways of improving the functionality of MOT that have not been fully explained

within this chapter. Similarly, Issue 3 identified issues with the complexity of the

authoring process, which will be further investigated in Chapter 5. In particular, the

separation of concerns provided by the LAOS model is compared with another

model in Chapter 9. The next chapter discusses options for enhancing the

interoperability of MOT with other formats (as suggested by Issue 2.b and DP2.a

from Chapter 2).

16 http://yuilibrary.com/

54

 4 Importing Content from Linear Sources

 4.1 Overview

This project’s overall aim is to simplify the process of authoring adaptive

hypermedia. In particular, we focus on the creation of adaptive courses, and so the

target users will be experienced teachers. This chapter investigates ways of

allowing experienced teachers to reuse existing teaching materials.

 4.2 Motivation

Analysing previous systems, as described in Chapter 2 , shows that it is important to

be able to import content from sources that authors regularly use, in order for the

authoring system to be really useful and relevant for authors (as described in

Chapter 3, Issue 2.b).

As described in chapter 2 there are currently no standards for adaptation. However,

Ghali created methods of converting from the e-learning standards IMS-CP, IMS-QTI

and SCORM to CAF[58], for use within the MOT2.0 system. In order to illustrate

Issue 2.b, as described in the previous chapter, these import scripts were integrated

into MOT3.0. Since these standards are widely used by popular e-learning systems

(in fact, learning management systems – LMSs), such as Moodle [65] and Sakai [66],

their usage clearly extends the usability of the authoring system, allowing authors

to import material they might have created in the past in different systems, or even

material created by other authors. On the other hand, these LMSs do not provide

for personalisation and adaptation, so what is imported is only static content.

55

Similarly, Hendrix et al. [89] described a method of enriching MOT1.0 content with

content from the Beagle++ semantic desktop environment[90]. Beagle++ stores

semantic metadata (via RDF [91]) about the files on the author’s computer. The

enricher can therefore assist the author with finding files that are relevant to the

domain, and upload the files as alternative resources. The tool can then also utilise

the semantic metadata to add extra properties (attributes/sublessons) to the

domain and goal models. However, the resource files uploaded by this system were

static – i.e., the content within the file was not divided into small fragments for

adaptive presentation.

Beside allowing import-export from given e-learning standard content, when

designing MOT3.0, we also explored other de facto ‘standards’ which are widely

used, and could possibly enhance an authoring tool. Many content creators will

have already written their learning material using other non-adaptive tools. For

instance, many lecturers will already have created lecture slides in presentation

files, or maybe created learning resources in documents. Below, we explore such de

facto ‘standards’.

 4.2.1 Familiar Authoring Tools

In this section, a list of commonly used authoring formats is presented. It is likely

that teachers will have already created content in at least one of these formats.

 4.2.1.1 Microsoft Word

Microsoft Word [39] allows authors to create documents. It is likely that many

documents (especially formally written documents) make use of the Styles feature,

which applies a particular formatting to certain elements of the document.

56

Although such styles are primarily intended to modify the presentation of the

document, systems such as Interbook [27] have used the style information as a

semantic markup to identify elements of the document.

 4.2.1.2 Microsoft PowerPoint

Microsoft PowerPoint [92] (and similar programs such as OpenOffice Impress [93])

allow authors to create presentations as a series of slides. Although there are often

template layouts for the slides, the author is not constrained into ensuring that

their presentation conforms to a particular structure.

 4.2.1.3 LaTeX

LaTeX [94] is a markup language, which is widely used within academia for the

presentation of scientific documents. LaTeX code is usually written directly – rather

than using a WYSIWYG17 editor. This is intended to allow the author to focus on

writing the content, rather than the presentation of the content.

 4.2.1.4 Wikipedia

Wikipedia [95] is an online collaborative encyclopedia which uses the MediaWiki

software [96]. MediaWiki is a collaborative authoring tool, which provides a simple

to use interface for authors. MediaWiki articles are written in WikiText, which

provides basic formatting such as hyperlinks, references, tables and headings.

MediaWiki (and therefore Wikipedia) also contains an editor for WikiText, called

WikiEditor [97]. Rather than being a WYSIWYG editor, WikiEditor automatically

inserts markup templates, to assist the user with content editing.

17 What You See Is What You Get

57

 4.2.1.5 HTML

Hypertext Markup Language (HTML) [98] is the markup language that describes the

content of web pages. HTML is ubiquitous on the web, and there are a plethora of

WYSIWYG editors designed to help content creators of all skills and abilities. For this

reason, there is a wide variety of online learning material authored in HTML.

 4.2.1.6 Portable Document Format

Portable Document Format (PDF) [99] is a commonly used file format for

documents. Many teaching materials and journal/conference articles are commonly

distributed in via PDF. It is not itself an authoring format, so it is likely that the

content was authored in one of the above formats.

 4.3 Requirements to import linear material into an AHAS

This section describes the type of data that needs to be extracted from the linear

material in order for the resulting content to be of use for creating an adaptive

course. For this purpose, we have defined a set of principles (or Requirements for

Import: RI), based on the most common implementation types of adaptive

hypermedia, as well as the requirements extracted in Section 2.9 . These principles

are to be used as a basis for creating adaptive content from many different file

formats. The principles should also be generic enough to be used as a basis for

importing content into other adaptive authoring systems. As the generic

requirements (Section 2.9) define the need of a framework as a basis, we had to

opt for a specific framework. Thus this section describes the conversion process in

terms of layers within the LAOS framework [35], whilst forming a set of

58

requirements for such an importer. Whilst the principle remains the same, some

variations are to be expected when applying a different framework.

RI1. Domain Layer

As described in Chapter 2 (via DP1), the first stage of the adaptive hypermedia

framework is the definition of the static content for the course (or references to it).

RI1.1. Domain Content should be able to match the content of the input

It is vital that the imported content maintains the content of the input. For adaptive

presentation (certainly within MOT3.0 and most current adaptive delivery engines

such as GALE [26], AHA! [23] and ADE [50]), the static material needs to be

converted into HTML. However, it is also theoretically possible that other content

types could be adaptively presented as part of an adaptive course. The importer

script needs to find a way of interpreting the input format, and, in most cases, this

means converting the format to HTML in a reliable way that preserves the

information content of the original input.

RI1.2. Content should be able to be automatically separated into several

alternatives (ideally, these should be of sufficient granularity, and

‘standalone’ pieces)

If the first requirement is fulfilled, at least reproduction of the input material is

guaranteed. This requirement ensures that some form of adaptation is possible: if

the whole content is converted as a single block, and cannot be divided, then no

content alternatives will be present for the adaptation strategy, so all end-users will

59

by default need to see exactly the same content. Hence, this requirement is

essential to ensure at least some degree of personalisation.

The exact degree depends on a number of factors, one of them being the

granularity of the extracted material. The main challenge here is that the concepts

and attributes automatically extracted should be of a sufficient granularity for

adaptation [51], as described in Section 2.5.1.1 .

With static material, most authors are comfortable with the idea of dividing a

document into sections with headings. Using these headings it is often possible to

divide the content into concepts – such as the way that Interbook uses a

document’s header styles [100]. However, depending on the author, there is no

way of guaranteeing that these pieces are of the required granularity (the sections

could be quite large, and hence personalisation in the form of showing or hiding a

particular section, or replacing it with another, might not make sense).

Moreover, another issue is that the extracted concepts might not be of a

‘standalone’ type. In many documents, there may be sections that make references

to a previous section or to a section that is still to come. In a linear presentation

(such as a static website, or document) such linking phrases do not matter.

However, if these sections are to be presented in an adaptive manner, their order

may depend on personalisation parameters. In such a situation, it is quite possible

that a reference of the type ‘see previous section where this notion is explained’ is

not at all relevant for the personalised order of the sections (the section referred to

may not have been seen by the user yet, and may never be shown to the user, if so

60

decided by the adaptation algorithm). In the process of manually authoring for

adaptation it is a known error to include embedded, implicit18 references. However,

when importing previously created linear material, such implicit references cannot

be disregarded.

RI1.3. Relationships between concepts should be able to match relationships

between elements of the input

Usually, static documents, regardless of the input format, do not have any explicit

relationships between their elements. On the other hand, adaptive hypermedia

content is mostly represented as a map of concepts, linked via various relationships

(depending on the complexity and flexibility of the model used).

However, static documents often have one implicit relationship structure: most of

them have a chapter-(sub-chapter)-section structuring, which allows for the

extraction of a hierarchical relationship structure. From a more technical point of

view, depending on the file type of the static document, it is often possible to

extract a structure that is based on the importance (size) of the headings – thus

creating a domain with a simple logical structure that matches the layout of the

input file.

Although the structure of the course in terms of prerequisites is of a pedagogical

nature (and is to be maintained at a ‘goal’ level in any system based on the LAOS

framework), the Domain should define the hierarchical structure of the course.

Concretely, in the case of MOT3.0, this means that the Domain should be divided

18 Such as ‘see below’

61

into a hierarchical structure of concepts, with each concept containing a number of

attributes.

RI1.4. The importer should provide a variety of alternative attribute styles

Another important aspect of creating a Domain is the number of different attribute

types that can be extracted for each concept. As described in Chapter 2, attributes

should be used to describe concepts in a variety of different ways, depending on

the adaptation strategy used. For instance, when dealing with a strategy that caters

for different learning styles [17], [18], [101], it may be advantageous to provide (for

instance) separate text, image and video attributes as alternatives to be displayed

for each concept.

To maximise the utility of the static content, therefore, the importer should be able

to extract (and identify) different types of content. Some media-based attributes

(e.g., text, image, video, etc.) can be easily identified based on the way they are

included in the source document (for instance, via an tag or MIME type).

However, other sections – such as introduction, conclusion or exercise – can have

more subtle distinctions, and are therefore more difficult to detect and

automatically extract.

RI2. Goal Layer

The LAOS model recommends that the next stage of the authoring process is to

create a Goal Map. This results in a number of requirements, as below.

RI2.1. The resulting Goal Map should have a pedagogically useful structure

62

As described in Chapter 2, the Goal Map imposes an order and pedagogical labels

onto the Domain content. In its simplest form, the Goal Map can replicate the

hierarchy (and order) of the Domain Map – based on the ‘parent’ relationships. This

mimics the behaviour of the ‘Convert to GM’ function within MOT3.0, when

creating non-imported Domain and Goal Maps. The semantics of this is to convert

hierarchical relations (which are inherently domain relations) into prerequisites

(which are inherently pedagogical relations). In simple terms, this would suggest, in

general, reading higher level chapters first, before reading sections. However, the

exact pedagogical meaning of such a hierarchical goal-level structure would be

determined by the adaptation strategy.

 4.4 Recommendations for creating adaptation from linear material

The requirements RI1.1 to RI2.1 are reasonably straightforward to implement, since

they only require some simple conversions to be applied to the original input

document. However, by definition, the static content has no way of describing how

the adaptation should be implemented. Indeed, an important principle of the

content importer (and of LAOS in general) is that the static content can be reused

by many adaptation strategies. For this reason, the adaptation side of the import

process is not as rigidly defined, and may require more creative input from the

author.

On the other hand, imported static content cannot directly be deployed in adaptive

hypermedia, without an adaptation strategy allocated to this content. In its

simplest form, a basic strategy that shows everything can be applied. This is of

course not adaptive, because it will show all content to all users regardless of their

63

profile. However, it will at least render the imported content usable, and in fact be

no worse than the original content, which was also static and linear. If authors are

not satisfied with this simple presentation, they would have to create the

adaptation specification manually. Here we introduce requirements that move

away from this baseline, adding actual adaptivity automatically, and thus

potentially requiring less manual intervention and manual authoring.

RI2.2. Where possible – labels should be added

Depending on the strategy, the goal map also needs to be labelled with

semantically-rich labels and weights. The static material is unlikely to contain any

usable metadata. However, depending on the format of the original document, it

may be possible to use data-mining techniques to interpret the input and generate

labels for each section (and therefore, groups of sublessons). This could be further

enhanced by using Semantic Web technologies (such as RDF [91] and OWL [102]) to

crawl the web and identify metadata about the static document's concepts.

RI3. Adaptation, User and Presentation Layers

To fully automate the process of creating an adaptive course based only on static

materials, the system would need to choose (or even generate) an adaptive

strategy. In this context, the strategy that would need to be created for the

importer would deal with the final three layers of the LAOS framework: the

Adaptation, User and Presentation layers, which for our purposes are all specified

within a LAG file [61].

64

RI3.1. The importer should provide one or more template strategies

Static content contains no information about how to automatically determine

which strategy should be used. Indeed, the static content should be usable by a

variety of strategies. One solution to this problem would be to default to a 'Show

all' strategy, which would be able to show the content with no adaptation

(therefore resembling the original static document), as described previously.

However, it is possible that the static content might describe concepts in a variety

of different ways (see requirement RI1.4). For instance, if an input source clearly

has image, text and video elements within each section, it might be appropriate for

the importer to automatically select a multimedia strategy (as defined in Section

2.6.2.4). Alternatively, if enough semantically rich labels can be acquired for the

content (see recommendation 2.1), it may be possible to create a template (or

suggested) strategy, based on these labels, such as a beginner-intermediate-

advanced strategy (as defined in Section 2.6.2.1).

 4.5 File Formats

It is also important to consider exporting to useful19 file formats for such an

importer, primarily to ensure the possibility of reuse. For instance, although the

case studies presented later on in this chapter are extensions to MOT3.0, it is

19 'Useful' is used here instead of 'standard' or 'commonly used', etc., because there are no

standards for adaptation yet. Ideally, popular formats should be used, but importantly,

formats without information loss should be applied (i.e., if adaptation functionality has

been generated in the import, this should still be present in the output format).

65

important to note that rather than importing the static content directly into the

database, the extension works by transparently creating a CAF file [3], and then

importing the CAF file into the system.

This principle of this requirement demonstrates the necessity of using an

established framework for static content description as advocated in Section 2.9.2 ,

and ensures that if future development of the MOT system requires the database

structure to change, the extensions will be future-proof as long as the new

authoring (or delivery) system can import CAF files (and this format remains

backwards compatible).

To some extent, this requirement is implicitly available if the authoring tool already

has export facilities for relevant, useful formats, so we will not go into further

details here.

 4.6 Semi-Automatic Authoring

Although the factual Domain content can be imported from static materials, it is

likely that authors will still need to edit the course, for fine-tuning. The semi-

automatic authoring process has two principal uses, which can be characterized by

pre-import and post-import editing.

 4.6.1 Pre-import Editing

Pre-import editing occurs when the author modifies (or creates) the content of the

original document, with the primary purpose of converting the document into an

adaptive course. This requires the author to understand how the importer will

interpret the content. For instance, Interbook[27] primarily supports pre-import

66

editing (although advanced users can edit the HTML/LISP [103] code directly), since

the author normally creates/edits the source Word document with the knowledge

of how Interbook will interpret the document. Moreover a lot of the content of the

document (i.e., the comments) is specifically created to express the adaptation.

 4.6.2 Post-import Editing

By contrast, post-import edits can be made after the author has imported the

document. This would be especially useful when used in conjunction with pre-

existing learning materials that were created for non-adaptive delivery (e.g.,

existing lecture slides). After the static material has been processed by the

importer, it is often likely that the author would need to manually edit the content,

or at least label the content to apply an adaptation strategy. As explained in Section

4.4 the importer will be unable to definitively apply metadata or a complex strategy

to the static material, so it is at this post-import editing stage when the author can

edit the metadata and choose (or create) an adaptation strategy.

 4.6.3 Two Use-Cases for Semi-Automatic Authoring

To illustrate the requirements above, we present in the following two use-cases for

semi-automatic authoring.

 4.6.3.1 Reusing Existing Content

Rather than recreate entire modules from scratch, many content authors may want

to reuse existing content [104]. For instance, a lecturer might want to create an

adaptive course based on a module that has been previously taught (offline) in a

university (for instance, as revision material [105]), or content that has previously

been delivered using a non-adaptive LMS. Alternatively it is possible that an

67

adaptation specialist (with a background in pedagogy) might acquire a repository of

static content, and want to create a series of adaptive courses based on this

content. The semi-automatic importer described in this chapter can assist with this

reuse process. The process is called semi-automatic, and not automatic, because, as

described above, the author might decide to do some post-import editing on the

resulting Domain and Goal Maps, and would have to select (or create) a relevant

strategy, and apply the appropriate metadata.

 4.6.3.2 Authoring Content using more Familiar Tools

Rather than learning how to edit content within the AHAS, it is likely that a content

author would like to author using the same software that they usually use. This

removes the requirement from the author to change their working routine. If the

content author understands how the static material will be interpreted, they should

be able to do most (or potentially all) of the content creation within the more

familiar word processor (pre-import editing), with or without some (minimal) post-

import editing.

 4.7 Case Studies for Semi-Automatic Authoring Importers

This section describes the creation of two semi-automatic authoring filters, which

can interoperate with some of the most frequently used authoring tools. However,

it should be relatively easy for programmers to create converters for other content

types, based on the principles described in this chapter. The filter should then be

documented to allow the author to structure the document in a way that can be

delivered adaptively (pre-import editing).

68

 4.7.1 Import Case Study 1: MediaWiki

MOT3.0 provides the ability to download the contents of any named MediaWiki

[96] article (e.g., from Wikipedia [95]) and split the article into different concepts

according to its structure. We particularly chose to target MediaWiki because of its

popularity, and its hierarchical article structure which can be easily converted to a

domain map.

As described by the sections above, the purpose of this MediaWiki importer serves

the two important roles.

 4.7.1.1 Reuse of existing content (post-import editing)

We considered that, due to the popularity of Wikis, and the extent to which they

cover various subjects, many authors may find it useful to base a particular adaptive

course on pre-existing content from a Wikipedia page. For instance, if an author

wants to teach a course about PHP, they might find it useful to divide the content of

the course into sections. By importing the already existent PHP article [106] from

Wikipedia into MOT3.0, these concepts will be automatically created from the

sections (including History, Usage, Security and Syntax) along with the text content

of the different sections. The author could then do some post-import editing within

MOT3.0 to change the content (or structure) of the article, if required. Of course,

this being Wikipedia, it would be strongly recommended to the content author to at

least check the factual accuracy of the article, in a post-import editing phase.

 4.7.1.2 Creation of new content (pre-import editing)

There might be some authors who regularly contribute to Wikipedia, and are

therefore more comfortable with the idea of using the wiki mark-up language to

69

create formatted content. One way of catering for these authors would be to install

a local MediaWiki [96] on the authoring server, which has the primary purpose of

feeding content into adaptive courses. The author could then freely write their own

content (or modify existing content) within their installation, without fear of

rendering the common version unusable for generic purposes. The author could

then use the importer to transform the article into a Domain Map and Goal Map.

 4.7.1.3 Interpreting a Structure from MediaWiki

The first iteration of this importer script uses a PHP script to download the WikiText

contents of the named article, which then parses the wiki markup20 to extract the

individual sections of the article, and their level within the article by counting the

number of ‘=’ signs around the header. An example of this syntax is shown in Figure

4.1, with the extracted hierarchy shown in Figure 4.2.

Figure 4.1: Some sample WikiText from the PHP article [106]

Separating the content of the article in this way fulfils requirement RI1.2 (in the

sense that separation is guaranteed and that a variety of content alternatives is

created, in the form of sections) since the granularity of the concepts matches the

20 http://en.wikipedia.org/wiki/Help:Wiki_markup

==History==

PHP originally stood for...

===Release History===

Beginning on June 28, 2011...

==Usage==

70

granularity of the article’s sections. This assumes that the smallest indivisible unit of

content is the article's sections, otherwise more division would be required to fully

satisfy RI1.2.

Interpreting the level of the headings allows hierarchical relationships to be

generated that match the outline of the original article (thus satisfying requirement

RI1.3, by generating at least one type of relationship between extracted domain

concepts). An example of an imported Wikipedia page is shown in Figure 4.2.

Figure 4.2: Imported Domain map in MOT3.0 based on the PHP article [106]

The importer script created in this first iteration automates other PHP scripts from a

local installation of MediaWiki to convert each section of the article into HTML.

However, the first iteration of this importer could not import the images – thus only

partially fulfilling requirement RI1.1. Please note that this issue was later fixed, and

is documented in Section 4.7.1.7 .

71

The required local installation of MediaWiki could also be used directly by the

author for writing the content (as described in Section 4.7.1.2).

The accompanying Goal Map also matches the structure created for the Domain

(interpreting hierarchical relationships as pedagogical relations, as explained

previously), which can be used with a show-all strategy (fulfilling RI2.1 and RI3.1). If

the authors wish for a more complex strategy, it would require them to manually

add their own labels (and weights), and choose (or create) an adaptation strategy.

 4.7.1.4 Evaluation

As part of the evaluation with the Romanian students described in Chapter 3, the

students were also asked about the Wikipedia importer21. As with the previous

questions, the Wikipedia specific questions were based around a Likert scale. The

questions were:

1. Do you like the theoretical idea of using Wikipedia content in Domain Maps

and Goal Maps? The ability to import content from Wikipedia would be:

Very Useful, Useful, Not Useful, Useless

2. What do you think of the structure of an imported Wikipedia article in

MOT3.0? The structure created by the importer is:

Completely Preserved, Mostly Preserved, Partly Preserved, Mostly Destroyed,

Completely Destroyed

21 Although the importer supports any compatibly MediaWiki installation, for simplicity the

evaluation limited usage of the importer to Wikipedia

72

3. What do you think about the speed of importing a Wikipedia article? Speed

of importing is:

Fast, Adequate, Slow, Too Slow

 4.7.1.5 Evaluation Results and Discussion

As described in the previous chapter, the students were not obliged to complete

the questionnaire. 13 of the 25 Web Application Development students and 18 of

the 39 Semantic Web students responded. Out of the 31 responses to the

questionnaire, 20 said they thought the ability to import from Wikipedia would be

very useful, with 10 saying it would be useful. The remaining respondent said it

would be not useful, adding a comment which said that given that Wikipedia

contains some information which isn’t correct, maybe the importer could help to

propagate erroneous information. This comment raises a widespread concern

[107], [108]. However as described in the above sections, it is hoped that a

responsible content author would only use the imported content as a starting point

for the lesson, rather than simply publishing the contents unchecked and unedited

(where necessary).

When asked about the structure of the imported content, 10 out of 31 (32.26%)

said they thought it was Completely Preserved, 12 (42%) said it was Mostly

Preserved, and 6 said it was Partly Preserved. Of the remaining two users, one said

they didn’t know “how to check” – which suggests the question may have been

misunderstood – whilst the other user said that they didn’t manage to import an

73

article. However, this latter user also said they “thought it was stuck, but it wasn't,

maybe it's because of my internet connection”.

13 out of 31 users (42%) said the speed was Fast, and a further 11 (35.5%) said the

speed was Adequate. 2 of the users said the importer was Slow, with 5 users saying

it was Too Slow. However, some of the comments such as “First, I chose Car as the

article. And it stops responding until I restarted my computer and tried another

article”, sound as if it might have been an internet connection problem.

Nevertheless, speed was one of the issues that remained to be re-analysed and

worked on for the follow-up implementation.

 4.7.1.6 Second Evaluation

A second (short-term) evaluation was also performed at the University of Warwick

with six volunteer course authors and designers. Each participant was experienced

in the process of both teaching and web-design. Further aspects of this evaluation

are documented in Section 6.6 . The authors were all already familiar with Adaptive

Hypermedia. Each user was given a short demonstration of the system, and a

chance to experiment with the different features.

With regards to the Wikipedia importer, the course authors and designers were

asked the following.

What do you think about the usefulness of importing other content into

MOT3.0?

Being able to import Wikipedia content as domain maps is:

74

Very Useful, Quite Useful, Slightly Useful, Not Useful

Being able to import Wikipedia content as goal maps is:

Very Useful, Quite Useful, Slightly Useful, Not Useful

In this experiment, all six respondents said they thought that being able to import

Wikipedia content as domain maps was Very Useful. For importing Wikipedia

content as goal maps, 4 out of 6 said it was Very Useful, whilst the other 2 said it

was Quite Useful.

This evaluation also provided useful qualitative feedback from the course

authors/designers. Specifically, with regard to importing, one respondent said “The

content needs to be expanded. How about movies (YouTube)? Flash presentations?

Websites?”, whilst another said “This is a very nice feature but needs to be

extended. In particular – images!”.

Whilst the above questions ask about the general idea of these import features, the

content creators were also asked more specifically “What do you think about the

functionality of importing content into MOT3.0?”, with the following 4 sub-

questions.

The content of the imported Wikipedia article is:

Good, Sufficient, Bad, Insufficient

The number of attributes extracted from an article is:

Good, Sufficient, Bad, Insufficient

75

The type of attributes extracted from an article is:

Good, Sufficient, Bad, Insufficient

Speed of importing an article is:

Good, Sufficient, Bad, Insufficient

Question Mean StdDev T P
The content of

the imported

Wikipedia

article

1.667 0.516 7.91 0.001

The number of

attributes

extracted from

an article

1.5 0.548 6.71 0.001

The type of

attributes

extracted from

an article

1.333 0.516 6.32 0.001

Speed of

importing an

article

0.333 1.033 0.79 0.465

Table 4.1: Results and t-test statistics of the Wikipedia question

Table 4.1 shows the results of a one-sample t-test against an expected score of 0.

The content creators appreciated the content of the imported article, with 4 out of

6 saying the content was Good, and the other 2 saying it was Sufficient. Similarly, 3

out of 6 said that the number of attributes imported was Good, with the rest saying

it was Sufficient. However, only 2 out of 6 thought the type of attributes extracted

from the article was Good, with the other 4 feeling it was Sufficient. The comments

about this recommended that images from the article should also be imported

(which was also requested in the Romanian evaluation).

There were, however, a few concerns about the speed of the import process, with 4

out of 6 saying it was Sufficient, and the other 2 saying it was Bad. Since the time

76

taken for importing an article is proportional to the size of the article, one comment

suggested that it would be beneficial to inform the user of how long the article is

before the import. Another way of improving this would be to provide a progress

bar.

 4.7.1.7 Importing Images

In response to the user feedback from the above evaluations, a second stage of the

importer was implemented, which also allowed for extraction of the images from

the MediaWiki article. This was achieved by sending a request to the MediaWiki API

[109] – in this case to Wikipedia, using a URL such as:

http://en.wikipedia.org/w/index.php?title=$articleName&a

ction=render

where $articleName is the name of the article to be imported.

The above URL returns the rendered HTML content of the page, without the

Wikipedia skin. This removes the necessity for the local installation of a MediaWiki,

and ensures that the article is rendered using the most accurate (up-to-date)

version of the MediaWiki rendering engine – therefore guaranteeing that it will be

as close to web-based version of the article as possible. This import method also

provides a speed increase over previous versions.

For each section heading of the article, a new concept is created, with a title

attribute. A text attribute is then also added, containing the HTML content of the

section (the HTML between the current heading and the next heading).

http://en.wikipedia.org/w/index.php?title=$articleName&action=render
http://en.wikipedia.org/w/index.php?title=$articleName&action=render

77

This method of importing does not download the source WikiText of the article

(only the rendered HTML) – so a change in the way that relationships are extracted

was also required. Instead of interpreting the structure from the number of ‘=’ signs

around the heading, the new method parses the HTML for the ‘Contents’ box at the

top of the article (an example of the HTML is shown in Figure 4.3).

Figure 4.3: Extract from the HTML of a Wikipedia contents box – extract based on PHP article [106]

 4.7.1.8 Further improvements to the MediaWiki Importer

Although the first and second version of the importer create only title and text

attributes for each concept, a third version was created that could separate the text

from the images. This could then be automatically paired with a multimedia

strategy (defined in Section 2.6.2.4) that (depending on the user’s preference)

could show either the images, the text or both.

Similarly, version 3 of the importer is able to download the ‘information box’ of the

article. It is then inserted as an ‘infobox’ attribute into the root concept of the

article – or alternatively it could be appended to the text content of the root

<li class="toclevel-1 tocsection-1">1 <span

class="toctext">History

<li class="toclevel-2 tocsection-2">1.1

Licensing

<li class="toclevel-2 tocsection-3"><span

class="tocnumber">1.2 <span

class="toctext">Release history

view-source:http://en.wikipedia.org/w/index.php?title=PHP&action=render#History
view-source:http://en.wikipedia.org/w/index.php?title=PHP&action=render#Licensing
view-source:http://en.wikipedia.org/w/index.php?title=PHP&action=render#Release_history

78

concept. Separating each of these types (text, image and infobox) into different

attributes would help to fulfil requirement RI1.4 to a greater degree.

Note that because of the variety of content available on Wikipedia, there was no

obvious way of specifying the adaptation labels, and therefore RI2.2 has not been

implemented. This also means that the default adaptation strategy for an imported

Wikipedia article is a show-all strategy (RI3.1).

In 2010, as part of the ‘Dynamic Web-based Systems’ module, a fourth year project

group implemented some of the principles described in this chapter by extending

the Wikipedia importer to create a way of crawling an entire category page[110].

Figure 4.4: An imported Wikipedia category page, with labels and weights according to the importance of the
page

79

In their implementation, when the user imports a category page, the script

(recursively) imports all pages that belong to that category, and also looks at how

many links there are to that page, therefore providing a form of measurement of

the importance of the page. This is a similar technique (although extremely

simplified) to that used by search engines to rank the importance of pages [111].

This importance is then scaled as a percentage, and is added automatically as a

weight to the page’s sublesson by the importer. This means that the imported

course does have some interesting semantic pedagogical labels and weights (thus

implementing RI2.2), and allows a strategy to be created which only shows the

most important pages in a particular category (RI3.1).

Chapter 11 describes another method of extending the Wikipedia importer to

extract semantically meaningful relationships between domain concepts.

 4.7.1.9 Future improvements to the MediaWiki Importer

Note that – as with all imported content – besides checking for accuracy, we are

expecting the author to check for copyright issues surrounding the imported

images. For a more automatized solution, future improvements could look up the

licences of the images from the Wikipedia file metadata, and inform the user of

how the image may be used.

Future research could also add text mining techniques to the importer. For instance

a keywords attribute could be created for each concept, based on analysis of the

text content. Moreover, a follow-up version of the system could allow the links in

the MediaWiki article to be crawled, thus generating a larger domain map. The

80

question here is what the ideal depth of this import is (e.g., links in the article are of

depth 1, links of links are of depth 2, and so on). It is clear that it should be smaller

than six, because this may end up with a very large part of the Internet, as there are

clearly parallels to the “Six degrees of separation” idea [112]. Dolan [113] has

investigated a similar principle using links between Wikipedia articles. Links

between articles on Wikipedia provide a way of inferring a relationship between

these articles. Future research could investigate how to crawl between articles, and

therefore be able to create more comprehensive domain maps that contain data

that span over several related MediaWiki articles.

 4.7.2 Import Case Study 2: Presentation Importer

Presentations are commonly used in education to display lecture slides. Here, we

define a presentation to be any series of slides which can be read by Apache

OpenOffice Impress. This includes the Microsoft PowerPoint (.ppt), Office Open

XML Presentation files (.pptx), OpenDocument (.odp) and the older OpenOffice.org

(.sxi) formats. Moodle also supports importing presentations from Microsoft

PowerPoint in a similar way [114].

Whereas the MediaWiki format has a predefined structure of headings and

subheadings, presentations can have a much wider variety of style (and therefore

structure). Indeed, unlike the WikiText format, these presentation file formats do

not clearly separate the ‘domain’ content from the ‘presentation’. This makes

extracting the raw ‘domain’ content from the presentations much more difficult –

therefore making reuse difficult (and, tangentially, reinforcing the importance of

81

the ‘separation of concerns’ principle (as described in Section 2.10.1) within

(adaptive) hypermedia.

 4.7.2.1 Reuse of existing content (post-import editing)

It is likely that many lecturers will have already created lecture slides using some

presentation software that is compatible with the above formats. After they have

imported the presentation, they are free to edit the imported Domain and Goal

maps (post-import editing), possibly enhancing their original ‘linear’, ‘real-world’

presentations by adding extra content, such as hyperlinks, to other resources or

videos. Similarly, it is likely that an author may wish to reuse somebody else’s

presentation slides. As with the MediaWiki importer, it is left to the author to check

for accuracy and copyright issues within the imported material.

 4.7.2.2 Creation of new content (pre-import editing)

It is also possible that a content author might wish to create original content for the

AH course, using PowerPoint. This is particularly likely if a user needs to draw a

diagram, or create a slide based on a pre-existing slide.

 4.7.2.3 Interpreting a Structure from Presentations

When the user uploads a file to the server (via the MOT3.0 import interface), the

server automates OpenOffice Impress22 to convert the file into a series of HTML and

JPEG files. This is a standard feature of Impress, to allow the presentation to be

exported to a webpage, and using an established external piece of software like this

ensures that the content can be accurately converted to domain content (RI1.1).

22 http://www.openoffice.org/

82

PowerPoint also offers this facility, however it was decided to use Impress so that it

could interact with PHP scripts from a Linux-based server.

The design decision was taken that for each slide in the presentation file, MOT3.0

will generate a concept. The presentation author will already have separated the

content separate slides, so the content should already be separated into standalone

pieces (RI1.2). Each concept will contain the following attributes.

 Title: On most slides Impress is able to automatically identify the title of the

slide and put it in an <h1> tag (and the <title> tag) at the top of the

generated HTML file. Although most presentation applications provide a

template layout for each slide, it is likely that the layout of some slides will

be drastically changed by the user (for instance to show a fullscreen

diagram), which would mean that no title can be extracted. In this case

MOT3.0 records the title as ‘Untitled’.

 Text: The HTML file also contains the HTML representation of any text

elements from the slide. Background styles and images are ignored,

however paragraph styles, bullet points and most HTML compatible font

styles (such as colour, italic and bold emphasis) are preserved.

 Image: The exporter automatically generates a JPEG file of the slide. This not

only maintains the style of the slide, but also preserves any diagrams or

images that could not be exported to the text attribute. As part of the

import process, the MOT3.0 PHP script copies the generated images into a

publicly readable folder on the webserver, and the attribute created

83

consists of an tag with a src attribute that points to the image on

the webserver.

 Notes: The presenter’s notes are also written to the HTML file (the notes

occur under a ‘<h3>Notes:</h3>’ heading). MOT3.0 can identify the

notes part and store it as a separate attribute.

We considered it is important to preserve each of these elements of the slide to

ensure that no information is lost. The aim was to extract as many different types of

attributes as possible from the original linear content. This provides alternative

methods (attribute types) for describing the same concept (slide) – therefore

adhering to requirement RI1.4. Content imported in this way could therefore be

immediately used, for instance, in a multimedia strategy (as defined in Section

2.6.2.4).

A revision strategy could also be easily created using such imported material. For

instance, if a presenter’s notes contained a more detailed script about the slide, the

learner could initially be shown the concept’s image and notes attributes. However,

when the learner returns to this slide after reading the rest of the course, the

concept might only show the text attribute, to remind the learner of the slide’s

bullet points, without making the user read the full notes attribute. Although such

strategies only use content attribute types (rather than pedagogical labels), these

example strategies fulfil RI3.1.

Currently, the hierarchies generated by the importer are linear, simply containing a

root concept for the first slide, with each other slide as a child concept of the root.

84

Since there are no direct relationships between slides (other than Next and

Previous), this basic format fulfils RI1.3. As with the MediaWiki importer, the

structure of the Goal map simply mimics the structure of the Domain map – thus

interpreting (quite straightforwardly) the Next and Previous relationships as

prerequisite relations, and fulfilling RI2.1.

 4.7.2.4 Evaluation

The presentation importer was developed after the Romanian evaluation described

in Section 4.7.1.4 , however it formed a major part of the evaluation with the six

course designers at the University of Warwick (introduced in Section 4.7.1.6). In

particular, they were asked the following (the frequency of each answer is in

brackets).

1) What do you think about importing Presentation content?

a) Being able to import Presentation content as domain maps is:

Very Useful (6), Quite Useful (0), Slightly Useful (0), Not Useful (0)

b) Being able to import Presentation content as goal maps is:

Very Useful (5), Quite Useful (1), Slightly Useful (0), Not Useful (0)

2) What do you think about the functionality of importing content into MOT3.0?

a) The content of an imported Presentation is:

Good (2), Sufficient (4), Bad (0), Insufficient (0)

b) The number of attributes extracted from a Presentation is:

Good (3), Sufficient (3), Bad (0), Insufficient (0)

c) The type of attributes extracted from a Presentation is:

Good (2), Sufficient (4), Bad (0), Insufficient (0)

85

d) Speed of importing a Presentation is:

Good (0), Sufficient (2), Bad (4), Insufficient (0)

As with the Wikipedia importer, all 6 users thought that importing presentation

content as domain maps was Very Useful. 5 out of 6 users thought importing the

presentation content as goal maps was Very Useful, with the other saying Quite

Useful.

There was also an interesting comment concerning the type of attributes extracted:

“For PPT, different ways of extracting finer granularity need revisited - e.g.,

extracting individual images from a page, extracting bullet points as separate

concepts or attributes, etc.”

This comment is interesting because it points towards a way of creating a hierarchy

out of an otherwise flat structure, and could be investigated in future research.

The major issue surrounding the importer was the speed of importing. The

processing time is proportional to the number of slides in the presentation, and

each slide took around 5 seconds to process. As with the Wikipedia importer, this is

not scalable if several users try to use the feature at the same time. The responders

commented that it would be better to have a progress bar (or some other

feedback) to show how many slides need to be imported, and provide an estimated

completion time.

86

Table 4.2 shows the results of a t-test for the presentation question against an

expected result of 0.

Question Mean StdDev T P

 The content of the imported

Presentation

1.333 0.516 6.32 0.001

 The number of attributes extracted

from a Presentation

1.5 0.548 6.71 0.001

 The type of attributes extracted from a

Presentation

1.333 0.516 6.32 0.001

 Speed of importing a Presentation -0.333 1.033 -0.79 0.465

Table 4.2: T-Test results compared with an expected result of 0

 4.7.2.5 Future Improvements to the Presentation Importer

As suggested by the evaluation comments, some progress bar information needs to

be relayed to the user. The comment described above about extracting a finer

granularity from the presentation slides (e.g. bullet points and individual images), is

also very interesting. For instance, if a slide contains animated bullet points, it

would be interesting to simulate this animation by separating the bullet points into

separate attributes. The corresponding goal model sublessons could then have a

label named ‘bullet’, with a weight relating to its sequence in the animation. The

system could then recommend a strategy which would be similar to a roll-out

strategy (defined in Section 2.6.2.2).

Future research will investigate how to analyse the titles of the slides, and structure

the generated hierarchy accordingly. For instance, if a presentation contains four

87

consecutive slides with the same title, the importer could infer a relationship

between these slides, and restructure the domain hierarchy accordingly (i.e., all

four concepts will be children of a grouping concept). However, since there is no de

facto standard for designing slides it might be difficult to reliably interpret such a

structure.

 4.8 Future Work: Extending this import principle to other formats

The previous section has provided two case studies, however the requirements

described in this chapter should also be transferable to other file formats. Section

4.2.1 described other tools that are commonly used in education. This section

describes how some of the techniques described in this chapter could also be

applied to these other formats.

 4.8.1 Microsoft Word

As with the Wikipedia category importer, a group of students from the 2010 cohort

of the ‘Dynamic Web-based systems’ module created a Microsoft Word macro to

interpret the structure of a document. It allows the user to add comments (similar

to Interbook [27], as described in Chapter 2) to define how the domain content

should be split into attributes. The macro then converts the document into a CAF

file (using Microsoft Word’s built-in HTML export feature), ready for import into

MOT, where the HTML content can be edited, and goal model labels can be added.

 4.8.2 LaTeX

Based on the recommendations provided in this chapter, it should be reasonably

simple to interpret the structure of a LaTeX document to create a well-structured

88

domain model. This is largely because of LaTeX’s focus on a WYSIWYM23 design

[115], which has a clear separation between presentation and content, and

encourages authors to divide their document into sections. It should, therefore, be

relatively easy to extract domain content from a LaTeX source file. Tools such as

Tex4ht [116] could then be used to convert the actual content to HTML.

 4.8.3 HTML

The HTML specification contains heading tags such as <h1> and <h2>, which would

itself to a clear separation of content parts. In practice, however, the way that

content authors actually implement the various HTML standards do not provide a

clear distinction between the content and presentation [117], so it is difficult to

create a reliable automated method of extracting content and interpreting the

original structure from an arbitrary page. For this reason, rather than simply

creating a generic importer, it may be necessary to develop a series of templates

that can be used to identify the most important bits of content from a web page.

Alternatively, Chapters 9 and 10 describe methods of referencing external HTML

pages, and thus reusing existing HTML pages.

 4.8.4 Portable Document Format

As described in Section 4.2.1.6 it is likely that most PDF files will have been

authored in one of the above formats. In such a situation, it is likely that the import

23 ‘What You See Is What You Mean’ – this is a clear distinction from the more familiar

WYSIWYG (‘What You See Is What You Get’) editors that have been mentioned elsewhere

in this thesis.

89

process will be more successful if applied to the original source document.

However, it is also possible that an adaptation author would wish to reuse content

from a PDF that has been created by another author. In this scenario, the author

might not have access to the original document. Future research could investigate

how to use tools such as pdftohtml [118] to convert PDFs to HTML files, and then

interpreting the HTML.

 4.9 Conclusion

This chapter has described the importance of allowing authors to be able to import

widely-used static-content file formats into an adaptive hypermedia authoring

system. We have defined a number of imperatives to describe how content can be

interpreted from its original format.

The formats that have been detailed in this chapter are designed for linear rather

than adaptive presentation. As such, the conversion process cannot extract any

adaptation information from these file formats. It is hoped that other programmers

will be able to use these recommendations to create ways of converting from other

file formats into adaptive material.

The recommendations presented in this chapter have suggested that it may be

possible to create automatic specific adaptation strategies, depending on the file

format used. However, since domain (and goal) content can be reused and taught

in a variety of different ways, there is no need to enforce a particular adaptation

strategy. Indeed, the author can make a creative and pedagogical decision about

the best way to teach the content.

90

 5 Putting it all together: The MOT Toolset

 5.1 Overview

The authoring tools described in the previous chapters have focussed on purely the

static content aspect of the authoring process. This chapter introduces a new tool,

PEAL, which focuses on allowing the author to specify the adaptivity for the

adaptive course. The chapter also expands on the requirements that were

introduced in Chapter 2 to form a set of imperatives. The chapter also describes the

usage of these systems by a 4th Year Computer Science module.

 5.2 Imperatives for Authoring

Chapter 2 suggested, and evaluated, tools with respect to a series of requirements.

Whilst these requirements are useful for evaluating the current state of the

authoring tool, the evaluations (in Chapters 3 and 4) also provide clues as to what

is required of an authoring tool. It is, therefore, also necessary to revisit and refine

the requirements.

Hence this section builds on the design principles that were introduced in Chapter 2

to introduce a set of imperatives. These imperatives are divided into two areas;

Complexity and Support.

 5.2.1 Complexity Imperatives

The following imperatives are extracted based on requirements that address the

problem of complexity within adaptive hypermedia authoring systems.

CI1. Separation of concerns: The authoring system needs to allow the

user to separate adaptive content from static content, and, preferably,

91

separate other elements of adaptation (such as user model or presentation

model data). This provides flexibility and reusability as described in 2.9.1 .

CI2. Use of frameworks: As described in 2.9.2 (DP1) frameworks usually

already implement CI1, the separation of concerns, so using a framework is

a straightforward way of respecting this principle. Frameworks are also a

preliminary form of standards, as systems obeying the same framework can

more easily build interfaces between them. Using frameworks (or models)

thus ensures compatibility, some form of separation of concerns, as well as

a more rigorous methodology (moving away from the early trial-and-error

approaches to building adaptation). Basing an authoring system on an

established framework is, therefore, a straightforward way of conveying

lessons learnt from previous research.

CI3. Use of standards: Ideally, standards could replace the use of a

framework, if they would be able to reproduce all aspects of the authoring

process. However, the adaptation process of adaptive hypermedia is not yet

standardized. To ensure a wider range of reuse, standards should be used

where possible. Thus, e-learning standards should be used where possible

for adaptive e-learning systems.

 5.2.2 Support Imperatives

Since authoring for adaptive hypermedia is relatively new, and authors may be

unfamiliar with the complexity of the authoring process, it is important that the

system caters to the author’s needs. We have grouped the imperatives resulting

from this into the category of support imperatives.

92

SI1. Simple access to (content) pieces that need to be reassembled for different

types of adaptation. This requirement is a refinement of the usability principle

described in 2.9.2 . In particular the system should allow the author simple access

to the following.

 Reordering of the domain/goal maps (or equivalent).

 Labelling of sublessons (or equivalent).

 Searching to allow authors to find pieces of content that can be reused.

 Copying & pasting of concepts, attributes, sublessons or parts of

content.

 Linking between fragments of content.

 Editing of (for instance) content and strategies (where applicable).

SI2. Shallow learning curve: As with simple access to content, the system should

be easy to learn, and should allow beginner authors to use a wide variety of

features in simple ways.

SI3. Familiarity: The system should be familiar to the author, and thus use as

many conventions as possible which are familiar to the author – such as

functionality, formats, etc. In particular, the system should provide the following.

a) Consistency with existing applications and systems: The

functionality and representation should imitate, where possible, types familiar to

the author (e.g., Microsoft Word, Internet Explorer and Mozilla Browsers, etc.). This

imperative mirrors the principle set out in DP3.

b) Interoperability with familiar content creation formats: The system

should be able to extract information from more traditional learning resources,

93

such as presentation files. Where possible, the system should be able to

automatically convert these files into adaptive material. This imperative is based on

the principles identified in Section 2.9.2 (DP2.a) but it is more generic, as it, in

principle, encompasses any familiar content creation formats, rather than just

linear formats. Moreover, the stress is on the familiarity of the format, and not on

the fact that it is a linear format or otherwise. For instance, graph representations

(e.g., RDF [91]) should also be considered for import. In reality, adaptive content is

rarely familiar to authors, and it is even rarer for such a format to be directly

importable. The principle described in DP2.a concerning reuse of content was

dropped as a separate requirement, as it is now included in the overall Support

Imperatives (described above).

c) Interoperability with familiar course creation standards: The system

should be compatible with standards used in many other (e-)learning systems, for

instance SCORM, LOM, IMS-CP, IMS-QTI and IMS-LD – this is based on the principle

described in DP2.a.

d) Interoperability with familiar course creation systems: The system

should be able to import (and export – possibly with some loss of adaptivity) to

Learning Management Systems (LMS), which (as described in Chapter 2) are

currently widely used for the creation and delivery of online material.

SI4. Adaptive functionality: The authoring system should adapt, where possible,

to the needs of the author, suggesting relevant features (note that this is

independent of the adaptation to the learner).

94

 5.3 The MOT Toolset

The MOT toolset consists of two separate authoring tools; MOT3.0.1 and PEAL.

 5.3.1 MOT3.0.1

MOT3.0.1 provides the authoring environment for the creation and editing of static

material that is necessary for the building of adaptive courses. This includes

structuring the content, separating it into relevant concepts, and adding metadata

and pedagogical labels.

The evaluations documented in Chapters 3 and 4 highlighted that students

preferred (with confidence of 95%) reordering hierarchies for domain maps and

goal maps and navigation via the menu in MOT3.0. They also showed preferences

for browsing domain maps and goal maps, creating new domain maps and goal

maps, copying concepts and linking between concept maps, and using the HTML

editor to edit attributes in MOT3.0. They also liked the structure of imported

Wikipedia articles, and the idea that they could import them. However, this

approval for the Wikipedia importer was not statistically significant.

There were, however, two features where there was a preference shown for

MOT1.0. These features were adding/deleting concepts, and manually creating goal

maps. After these evaluations, this feedback was taken into account, and the

system was updated, to create MOT3.0.1 (as described in Chapter 3). Please note

that this change from MOT3.0 to MOT3.0.1 was a relatively minor change (in

response to bug reports and usability feedback), so many of the principles

described in this chapter also apply to MOT3.0.

95

 5.3.2 PEAL

To build a complete adaptive course, the adaptation specification has also to be

written. For this reason, the MOT toolset also contains PEAL [53], the adaptation

strategy editor. PEAL was written by Jon Bevan, an undergraduate student at the

Computer Science department of the University of Warwick, as part of a third year

BSc project, and provides a basic integrated development environment (IDE) for the

LAG language [53]. In theory, the adaptation strategy in LAG could be written in any

text editor. However, PEAL offers a number of additional features, as follows.

 Syntax highlighting: Different coloured highlighting depends on the type of

keyword used (e.g., reserved word, invalid/valid syntax, variable, etc).

 Auto-Completion: When a user types a statement, a drop-down menu

appears with suggestions from the LAG grammar.

 Strategy Library: Users can save their completed strategies to the web-

based storage. There are two types of storage:

o Private: With read-write permissions given only to the strategies

author;

o Public: With read permissions given to all users – the author has

read-write permissions.

Alternatively, the user can download the strategy (as a .lag file) to their local

file system. The strategy library feature, coupled with the ability to exchange

LAG files with other users, allows reusability of adaptation strategies.

 Code Fragment Library: Similar to the strategy library, the code fragment

library allows authors to save small sections of code that can be used again

96

in other strategies. As with the strategy library, code fragments can be saved

as either private or public. This feature extends reusability to smaller

snippets of code, thus enabling finer grain reusability.

 Strategy Wizard: This provides a basic dialog box to encourage the user to

specify a description for the strategy, and allows the user to choose which

variables will be used by the strategy. This is aimed at the beginner

programmer, and gives them templates for the programs they wish to build.

PEAL can now be combined with MOT3.0.1 to form the ‘MOT Toolset’, an adaptive

hypermedia authoring system that allows authors to create both static content and

adaptation content.

 5.4 Authoring Imperatives applied to the MOT Toolset

This section describes the two authoring tools from the MOT toolset (MOT3.0.1 and

PEAL) with respect to the imperatives described in Section 5.2 . This evaluation is

not based on user feedback, but on the evaluation of the design and

implementation aspects and how they map (or not) onto the imperatives. An

evaluation with users is done separately, and is presented in Section 5.5 .

 5.4.1 MOT3.0.1

This section describes how MOT3.0.1 respects the set of complexity and support

imperatives defined in Section 5.2 .

CI1. Separation of concerns: As previously explained, MOT3.0.1 is dedicated to

authoring and labelling of content only. Adaptation strategies need to be edited via

a different tool. Thus, MOT3.0.1 obeys principles of separation of concerns.

97

Moreover, it also distinguishes between domain (map) authoring, and pedagogical

(goal map) authoring. Domain maps allow the bundling of domain concepts into a

hierarchical structure with attributes that describe the domain content. Goal maps

allow adaptation parameter attributes to be specified. Here, these attributes are

weights and labels, which, in an educational context, can be used as pedagogical

labels. Also, the tool allows separation of roles of authors: an author working with

MOT is a content author, and can be different from the adaptation author.

CI2. Use of frameworks: As with previous versions of MOT, MOT3.0.1 is based on

the LAOS authoring framework.

CI3. Use of standards: To ensure interoperability with other, more established,

educational systems, MOT3.0 and MOT3.0.1, (unlike MOT1.0), are able to import

content from SCORM, IMS-CP and IMS-QTI. This allows content that has been

authored in a Learning Management System (LMS) such as Moodle or Sakai to be

reused within an adaptive course. Of course, this means that labels and metadata

describing adaptation characteristics still need to be added manually after the

import. This can be performed in the tools, after the import. Thus, whereas import

is possible without information loss, export to such standards would lose the

information about adaptation metadata, which is not expressible via the standards.

Hence, MOT3.0 allows for enhancement of linear content with adaptation

metadata.

98

SI1. Simple access: MOT3.0 provides a new interface for creating and loading

Domain and Goal map content. MOT3.0 (and therefore MOT3.0.1) addresses the

‘Simple access’ imperatives with the following features.

 The JavaScript tree display allows the author to quickly rearrange a

hierarchy in the browser, and then use AJAX to save the new structure to

the server. Trees in MOT1.0 were generated as static HTML by server-side

Perl scripts, and were much more cumbersome to manoeuvre. This tree

aims to make it easier to reorder domain maps and goal maps as well as

labelling them. The tree structure does not require the page to be reloaded

after every small operation. This provides a smoother user experience by

limiting the number of page refreshes (see Section 3.2) therefore it

improves the speed and look & feel of the copying & pasting and linking

aspects of this imperative.

As described in Section 3.6 , MOT3.0.1 improves on MOT3.0 with regard to

labelling sublessons by allowing multiple sublessons to be selected at the

same time – thus speeding up the process of labelling items.

 MOT3.0 added a search facility, which is also implemented using Ajax. The

search facility is employed in many aspects of MOT3.0.

Specifically, MOT3.0 allows users to type a search term, and to choose a search

scope (as shown in Figure 5.1). This allows users to find content based on any

combination of the following content types: Concept Map (Domain) Titles, Goal

Map Titles, Keywords and Concept Titles. Rather than searching for entire concept

99

maps, the Keywords and Concept Titles scopes allow the user to search for

individual concepts.

Figure 5.1: Search functionality in MOT3.0

Although the search functionality is available to users at all times through the

navigation menu, it is also provided when performing copying/linking operations.

For instance, if a user wishes to copy from one domain to another, the user is

presented with the search form, allowing them to more quickly find the domain

that they want to copy from.

 Simple editing is essential for adaptive authoring systems. To make it easier

for non-technical authors to use HTML within their courses, MOT3.0 adds a

WYSIWYG HTML editor, allowing authors to input text either in a rich text

(X)HTML editor, or in plaintext source mode. This replaces MOT1.0’s simple

editing window, which provided no formatting options and only allowed for

simple text or manually-written (or pasted from other tools) (X)HTML input.

100

SI2. Shallow learning curve: An adaptive hypermedia authoring system must

emulate an adaptive delivery engine, in that it needs to adapt to the user – here,

the author or (in the case of adaptive educational hypermedia) the teacher. It is

therefore necessary that the interface can easily update content based on new

information about the author’s current purpose. Thus, to provide a smoother user

interface, instead of a frames-based layout that was used in other adaptive systems

(e.g. AHA! and MOT1.0), an Ajax interface was built. This allows data to be

synchronized with the server without the need for frequent page refreshes,

meaning the menu can be smoothly updated to provide context-sensitive options –

as described in Chapter 3.

Both MOT1.0 and MOT3.0.1 aim for a shallow learning curve. Functions are kept

elementary, even if functionality is complex. Indeed, much of the extra functionality

that was introduced by MOT3.0 is designed to simplify the process for the author,

thus attempting to provide a shallower learning curve.

SI3. Familiarity:

a) Consistency with existing applications and systems: The drag-and-drop

JavaScript methods of displaying the domain and goal maps were created

especially to follow the more usual directory listing programs found in many

operating systems (see Chapter 3). Similarly, the WYSIWYG editor provides a

basic word processing environment similar to editors that are widely used for

101

document creation within blogging software such as Wordpress24, content

management systems such as Joomla25 or e-learning systems such as Moodle26.

b) Interoperability with familiar content creation formats: MOT3.0.1 implements

the Wiki and PowerPoint importers that were described in Chapter 4 . This adds

to the interoperability with e-learning standards, and allows for a wider range of

familiar content creation formats to be used by authors. This is especially useful

if they have already created content in these other formats.

c) Interoperability with familiar course creation standards: Chapter 4 also

described how MOT2.0 had already created methods of importing content from

other course creation systems via the SCORM, ITS-CP and ITS-QTI standards[60].

MOT3.0 also implements this importer. These standards are widely used within

other systems such as Moodle, Sakai and Blackboard27, thus also providing

interoperability with familiar course creation systems.

SI4. Adaptive functionality: As with MOT1.0, MOT3.0.1 can suggest domain

concepts that are related to another domain concept. Additionally, the system is

able to compute the similarity of concepts by comparing keywords with the content

of other attributes (and thus checking for the appearance of these special keywords

in the plain text or (X)HTML of any other attribute). MOT3.0.1 can also calculate

24 http://www.wordpress.com

25 http://joomla.co.uk/

26 http://docs.moodle.org/23/en/Text_editor

27 http://www.blackboard.com/

102

similarities by comparing all the attributes of a given concept to all other attributes

in the database.

To calculate the strength of a relation between two concepts, the ‘Concept-

oriented, relevance ranking method’ is used, as described by Hendrix et al. [80]

through the following formula:

| |
100%

| |

S T
S

S

K K
W

K


 

where KS is the set of keywords in the source concept, KT is the set of keywords in

the target concept, and WS is the weight to express the strength of the relation.

If the system is comparing non-keyword attributes, the textual content of the

attribute is divided into individual words, before the above formula is applied.

This feature is adaptive in the sense that it assists the author to find concepts based

on the current concept. However, to be truly adaptive, the system would need to

adapt to the needs of the author.

 5.4.2 PEAL

This section describes how PEAL respects the authoring imperatives described in

Section 5.2

CI1. Separation of concerns: PEAL is designed to create adaptation strategies, and

thus separates adaptation from content. Moreover, whilst MOT3.0.1 is to be used

by the content author, PEAL is designed to be used by the adaptation specification

author. This means that PEAL needs an author who has knowledge of programming.

103

However, due to the separation of concerns facilitated by the LAOS framework, the

adaptation programmer can be a different person from the content author.

Although LAG strategies are not aimed to be written by non-technical authors, they

can be reused by content authors without any such programming knowledge.

CI2. Use of frameworks: The PEAL tool is based on the LAOS framework [35], and

moreover, on the LAG framework [119] for adaptation.

CI3. Use of standards: The PEAL system does not use standards, as there are no

standards for adaptation. However, it uses the LAG adaptation language [53], and

thus promotes reuse. This means that any system that can import from the LAG

language (such as AHA! [56] or ADE [50]) can use PEAL as an adaptation strategy

authoring tool.

SI1. Simple access: To assist the adaptation language author in accessing edited

adaptation strategies and snippets, PEAL provides the following features for online

storage.

 Strategies: strategies can be saved online, in either a private or public space.

Public strategies can be seen and used by all authors. Private strategies are

to be seen, edited and used by the current author only.

 Code fragments: fragments of code can be saved for reuse within other

strategies, thus effectively building a code library that extends the language.

This library is available to all authors.

These features are intended to assist programmers in creating their strategies.

Additionally, the public storage space, and the reusable fragments, allow for

104

collaboration and reuse between authors. In such a way, simple access to programs

and snippets of programs is promoted.

SI2. Shallow learning curve: PEAL is aimed at a different type of author than MOT1.0

and MOT3.0. An author in PEAL needs to be familiar with the process of

programming. However, for an author with some programming background,

learning the PEAL language should, in principle, not be difficult.

By design, the LAG language aims to have a shallow learning curve, since it contains

a reduced number of programming instructions, no variable typing, and in general,

all simplifications possible in order to keep the learning curve shallow.

SI3. Familiarity: In addition to the features enumerated above, PEAL provides

syntax highlighting, where LAG keywords are highlighted, to allow the author to

quickly identify elements of code. This and the features listed above allow PEAL to

simulate features that authors who have programmed before will recognize from

programming environments. Thus, although they are writing adaptation strategies,

which they may not be familiar with, the environment provides the familiar

features via the background and support. Other such features are the various

buttons used for saving, opening files, calling the wizard, declaring a strategy

private or public, etc., which are based on commonly used icons.

SI4. Adaptive functionality: PEAL helps the authors to complete their work in

various semi-automatic ways, as follows.

105

 Status bar suggestions: PEAL continually monitors the validity of the code,

and suggests missing pieces of code by displaying a message in the status

bar.

 Code completion: Whilst typing the program code, PEAL allows the user to

select the correct statements, operators and variables from a list of

suggestions.

 Strategy Wizard: PEAL provides a strategy wizard that allows the author to

define and initialize variables that will be used within the strategy.

 5.5 Evaluations

In the Computer Science Department at the University of Warwick there is a

module named “CS411: Dynamic Web-Based Systems”, which runs over two and a

half months. This module is taught to a mix of Computer Science MEng and MSc

students. Part of the module focuses on adaptive web-systems, and they are

therefore required to create some such web-systems, via our set of tools, and

effectively become authors of their own adaptive courses. The coursework runs

during the majority of the module, and represents a long term, purpose-driven

(results are marked) use of our tool. The content of the adaptive courses created by

the students has to be also related to adaptive and dynamic web-based systems.

Thus there are two major learning outcomes to this coursework:

1. Research into a dynamic-web related topic of their choice and the creation

of Domain content.

2. Applying metadata and creating the right adaptation strategies for the

personalised presentation of the material.

106

In 2008, for the content creation and labelling, students worked with MOT1.0 and

in 2009 with MOT3.0. The 2008 class was composed of 23 students, whereas in

2009 the number grew to 34. In both years, the coursework involved the creation of

(original) adaptation strategies using the LAG language. However, in 2009 the

students had the support of the PEAL system, whereas in 2008 they needed to use

a text editor, as the PEAL system had not been built yet. Students performed all

their activities in groups, in both years. However, the size of groups was different:

in 2008 there were 4-5 students per group, and in 2009 there were 2-3 students per

group. The reduction of group size in 2009 was done based on the feedback and

suggestions of the 2008 cohort, who felt that more intense collaboration is easier in

smaller groups.

Students in both years, 2008 and 2009, had to perform the following stages:

 Coursework 1.1 - Simple steps with the content authoring tool (MOT1.0 or

MOT 3.0.1)

The students were taught how to use the tool, making sure they have completed

the following steps, ordered here based on their estimated difficulty:

1. Exploring Domain Maps and Goal Maps (Browsing, Viewing, Searching);

2. Working with Domain Maps (creating, editing, changing hierarchy,

coping concepts, linking concepts, defining concept relations, deleting);

3. Working with Goal Maps (converting domain maps to goal maps, adding

sublessons, changing the hierarchy, assigning labels and weights,

exporting goal maps as CAF files, deleting);

107

4. Importing a Wikipedia page (MOT3.0.1 only);

5. Importing a Presentation (MOT3.0.1 only).

 Coursework 1.2: Selecting one-two topics for which to create adaptive

content

The students had to select some topics they were interested in, to use as a basis for

their adaptive course. In 2008, the students had one topic each, whereas in 2009

each group needed two different topics. The topics were to be related to the

overall area of the course, and some suggestion list was given (including papers on

this topic [20]). However, students were also encouraged to find other topics of

interest, as long as they were related to the module, from the Internet or beyond.

 Coursework 1.3: Complex labelling, and usage of strategies

Students were required to perform the complete process of creating static content,

labelling it, and applying at least one strategy from the strategy pool. They then

converted the output to an adaptive lesson, by uploading their content and

strategies to AHA! [23], [56].

 Coursework 1.4: integration of used techniques with multiple strategies and

usable course content

Here students were asked to add at least two more strategies to their courses and

at least one of these strategies should be entirely designed by themselves, using a

text editor (2008) and PEAL (2009).

108

Students then gave a (marked) presentation of their topics of choice, and they were

encouraged to include their adaptive course in their presentations.

Finally, at the end of the course, the students were asked to present a (marked)

portfolio, consisting of four adaptive courses, comprising one or two content

descriptions (domain maps) based on their chosen topics; three or four goal maps

(here, appropriate labels, weights, etc. were important); and four adaptive

strategies. The students were highly encouraged to create innovative strategies,

marks being awarded for (amongst other things) original strategies, and

pedagogical use28.

Other minor differences were that courseworks 1.1-1.4 were marked courseworks

in 2008 and unmarked in 2009. This difference resulted from the fact that in 2008 it

was considered that marking the small steps leading to the overall end product

would encourage students to perform them in time. However, students justly noted

that they were marked for partial work, at a time when their overall grasp of the

system was not complete. Hence, whilst the steps were kept, and were obligatory

work, they were not marked in 2009 anymore. Overall, however, the students had

to perform similar quantities of work with the authoring systems, and present at

the end four adaptive courses. Even in 2008, the bulk of their mark would be for

this end-product, and not for the small initial steps. Whilst working on the

coursework, students were encouraged to provide feedback on the suite of

28 Note that whilst the students were not pedagogical experts, the students were given

extra marks for an interesting and educationally coherent strategy.

109

authoring systems that they were using. The feedback methods were direct

feedback (during seminars) and a course forum with threads for each of the

authoring tools.

 5.5.1 Usage of MOT

 5.5.1.1 Analysis of Submitted Content

 Figure 5.2 shows an example of a domain map created by one of the groups in

2008 using MOT1.0. Domain maps (such as the one in the figure) describe the

content for a specific domain of choice (here, ‘Privacy Enhanced Personalization’).

In 2008, each group created only one domain map, which they then used to apply

different (up to four) adaptation strategies. This was due to a change in the

specification of the module’s coursework between 2008 and 2009.

For comparison, Figure 5.3 shows an example of a domain map created by one of

the groups in 2009 using MOT3.0.1.

For each year, students were told to create as many domain maps as they needed

to generate their adaptive courses. In 2008, students only needed to create one

domain map (although they could create more if desired), and then use this domain

map as a basis for up to four different Goal maps, with four separate strategies.

Similarly, in 2009 students needed to create two domain maps (one for each topic),

although they could optionally create more if they felt it was necessary.

In fact, some groups created up to four domain maps, to represent their two topics.

Some groups created a primary domain map, containing the information about

their topic, with a secondary domain map that was used for defining settings. For

110

instance, one group created a course about healthcare, with a primary domain map

providing healthcare information (not shown here, as it is similar in structure to the

example domain from 2008, in Figure 5.2), and a secondary domain map containing

a series of concepts to store questions (see Figure 5.3).

Figure 5.2: A domain map hierarchy created in 2008 using MOT1.0

Figure 5.3: A domain map hierarchy created in 2009 using MOT3.0

111

Each question contained a ‘Yes’ or a ‘No’ concept, with medical advice stored in the

text attribute of the answer concept. This was a rather ingenious way of dealing

with different types of adaptation. This suggests that, although the students had

the same amount of time to perform their work, the students in 2009 (possibly due

to the simpler and clearer environment) managed to create more complex solutions

for the same problem. This is further analysed in a quantitative way, as follows.

 5.5.2 Quantitative Analysis of Submitted Content

Here we analyse, from a quantitative point of view, the differences in terms of use

of MOT1.0 versus MOT3.0 by the two groups of students in 2008 and 2009. This

means we analyse the domain maps and goal maps students have created, and the

features of these maps. The students in 2009 submitted in total 29 domain maps,

whilst the group in 2008 submitted only 4. However, this difference is due to the

fact that the 2009 class was larger, that the groups in which they were divided were

of smaller size, and that the assignment changed in that it asked for more domain

maps (only one topic in 2008, but two topics in 2009 thus resulting in an average of

3-4 domain maps per group). So a direct comparison of the quantity of the output is

not appropriate here.

However, the ultimate goal of the students was the same, which was to create

about 4 adaptive presentations.

 5.5.2.1 Statistical Significance

For each of the results in this chapter, an independent samples t-test is used to test

the statistical significance. Unless otherwise reported, any significance is reported

at a confidence interval of 95%. The t-test makes four assumptions.

112

1. Normally distributed data: Since there were a number of different measures

(such as numbers of attributes and concepts) tested from a number of

different perspectives (as described in the next section), it was impractical

to check that every dataset followed a normal distribution. However, an

informal test was used to randomly select samples of the data and plot a

histogram to check that the data followed an approximately normal

distribution.

2. Homogeneity of variance: This means that for each metric, the variance of

the samples in each year should be approximately the same. This was

verified (in SPSS[6]) using Levene’s test when performing the t-test, and

where necessary the degrees of freedom in the t-test were adjusted in

accordance to the unequal variance t-test[120].

3. Interval data: Each of the metrics used in this chapter is a number rather

than a category – therefore this assumption was met.

4. Independence: The samples (group submissions) were independent from

each other – therefore this assumption was met.

Where appropriate, the results discussion also reports the effect size (r). This is

calculated using Pearson’s correlation coefficient (as described by Field[7]), and

follows the conventions described by Cohen[121] to determine the importance of

the effect size – r > 0.1: small, r > 0.3: medium, r > 0.5: large.

 5.5.2.2 Analysis of Domain Maps

The students in 2008 opted for doing this by creating one domain map per group,

and then reusing it with about 4 strategies. However, the students in 2009 did this

113

via a greater number of domain maps. For instance, some 2009 students created

courses that used one large main domain map, with several smaller utility maps

(e.g. to store ‘settings’ information, as explained previously). This therefore

suggests that creating domain maps and reusing multiple domain maps within a

single course became easier with the new toolset.

To ensure that the content from both years can be fairly compared, and to

overcome the bias introduced by the smaller domain maps, it is necessary to

analyse the MOT3.0 statistics from three different angles.

 All Domain Maps: All the submitted domain maps were combined together.

Where groups submitted duplicate domain maps, the domain map was only

counted once. This ensured that the work performed by a group that only

submitted CAF file was counted equally with those that submitted multiple

CAF files using the same domain. Where students submitted similar (but not

identical) domain maps, each domain map was considered individually.

 Best Domain Map per group: For each group, only the most complete

Domain Map was considered. This was usually the map with the most

concepts, however one of the MOT3.0 (2009) groups submitted two CAF

files that had a similar domain structure. One of the domains contained 19

extra concepts that were added to allow a course that provided questions

and answers about the topic. In this case, the domain without these extra

concepts was chosen, since it more clearly represented how the domain

knowledge was structured, rather than being course specific. The average

therefore only considered the best of these Domain Maps.

114

 Average Domain Content per group: All the Domain Maps created by each

group were combined, grouped by the CAF file they were submitted in.

Domain content that was duplicated between CAF files was therefore

counted as many times as it was submitted. For instance, if a group

submitted two domain maps (one for each subject) and reused them

amongst four CAF files, each domain map would be counted twice. Similarly,

if a group submitted a CAF file that contained two domain maps (for

instance using a utility domain as described above), the CAF file’s average

domain content was calculated by combining the two domains together.

In all cases, where groups submitted extra files that weren’t considered to be part

of the assessed work, the extra files were removed from the analysis.

For MOT1.0, as the students only created one domain map per group, the values

per ‘All DMs’, ‘Best DM per group’ and ‘Average Domain Content per group’ were

identical, and thus not repeated.

 Number of
Cases

Concepts Depth of
Average
Concept

Number of
Attributes

Attributes per
Concept

Number of
Custom
Attribute Types

Percentage
Attributes
(excluding title)
containing more
than 2 unique
HTML tags

MOT1.0: All DMs 4 22
StdDev: 12.44

2.75
StdDev: 0.31

63
StdDev: 37.28

2.8
StdDev: 0.56

1.25
StdDev: 1.89

2.43
StdDev: 4.86

MOT3.0: All DMs 29 22.24
StdDev:12.22

2.93
StdDev: 0.7

54.62
StdDev: 30.18

2.52
StdDev:0.6

1.75
StdDev: 2.79

19.4
StdDev: 21.93

MOT3.0: Best DM per
group

10 27.1
StdDev: 12.3

3.06
StdDev: 0.66

65
StdDev: 32.62

2.45
StdDev: 0.58

1.6
StdDev: 2.17

24.2
StdDev: 25.97

MOT3.0: Average
Domain Content per
group

10 22.2
StdDev: 10.12

2.85
StdDev: 0.61

54.34
StdDev: 21.5

2.53
StdDev: 0.42

1.64
StdDev: 1.59

20.5
StdDev: 25

Table 5.1: Domain Map Statistics

Note, that the number of attributes per concept includes the title attribute (which is essential for all concepts). A custom attribute

type is defined as any attribute that is not in the pre-installed list of attribute types (i.e., title, keywords, pattern, text, explanation,

conclusion, exercise and introduction).

116

Table 5.1 shows that the domain map hierarchies created were reasonably large,

with each domain map containing a remarkably close average of about 22 concepts

(slightly larger in 2009, when applying MOT3.0, but not significantly so).

When considering only the best domain maps per group, there was a larger

difference in the number of concepts created by each group (although not

statistically significant, t(12) = -0.699, p > 0.05, r = 0.2). As the table shows, the

average attributes number per concept was slightly lower in 2009, for all categories,

when compared to the 2.8 attributes per concept in 2008 – this is also not

statistically significant, t(12) = 1.177, p > 0.05, r = 0.32.

As we have seen, some groups created auxiliary domain maps, with information

stored in a single attribute for each concept, which influenced the average number

per concepts per domain map. Therefore, it might be more accurate to consider the

best DM per group, which presents a lower number of attributes per concept (2.45

in 2009, also not statistically significant). One added functionality was that of

importing content from Wikipedia, which generated a lot of content (as reflected in

the increase of concepts created by groups in the table), however produced only a

low number of attributes per concept (two: text and title).

Even if students have added additional attributes the size of the maps may have

been too large to add a significant number of supplementary attributes. To alleviate

these difficulties, future iterations of the MOT tool will allow for automatic addition

of user defined attributes to the standard attribute set (see Chapter 10). This can

serve to have a consistent structure, but it does not add content. For the latter, we

117

can employ automatic tools for content enrichment, as proposed by Hendrix and

Cristea [89] or the semi-automatic principles described in Chapter 4.

Moreover, when we compare the average (non-empty) attributes number per DM,

instead of per concept, we see that, in general, an increase is visible when

considering the best DM per group (although not statistically significant, t(12) = -

0.1, p > 0.05, r = 0.03). This increase is in accordance with the fact that the number

of concepts also increased, thus showing that the information content in the

lessons designed by the students has increased. This supports the statement that,

in the same amount of time, it was possible for students to produce more material

with MOT3.0 than with MOT1.0. Considering also that the groups were of fewer

students in 2009 when compared to 2008, this statement is further strengthened.

As the table also illustrates, the depth of the average concept in 2009 was 3.06 (for

the best DM per group), slightly deeper than the average concept created in 2008

(2.75), showing that the domain maps created using MOT3.0 had a more detailed

structure.

There was also a very minor (statistically insignificant) increase in the number of

custom attribute types that were used. Similarly, only one group utilised the

relatedness links feature. Moreover, this group only created one such relation.

Similarly, none of the groups in 2008 had created any relatedness relations with

MOT1.0. Part of the reason for this could be because the support for such relations

in LAG did not provide much flexibility (this was later improved – see Chapter 10).

Alternatively, it could be because the interface for the creation of such relations

118

was insufficient. The support for the creation of such relationships was therefore

changed in future versions of MOT (see Chapter 7 and Chapter 10).

Most of the content in MOT1.0 was written in plaintext. However, some attributes

contained a few HTML tags when formatting was essential. For instance, some

attributes had no formatting within the text, but occasionally added an or a

<p> tag. For this reason, it was decided to investigate the number of attributes that

contained more than two distinct HTML tags, since those attributes will have a

significantly higher variety of styles. Also, this figure excluded any title attributes,

since AHA! does not support HTML within title attributes. The percentage of

attributes that used more than two HTML tags in MOT3.0 was significantly higher

than with MOT1.0, (t(10.406) = -2.543, p < 0.05, r = 0.62). This shows that the

WYSIWYG editor did encourage users to use HTML to describe their content.

 5.5.2.3 Goal Maps

A similar analysis was applied to the goal maps created by the two classes of 2008

and 2009. As with the domain map analysis, averages were calculated instead of

computing the overall productivity, due to the difference in student numbers. Table

5.2 shows some selected results of the analysis.

As with the Domain Map analysis, because each group (and particularly, each year

group) was allowed to submit a different number of Goal and Domain Maps in

order to create their four adaptive courses, this analysis can be investigated from a

number of different aspects.

119

 All Goal Maps: The averages shown in Table 5.2 are based on all the

submitted CAF files. Due to the change in coursework specification, there

were 41 CAF files submitted in 2009 (one group submitted 5 CAF files), and

13 CAF files in 2008 (one group submitted only 1 CAF file).

 Best GM per group: The averages shown are based only on the best Goal

Map for each group. The ‘best’ in this case is defined as the goal map with

the highest number of sublessons. In the event that multiple goal maps had

the same number of sublessons, the goal map with the highest number of

labelled sublessons was chosen.

 Average GM per group: An average goal map was created for each group.

The results shown in Table 5.2 are calculated by averaging the average score

for each group.

120

 Number
of Cases

Number of Distinct
Labels

Number of Sublessons Percentage of Labelled
Sublessons

Percentage of Weighted
Sublessons (i.e., labels
with weight other than
0)

2008 (MOT1.0): All GMs 13 0.92 (SD: 0.862) 118.31 (SD: 60.76) 12.58 (SD: 28.32) 10.35 (SD: 28.58)

2009 (MOT3 0): All GMs 40 3.83 (SD: 3.09) 62.38 (SD: 35.38) 53.25 (SD: 34.73) 37.29 (SD: 34.73)

2008 (MOT1.0): Best GM
per group

4 1.75 (SD: 0.975) 101 (SD: 73.63) 38.85 (SD: 43.34) 33.65 (SD: 47.14)

2009 (MOT3.0): Best GM
per group

10 4.7 (SD: 3.9) 96.4 (SD: 41.31) 54.89 (SD: 33.16) 42.3 (SD: 31.91)

2008 (MOT1.0): Average
GM per group

4 1.13 (SD: 0.72) 101 (SD: 73.63) 17.43 (SD: 17.80) 14.9 (SD: 17.65)

2009 (MOT3.0): Average
GM per group

10 3.83 (SD: 2.26) 62.38 (SD: 21.03) 52.29 (SD: 21.39) 38.94 (SD: 24.02)

Table 5.2: Goal Map Production in both MOT1.0 and MOT3.0

121

Both MOT1.0 and MOT3.0 supported the labelling of both ‘groups of sublessons’

(shown in Figure 5.4 with a folder icon) and individual sublessons (shown with a file

icon). However, the labelling of sublesson group headings in this way has no

semantic meaning, since in LAG weights and labels can only be interpreted at the

level of an individual sublesson. In the case of Figure 5.4, the ‘history, 5’ label has

no semantic meaning within AHA! or ADE, whereas the ‘history, 0’ labels can be

interpreted. For this reason, this analysis considers only the weights and labels

applied to individual sublessons.

Figure 5.4: Sublessons and 'Groups of Sublessons' in MOT3.0 – extract based on [106]

Because of the significant difference in the number of CAF files between the years

(13 in 2008, 41 in 2009), the ‘All Goal Maps’ group shows a significantly different

variance between the two year groups (verified using Levene’s test). This makes it

difficult to show any statistical difference when considering ‘All Goal Maps’.

The percentage of labelled sublessons was higher for the MOT3.0 group, and when

considering the ‘Average GM per group’ metric, can be shown to be statistically

significant with a large effect size (t(12) = -2.867, p < 0.05, r = 0.64).

Similarly, the number of distinct labels is higher for MOT3.0. This suggests that the

strategies created used a higher number of classifications (this is further explored in

the analysis of the strategies in Section 5.5.4.1). Moreover, when considering the

122

‘Average GMs per group’ this has a statistical significance and a large effect size

(t(12) = -2.295, p < 0.05, r = 0.55).

This clearly points to the fact that adding weights and labels has become much

easier in MOT3.0, as opposed to MOT1.0. This is probably due to the fact that

multiple weights and labels can be set at the same time in MOT3.0.1, whereas this

had to be done one at a time in MOT1.0.

However, the average number of sublessons for each goal map is smaller in

MOT3.0, compared to MOT1.0. This difference could be explained by the slight

reduction in the number of attributes per concept in 2009, as sublessons follow

often the attribute per concept structure. This reduction in the number of

sublessons is not statistically significant (using either the ‘Best GM per group’ or

‘Average GMs per group’ classification).

 5.5.3 Qualitative Feedback

The students provided a lot of feedback during their 8 weeks of exposure to the

tools. A spiral model for software development [5] was used during this long-term

usage, reiterating development, evaluations, and new objectives. This allowed

functionality to be developed and tested quickly.

Whilst many users appreciated the idea of a drag & drop tree structure, they raised

issues about the implementation. It was suggested that the tree should

automatically save its structure whilst the user re-orders it (in the MOT3.0.1

implementation, a user needs to click a Save button to confirm the changes). There

were also some (minor) incompatibilities identified between MOT3.0 and AHA!,

123

especially regarding HTML entities that were exported by MOT3.0, but not

displayed by AHA!. Some users also stated that the Wikipedia importer system

should be extended to allow images to be imported too – the importer was

improved in response to this feedback (see Chapter 4). Overall, from all

discussions, we can say that the students understood the ideas behind authoring

content.

 5.5.4 Usage of PEAL

This section continues to compare the coursework submitted in 2009 with that of

2008 by investigating the submitted LAG strategies. In 2009, students had the

support of the PEAL LAG editor, whereas in 2008 the students could only use a text

editor.

 5.5.4.1 Types of strategy created

Overall, the students in 2008 implemented only very slightly changed strategies

based on the pool of strategies we provided for them. Many students opted for

modifying existing strategies to their particular scenario. Especially popular were

slight modifications on the depth-first-search and breadth-first-search strategies, to

which students added conditions to show certain labelled concepts before they

would usually be shown by such a strategy.

In 2009, students were, to some extent, more innovative. Examples of such original

strategies from the 2009 students include strategies based on the classic beginner–

intermediate–advanced strategy, which contains 3 levels of knowledge, and only

shows concepts according to the user’s current level. Students extended this to a

more general strategy catering to a larger number of knowledge levels, or a

124

strategy where 75% knowledge is enough to progress to the next level. Another

example is an extension to the visual-verbal strategy, with an extra textual

preference, while verbal is interpreted as a preference for spoken text.

Another example of innovative thinking is illustrated by a number of strategies that

were created around the notion of a learning goal. For instance, a strategy

represented the learning goal as the sum of knowledge levels of visited concepts,

and decreased knowledge for revisiting concepts. Another group created a ‘Mixed

Revision’ strategy, designed to help students revise. In this strategy, text attributes

are initially hidden, but keyword attributes are shown. If the user revisits a

particular concept (suggesting that the user is unfamiliar with the concept), the text

is shown for further revision. Another interesting strategy was one for device

adaptation – the description noted that while the students implemented it as an

adaptable strategy (i.e., user-driven), with settings that allowed the user to select

the current device, they commented that they would have liked to be able to get

this information (automatically) from the AHA! delivery system. This suggests that

options for device adaptation would be perceived as a useful extension to the

delivery engine.

Figure 5.5 shows a screenshot of PEAL, whilst editing a LAG strategy, as created by

one of the student groups of 2009.

125

Figure 5.5: Editing a LAG Strategy using PEAL

 5.5.4.2 Quantitative Analysis of Submitted Strategies

Whilst all groups were expected to submit four strategies, there were a number of

instances where some groups submitted fewer than four strategies. For this reason

– as with the Domain and Goal map content – the submitted LAG strategies were

analysed from three different perspectives.

 All LAG strategies: Every LAG file that was submitted by the students was

considered.

 Best LAG strategy per group: Only the best LAG file submitted by each group

was considered. In this case, the ‘best’ was defined as the file with the most

characters of code.

 Average LAG strategy per group: For each group, an average of each

measure was taken.

The analysis also considers three different content types.

1. Code: Valid LAG code.

126

2. Description: Comments that occur before the initialization LAG keyword.

These are typically used to describe what a strategy does, what variables it

uses, and what labels it requires.

3. Comments: Comments (denoted by a ‘//’). Any line that contains both code

and a comment was counted as both a code line and a comments line.

Note, one group didn’t actually submit any strategies – only a CAF file (as reported

above).

127

 N Lines
of
Code

Lines of
Description

Lines of
Comments

Characters
of Code

Characters
of
Description

Characters
of
Comments

Text
editor
(2008)
All
Strategies

12 21.17
SD:
8.97

7.25
SD: 5.63

2.83
SD: 2.44

334.75
SD: 188.23

263.17
SD: 283.02

133.42
SD: 122.15

PEAL
(2009)
All
Strategies

38 46.18
SD:
25.65

8.66
SD: 6.78

6.53
SD: 9.92

957.79
SD:
613.274

493.45
SD: 599.37

391.61
SD:
680.928

Text
editor
(2008)
Best
Strategy
per Group

3 32
SD:
3.606

9.33
SD: 1.16

4
SD: 4.58

599
SD: 89.44

498.33
SD: 245.28

224
SD: 232.41

PEAL
(2009)
Best
Strategy
per Group

10 66.4
SD:
22.76

10
SD: 7.5

12.1
SD: 17.15

1457.9
SD: 685.54

680.8
SD: 788.88

757.5
SD:
1182.25

Text
editor
(2008)
Average
Strategy
per Group

3 21.17
SD:
4.26

7.25
SD: 3.13

2.83
SD: 1.04

334.75
SD: 51.75

263.16
SD: 67.63

133.42
SD: 35.63

PEAL
(2009)
Average
Strategy
per Group

10 45.7
SD:
17.02

8.53
SD: 5.51

6.2
SD: 7.04

950.55
SD: 456.59

481.83
SD: 521.36

372.03
SD: 517.02

Table 5.3: Strategies created by 2008 and 2009 Cohorts

128

The statistics shown in Table 5.3 show that in 2009 there was an increase in the

number of lines (and characters) used for strategy Descriptions, Comments and

Code. Moreover, Table 5.4 shows the aspects of the analysis that are statistically

significant at a 95% confidence level.

 Degrees of
Freedom

t r (Effect Size)

Best Strategy Per Group:
Lines of Code

11 -2.534 0.61 (Large)

Best Strategy Per Group:
Characters of Code

11 -2.103 0.54 (Large)

Average Strategy Per
Group:
Lines of Code

11 -2.404 0.59 (Large)

Average Strategy Per
Group:
Characters of Code

11 -2.262 0.56 (Large)

All Strategies:
Lines of Code

47.328 -5.104 0.6 (Large)

All Strategies:
Characters of Code

48 -5.496 0.62 (Large)

All Strategies:
Characters of Comments

43.409 -2.227 0.32 (Medium)

Table 5.4: T-Test statistics for LAG Strategies

These t-test results show that there is statistical evidence that users create

strategies that contain more code when using PEAL. Similarly, there is some

statistical evidence to show that more comments are added, however the effect is

slightly smaller.

 5.5.5 Discussion

Both the quantitative analysis and a survey of the types of strategies submitted has

suggested an improvement in the quality of the strategies submitted in 2009 over

those submitted in 2008.

129

The quantitative analysis showed that there was significantly more code (in terms

of number of lines and characters) in the strategies that had the support of PEAL.

Whilst the amount of code is not necessarily an indicator of the pedagogical utility

of the strategy, it does show that PEAL can support the user in the creation of such

complex strategies.

There is some indication that the number of comments also increased with the

usage of PEAL, however this can only be shown to be statistically significant when

considering all strategies (rather than the best strategy per group, or the average

strategy per group), and only shows a medium effect size. This increase in the

number of comments could also be directly related to the increase in the amount of

code.

Overall, there appears to be a clear improvement in the quality of the strategies

when compared with previous years. While other factors (such as the quality of

students and the evolving training material) may have all contributed, it seems

reasonable to say that the PEAL editor is responsible for at least part of this

improvement.

However, some issues were identified with the PEAL tool in its current state. One

student requested that PEAL should provide a line number when warning about

invalid code, since the current method leads to confusion if a script contains more

than one problem. There were also comments about the lengthy procedure

required to import the CAF and LAG files into AHA! – this procedure was radically

overhauled with the introduction of ADE [50] (see Chapter 7).

130

 5.6 Future Work

The evaluation provided a number of suggestions for future improvement within

PEAL. Specifically, greater accuracy of the warning messages was needed (using line

numbers to highlight the syntax error), and streamlining the process of previewing

changes. This could be achieved by more tightly integrating the MOT and PEAL

tools, therefore allowing content to be previewed with a particular strategy.

Moreover, work had started at this stage towards create a purely visual version of

PEAL, with drag and drop code snippets, similar, to some extent, to the simple

authoring techniques employed in MOT3.0. This new version of PEAL is described in

Chapter 7 .

 5.7 Conclusion

This chapter has defined a set of adaptation authoring imperatives, extracted from

previous experience in design, implementation and deployment of authoring for

adaptation, from related research, and the initial set of requirements that were

created at the start of this research. Based on this, this chapter then contrasts the

main features of two generations of authoring tools for adaptation, as well as

compares their real life deployment. This long-term comparative deployment of the

new toolset versus the previous one has shown improvements in productivity and

quality of created material with the new set, thus providing more evidence towards

the fact that the overall, the MOT3.0 and PEAL approach is promising. Additionally,

such an intensive, long term use has provided useful feedback about the

functionality (and stability) required for an adaptive hypermedia authoring system,

which can be further exploited in the future. A major lesson learnt is that it is

131

important that such tools are released beyond the proof of concept, as fully

developed software, to encourage the widespread use of adaptive hypermedia.

This is unlike much of the related research, which often deliver only tools that can

be used for proof of concept, and don’t attempt the more difficult and risky process

of long term use.

For comprehensive, long-term evaluations with iterative development, these types

of evaluations are useful, and have highlighted a number of usability issues that

needed to be addressed. Using final year students to evaluate authoring tools is

helpful because much of their work consists of gathering and presenting material.

This is a similar process to many of the educators that are the ultimate end-users of

the adaptive authoring tools. Chapter 6 discusses how these tools can be used by

such educators.

132

 6 From a linear module to an adaptive course

 6.1 Overview

Over the previous three chapters, we have built and described an enhanced

adaptive hypermedia authoring system MOT3.0. The main focus of this effort was

on adding and extending the type of functionality that allows the 'lay person', the

non-technical author, to efficiently use such a tool. In this chapter we show how

this can be achieved. We show in a realistic case, that teachers can start from any

course they are already teaching, and transform it, in a number of steps, into an

adaptive course, thus targeting various learners and moving away from the 'one-

size-fits-all' approach. We then discuss how this apparent simplicity still permits for

the building of flexible and complex adaptation, and finally present evaluation

results with designers and authors of the tool.

 6.2 Scenarios

This chapter considers the authoring process from the point of view of two types of

authoring, as illustrated by the two scenarios below.

 6.2.1 Content Authoring

Professor Smith is a lecturer in Computer Science, and has presented a ‘Web

Development’ course for the last five years. The resources she currently uses are:

30 lecture presentations (written in PowerPoint); 5 videos (each 5 minutes long)

and 1 online quiz (authored in Moodle). Although the Professor is keen to embrace

the advantages of adaptive hypermedia, she does not want to spend a long time

rewriting all of her course material. Nor does she wish to learn a new programming

language. Thus she uses the MOT3.0 tool, which will allow her to structure her

133

existing content in a way that can be integrated into an adaptive course. Her

students have previously taken an ILS (Index of Learning Styles) test [122] and have

shown clear preferences for two types of learning styles: some of her students are

visual, some verbal. She would also like to classify her students into beginner,

intermediate and advanced groups.

Professor Smith selects two adaptation strategies from a pool of strategies (created

by her colleague, Professor Jones) that cater for the two types of adaptivity she is

envisioning. From the natural language description of the strategies, without

reading the code she finds out what type of labelling and annotation she needs to

add to the material she has imported into MOT3.0. Because the content has been

automatically separated into many reusable pieces, she finds the annotation

process simple and fast. Finally, she applies the adaptation strategies to her content

and deploys the result in the adaptation engine which will display it to her students,

in a personalised way.

 6.2.2 Adaptation Authoring

Professor Jones is another Computer Science lecturer, and a colleague of Professor

Smith. He understands the pedagogical benefits of adaptive hypermedia, and has

recently learnt the syntax of the LAG [53] adaptation programming language.

Professor Jones has been appointed by his department to create a pool of

adaptation strategies that will be used by his colleagues. He has both pedagogical

knowledge and programming knowledge.

However, Professor Jones has not yet had much experience of authoring LAG

adaptation files. The web-based PEAL [53] editor will assist Professor Jones,

134

providing syntax highlighting and code completion. He then creates a good number

of relevant strategies in a relatively short amount of time. Importantly, he adds

good natural language descriptions to each of the strategies, so that his colleagues

may use them without needing to read any of his code.

In the following sections, we will explain, from a technical point of view, how

Professor Smith and Professor Jones can collaborate on an adaptive course, utilizing

the two scenarios above.

 6.3 Importing the Linear Content in MOT3.0

 6.3.1 Importing Presentation Slides

Professor Smith starts by using MOT3.0’s presentation importer to upload one of

her existing PowerPoint files on “PHP” to the MOT server. The import script

automatically analyses the presentation content, and creates a new domain

structure (called a domain map) to store her lecture (see Figure 6.1). As adaptation

means conditionally displaying or removing content fragments, depending on the

learner’s needs, the first task for the system is to separate the existing content into

reusable fragments (called attributes).

135

Figure 6.1: Domain model of an imported presentation

Concretely, for each slide in her presentation, the import script creates a new

concept in the domain map hierarchy (Figure 6.1, left side), and a number of

attributes assigned to this concept (Figure 6.1, right side). The importer generates a

slide image, and also automates OpenOffice29 to export an HTML representation of

the slide. From the latter, MOT3.0 extracts the title of the slide, the text content,

and Professor Smith’s slide notes. These attributes are the various information

representations for each slide, and thus ensure various adaptations (e.g., slide

notes can be used to create an overview; and titles can be used to generate a ‘Table

of Contents’). For more details about this process, see Chapter 4 .

The actual strategies she will be using are created by someone else, Professor

Jones, and will be introduced in Section 6.4.

29 http://www.openoffice.org

136

 6.3.2 Importing Wikipedia Content

Professor Smith is keen to enhance her lectures by providing information about

related topics from Wikipedia30. She is aware of the issues surrounding the

reliability of Wikipedia content, however, she would like her students to be able to

read about the module topics from other sources. She simply types the name of a

Wikipedia article (here, “PHP”) into MOT3.0’s Wikipedia importer, which then

downloads the WikiText source code of the article.

As described in Chapter 4 , headings in WikiText are denoted by placing ‘=’ signs on

both sides of the heading text. The number of ‘=’ signs denotes the level of the

heading (e.g. 2 signs for a level 1 heading, 3 signs for a level 2 heading etc.), which

allows the import script to automatically divide the article’s content into sections,

thus inferring the structure of the article. For each section of the article, the script

generates a concept in the domain map (Figure 6.2, left side). Each concept is

automatically assigned two attributes – the title of the section, and the text of the

section (converted to HTML).

In this way, the import clearly generates a number of reusable, separate concepts

that correspond to the many different headings in the original article. Additionally,

these concepts are grouped in hierarchies, each with at least two attributes. All

these will constitute the alternatives that will be available to the adaptation

strategies Professor Smith will apply. As with the previous domain map, she is able

to add more content to the newly created domain map.

30 http://www.wikipedia.org

137

Figure 6.2: Domain model of the imported Wikipedia PHP article [106]

 6.3.3 Importing Moodle Content

Another import script Professor Smith can use concerns content from other

Learning Management Systems, such as Moodle or Sakai. Professor Smith has

already created an online quiz using Moodle, so she exports this content to an IMS-

QTI file. She can then upload the IMS-QTI file to MOT3.0, where her content will be

converted into another domain map. For each question in the quiz, a concept is

created. Each of these concepts contains a question attribute, and an answer

attribute. These questions and answers can be used within an adaptive course. For

instance, it would be simple to create an adaptive course that hides all answers

until the user has read all the questions. Moreover, the imported questions could

be combined with a goal map from another course to create a course that contains

both Wiki text content and the questions/answers from the IMS-QTI file. This would

allow Professor Smith to create a course that (for example) shows revision material

to users after they have viewed both the question and answer attributes for a

particular topic.

138

 6.3.4 Editing and Enriching the imported content

The extracted format from the above importers allows Professor Smith also to add

additional information to her module, either from HTML content stored previously

on MOT3.0 - by simply copying a concept across from a previously authored domain

map; or from additional material – e.g., she can add a link to the YouTube31 videos

she was using in her class. She does this by first creating another attribute for the

concept ‘PHP’, and then uses the HTML editor to add some custom HTML. This

custom HTML can be easily generated from YouTube by clicking on the ‘Embed’

button next to the video, then copying and pasting the generated code into the

HTML editor[123].

 6.4 Creating Adaptation Strategies

Professor Jones uses PEAL to create a series of pedagogical adaptation strategies.

He is confident with simple programming, and creates strategies that can be used

by his colleagues.

 6.4.1 Beginner-Intermediate-Advanced Strategy

One strategy he creates divides students into 3 groups: beginner, intermediate and

advanced, hiding content from learners until they have reached the appropriate

level (Figure 6.3 shows an editing snapshot). PEAL suggests automatic completion

for the current program line (pop-up window). The available library code fragments,

which can be inserted directly into the current code, appear in the right frame.

Figure 6.3 also shows colour formatting and recognition of programming

instructions, as well as code line numbers – which help Professor Jones to program

31 http://www.youtube.com

139

in the LAG adaptation language. Additionally, PEAL gives access to previously stored

strategies (created by someone else and marked for sharing), allows parts of

programs to be created directly via a Wizard, and thus overall represents a simple

way for Professor Jones to accomplish his task in a short amount of time.

Figure 6.3: Editing a strategy in PEAL

 6.4.2 Visual-Verbal Strategy

Another pedagogical strategy Professor Jones creates differentiates between

students who are visual learners and those who prefer text.

He uses the wizard to define a variable representing if the user prefers visual or

verbal content, named UM.GM.visverb, see Figure 6.4.

140

Figure 6.4: The strategy creation wizard in PEAL

This strategy requires pieces of content to be labelled ‘visverb’, and given a weight

to indicate whether the content is visual or verbal. The user’s preference variable is

compared with the weight of the content, and if the result is above a predefined

threshold, the content is shown.

When Professor Jones has completed his strategies, he publishes them on the

university website. The descriptions of the adaptation strategies that he entered

using the wizard (see Figure 6.4) contain usage instructions, informing any content

creators of what labels need to be applied to the content to make the strategy

work.

141

 6.5 Combining and Enhancing Linear Input

 6.5.1 Adding adaptive behaviour to linear content

After importing and enriching her existing lecture presentations to domain maps, as

described in Section 6.3.4 , Professor Smith can now export her content into a

pedagogical goal map, by clicking on an icon in MOT3.0. A goal map allows her to

add pedagogical labels and weights (Figure 6.5, right side), according to the

adaptation strategy that she will be employing.

She could convert the same domain map to many different goal maps and add

different labels, thus reusing the same content for different pedagogical

personalisation strategies. However, she decides to create only one lesson for now.

The goal model environment also allows her to combine content from different

domain maps. She uses this to add information from her Wikipedia domain map.

Professor Smith browses the variety of existing pedagogical strategies on the

university website, and chooses the visual-verbal strategy that was created by

Professor Jones (and described in Section 2.6.2.3). She then labels the image

version of the slide as ‘visverb’, and gives it a weight of 30 (representing visual

content) and the text version of the slide as ‘visverb’ with a weight of 70 (for verbal

content). She knows the semantic and pedagogical meaning of these labels because

she read the description of the pedagogical adaptation strategy (from the first few

lines of the LAG file). These labels and weights correspond to the ones prescribed

by the ‘Visual-Verbal’ strategy created by Professor Jones.

142

The MOT3.0 system allows her to apply the same label and weight to many goal

model concepts at once, thus saving her time, as most of her material is either of a

visual or of a verbal nature.

Figure 6.5: Goal model of the imported presentation

 6.5.2 Delivering adaptive courses

Professor Smith can now export her pedagogical goal map (as a CAF file), and

upload it to the delivery tool (such as ADE [50] or AHA![23]), together with one of

Professor Jones’s LAG pedagogical adaptation strategy files. The delivery tool then

creates a course which combines the educational content with the adaptation

strategy. Professor Smith’s students can then use the adaptive course.

 6.6 Evaluation and Discussion

Chapter 4 described an evaluation that was performed at the University of Warwick

with six volunteer course authors and designers. Each participant was experienced

in the process of both teaching and web-design, and had experience with adaptive

hypermedia. This was a qualitative study, where the opinion of experts was elicited,

thus the number of participants is not essential. They were asked to explore the

143

system, and answer 45 questions, which we then grouped into 10 categories of

basic functions, as below:

1. … browsing other author’s materials

2. … editing with MOT3.0

3. … changing hierarchies of material via drag & drop

4. … copying and linking functionality

5. … editing HTML using the editor

6. … importing Wikipedia content

7. … importing Presentation content

8. … functionality of importing content

9. … authoring for adaptation support

10. … Semi-Automatically Creating and Linking Content for adaptation

Figure 6.6 shows that the designers found most of the basic functions ‘Easy’ (or

‘Very Easy’) to use. To establish the statistical significance of these results, we have

mapped the answers {‘Very Easy’, ‘Easy’, ‘Difficult’, ‘Very Difficult’} onto the values

{2, 1,-1, -2}. This assumes equidistance between these labelled values, as well as

monotonicity, an assumption which is widely used in literature, and also conforms

to the natural language use of these words.

144

We have then applied a one-sample T-test to compare the answers against the

average of 0, corresponding to ‘Neither Easy nor Difficult’, to establish if the

positive average is statistically significant.

Figure 6.6: Histogram display of the responses to the MOT3.0 questionnaire

Table 6.1 shows that most answers are statistically significant with 95% confidence

(P<0.05). Thus browsing, editing, changing hierarchies (Q1,2,3), and editing HTML

(Q5) are significantly easy. Also (semi-)automatically creating content and linking

are significantly useful.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

browsing and
using other

author's
materials

editing with
MOT3.0

changing
hierarchies of

material in
MOT3.0 via
drag & drop

copying and
linking

functionality
in MOT3.0

Editing HTML
using the

editor

authoring for
adaptation as
supported by

MOT3.0

Very Easy

Easy

Difficult

Very Difficult

145

Question Mean StdDev T P

1. browsing other author’s materials 1.167 0.408 7 0.001

2. editing with MOT3.0 1.667 0.516 7.91 0.001

3. changing hierarchies of material via drag

& drop

1.333 0.516 6.32 0.001

4. copying and linking functionality 1 1.095 2.24 0.076

5. editing HTML using the editor 1.667 0.516 7.91 0.001

6. importing Wikipedia content 1.833 0.408 11 0

7. importing Presentation content 1.833 0.408 11 0

8. functionality of importing content 1 1.095 2.24 0.076

9. authoring for adaptation support 1 1.095 2.24 0.076

10. Semi-Automatically Creating and Linking

Content for adaptation

1.5 0.548 6.71 0.001

Table 6.1: The MOT3.0 questions and response frequencies

The copying and linking functionality (Q4), importing content (Q8) and general

authoring (Q9) are only statistically significant with 90% confidence. We have thus

further analysed the (sub-)questions that formed these categories, in order to

establish the reasons for the lower confidence intervals. Below we show the one

sample T-test values for question Q4, which was formed of three sub-questions:

146

Q4a: Dragging domain concepts between trees when copying/linking;

Q4b: Inserting goal map sublessons from domain concept attributes;

Q4c: Inserting other goal map lessons as sublessons.

Question Mean StdDev T p

Q4a 1.5 0.548 6.71 0.001

Q4b 0.5 1.225 1 0.363

Q4c 0.833 0.983 2.08 0.093

Table 6.2: One-Sample t-test Q4a, Q4b, Q4c (Test of mu = 0 vs not = 0)

Table 6.2 shows that whilst dragging domain concepts is significantly easy, inserting

goal maps from domain concept attributes or other sublessons is not. Looking at the

qualitative comments, the experts noted that: “Inserting […] domain map attributes

needs improvement […] partial goalmaps cannot be inserted” and “it is easy, but a

bit inconsistent: for GM you have to click add, for DM you have to drag & drop. I

would like it not to refresh back, as I may want to add more than 1 attribute”.

The questions including question 8 have already been presented and discussed in

Chapter 6.

Question Q9 on general authoring was composed of questions on the issues of:

Q9a: Being able to create adaptive presentations with MOT3.0 (as compared with

programming adaptation from scratch);

Q9b: Being able to (semi) automatically create content for adaptation;

147

Q9c: Being able to (semi) automatically link content for adaptation;

Q9d: Using graphical drag & drop interfaces in authoring for adaptation.

The one sample T-test results for Q9 are shown in Table 6.3. Thus, creating adaptive

presentations with MOT3.0 is preferred (in a statistically significant way) to

programming adaptation from scratch, and also using graphical drag & drop

interfaces in authoring for adaptation is considered beneficial. Looking at why the

experts are not convinced about (semi)automatically creating and linking content,

the comments were as follows: “The physical manipulation is easy, but you have to

understand what you are doing”, “Linking automatically is only possible in a

hierarchical way. It would be interesting to see different types of automatic linking.”

Question Mean StdDev T p

Q9a 1.167 0.408 7 0.001

Q9b 0.667 1.366 1.2 0.286

Q9c 0.5 1.225 1 0.363

Q9d 1.5 0.548 6.71 0.001

Table 6.3: Responses to question 9

Thus, whilst clearly some improvements can be done (and the experts have given us

some very good pointers towards this), the overall evaluation shows that people

like our imaginary Professors Smith and Jones can expect to be able to author with

a reasonable degree of ease personalised courseware with a system such as

MOT3.0.

148

 6.7 Conclusions

This chapter has documented and evaluated the process that will allow educators

to create adaptive courses from some of their existing resources. Specifically, we

have introduced methods of generating domain models based on presentation

slides and Wikipedia articles, and discussed how such a process could be used by

real-world educators. It is hoped that authoring systems with import facilities such

as those provided by MOT3.0 will encourage more educators – from a wide variety

of subject areas – to author for adaptive hypermedia.

Future work could add other popular web-services, for instance the HTML editor

could be extended to allow users to quickly find and add YouTube videos without

the author needing to work with the HTML code directly (as described in Section

6.3.4). Moreover, this embedded HTML process could equally apply to many other

web-services that also provide template fragments such as Twitter32.

32 https://dev.twitter.com/docs/twitter-for-websites

149

 7 Increasing flexibility in authoring for adaptation: Iterative

development of MOT3.1

 7.1 Overview

This chapter describes the creation of MOT3.1, which builds on the feedback

gathered from the previous chapters. The chapter also introduces two new tools,

ADE and PEAL2, and discusses how they contribute towards an updated version of

the MOT toolset. Finally, an evaluation of this new toolset is presented.

 7.2 Adaptive Delivery Engine

To further explore the possibilities for providing adaptation, another PhD student at

the University of Warwick’s Computer Science Department, Joshua Scotton, started

the development of ADE [50]. This meant that rather than relying on the

opportunities provided by the MOT-to-AHA! converter [56], new constructs could

be added to the LAG grammar [53], further enhancing the possibilities available for

adaptation. Accordingly, the MOT toolset was now extended to include ADE.

 7.3 Changes from MOT3.0 to MOT3.1

In response to feedback from the evaluations described in Chapter 5, MOT3.1 is a

major rewrite of MOT3.0, featuring the following features.

 7.3.1 MySQL Improvements

Whereas for compatibility purposes MOT3.0 used the same database schema as

MOT1.0, MOT3.1 aimed to improve the efficiency and correctness of the database.

The main change was the introduction of foreign keys (which were missing from

previous versions of MOT), allowing the database to perform basic error checking

150

on all database updates. Specifically, when domain maps where deleted from the

system, any goal map sublessons that relied on attributes from such a domain map

had to be deleted by a PHP script that searched through every sublesson. Using

foreign keys in MOT3.1 allows this process to be performed by the MySQL

process33, and is therefore more efficient whilst helping to ensure that the

database is consistent.

 7.3.2 jQuery Frontend

To implement the above changes, it was decided to use the jQuery34 library as a

framework for JavaScript. Specifically, the jQueryUI35 and jQueryUI Layout Plug-in36

were utilised. This allowed a major change to the layout of MOT3.1, providing a

more coherent (and smooth) AJAX-based [82] interface, as will be explained in the

following. The MOT3.1 layout divides the screen into 3 separate resizable areas

(shown in Figure 7.1). It should be noted that although this functionality appears

similar to the frame-based layout of MOT1.0, the utilization of AJAX within MOT3.1

ensures that content is loaded much more smoothly (and requires significantly less

data to be transferred) than forcing the whole frame to be reloaded by every

request (as in the frames used by MOT1.0).

33 http://www.mysql.com

34 http://jquery.com/

35 http://jqueryui.com/

36 http://layout.jquery-dev.net/documentation.cfm

151

Figure 7.1: The layout of MOT3.1

The three frames allow the author to see the concept hierarchy, the attributes

within the selected concept and the currently selected within the same screen.

MOT3.1 replaces the icons of MOT3.0 with a context-sensitive toolbar. The main

toolbar is similar to the toolbar from MOT3.0, providing access to the main

functions of MOT3.1 (Home, Domain Maps, Goal Maps, Import, Preferences and

Logout). However, a secondary toolbar changes according to whether the user is

currently viewing a Domain Map or a Goal Map. When editing a domain map, the

toolbars in MOT3.1 adaptively change depending on whether the author is editing a

single concept, or the whole domain map. This attempts to reduce the cognitive

load by only providing options that are directly relevant to the current task.

MOT3.0 (and therefore MOT3.0.1) had exhibited a problem that is common with

many AJAX applications whereby changes in state (such as loading a new domain

map) do not register a new item on the web-browser’s history [124]. This means

152

that the ‘Back’ button within the web-browser would navigate the user to the

previous known page (which could be an entirely different website). This behaviour

is counter-intuitive to many other web applications, and is unforgiving to the user

since navigation mistakes are irreversible (this has parallels to the software design

principles surrounding the undo feature [125]). This issue was solved by adding a

plugin for jQuery that allowed the URLs to be manipulated by the JavaScript

functions, allowing the web browser’s back-button to be used. This is achieved by

using the fragment identifier (or ‘anchor’) element of a URL [126], with a link such

as “http://mot.dcs.warwick.ac.uk/mot31/#dmap6,concept80”, allowing exact links

to be generated that navigate directly to the relevant concept.

 7.3.3 Multiple labels/weights

Previous qualitative feedback had shown that users desired the ability to reference

sublessons using more than one label, and thus create more complex strategies.

Thus, multiple labels were introduced in MOT3.1. However, to ensure simple

compatibility with existing tools (primarily ADE and AHA!), it was essential to make

this change compatible with the CAF format.

The CAF format stores a label attribute and a weight attribute within the link

element, for instance:

<link weight="5" label="beginner">PHP\PHP Syntax\Control

Structures\For Loop\image</link>

As described in Section 2.5.1.2 , weights and labels within LAOS have no intrinsic

semantic meaning – the semantic meaning is defined by the adaptation strategy. In

some strategies, the weight might be directly related to the label, or in other cases

153

they might be considered as separate pieces of metadata. This can be

demonstrated by the following examples.

 Label Scenario 1 - Weight related to label: For example, in the case of a

visual-verbal strategy, the label identifies the sublesson as a ‘visverb’

concept, and the weight defines how visual or verbal the sublesson is.

 Label Scenario 2 – Separate pieces of metadata: For example, a beg-int-

adv strategy, might be combined with roll-out strategy – where the weight

of the sublesson might represent the number of times that the sublesson

should be shown.

To ensure the maximum flexibility, after introducing multiple labels, it was decided

to consider each label as having a separate accompanying weight, rather than

allowing multiple labels to share a single weight.

In such a way, MOT3.1 allows authors to use multiple labels and weights. Internally,

for the compatibility with the export format (CAF), this was achieved by

concatenating the labels and weights together. For instance, if a user wishes to

convey that a particular image is visual and suitable for beginners, they can use the

MOT3.1 interface add a label named “visverb” with a weight of “80”, and later add

another label “beginner” with a weight of 5 – see Figure 7.2.

154

Figure 7.2: Adding multiple labels in MOT3.1

When the goal map is exported to a CAF file, the XML representation of the

sublesson will be:

<link weight="0" label="visverb:80;beginner:5">PHP\PHP

Syntax\Control Structures\For Loop\image</link>

However, this method of concatenating labels prevents many existing strategies

from working with sublessons that do have multiple labels. For instance, the

expression “GM.Concept.label == visverb” will not evaluate to true for

the PHP Control Structures example shown above because the full label is now

effectively “visverb:80;beginner:5”.

To cater for such a scenario, ADE introduced the LIKE syntax into the LAG grammar.

The LIKE syntax in LAG allows strategies to search for labels that match a particular

pattern, so the expression “GM.Concept.label == visverb” can now be

replaced with “GM.Concept.label LIKE *visverb*”, or – if a particular

weight is being searched for – “GM.Concept.label LIKE *visverb:80*”.

155

Although this extension allowed working with multiple weights and labels, there

were some limitations. The main issue is that the weights within the label string

cannot be separately addressed numerically (i.e., no mathematical comparisons can

be performed with the weight). For instance, it would be impossible to implement

the roll-out strategy using multiple labels in this way, because the weight value of

the showatmost label could not be separated from the rest of the label. It would

therefore be impossible to compare the visited counter with the label’s weight. To

overcome this limitation, a ‘primary’ reserved keyword was introduced. When the

user adds a label named ‘primary’, the associated weight gets assigned to the

sublesson – thus promoting the weight to the weight attribute of the link tag. This

was implemented as a temporary solution to the label/weight pair limitation, a

more permanent solution is documented in Section 10.4.2.3 .

 7.3.4 Improved Wiki Importer

As described in Section 4.7.1.9 , the implementation of MOT3.1 introduced a new

Wikipedia37 import script which was redesigned to improve formatting, and – in

response to user feedback – additionally process the images associated with each

article.

 7.3.5 Relatedness Search

The evaluation described in Chapter 5 showed that only one group created any

relatedness links in MOT3.0. This suggested that the interface for allowing such

links to be created was insufficient. Additionally, feedback had shown that the

algorithm used to calculate the weights of relations between domain concepts was

37 http://www.wikipedia.org

156

not scalable, as every concept in the system had to be compared with every other

concept, which could become quite time consuming for large domain maps.

As described in Chapter 5, the original algorithm used within MOT1.0 and MOT3.0

involves splitting every attribute in the system into individual words every time the

user searches for related concepts via the ‘Concept-oriented, relevance ranking

method’ [80]. MOT3.1 introduced a new algorithm based on TF-IDF [127], which

provides quicker, more accurate results. To achieve this, a script periodically

indexes the contents of all attributes within the system.

The first stage of indexing is to remove the HTML formatting of each attribute, and

divide it into individual words. For each attribute, the indexing attribute algorithm

then calculates the term frequency (tf) of each word, based on the formula:

, where tf is the term frequency, fw is the number of occurrences of the

current word, and KS is the set of words within the current attribute.

The tf is stored in a wordfrequencies table in the database that contains the

columns wordid, attributeid, frequency and tf. Note that the wordid column is a

foreign key to another table called words, which stores the actual word string.

The old (MOT1.0) style of calculating relatedness involved the server reading every

attribute and dividing it into separate keywords every time a user performed a

search. The new method described here is much faster since the attributes are

indexed and thus the search only reads pre-cached numerical values. When the

author wishes to discover concepts that are related to the current concept, the

following query is performed:

157

SELECT DISTINCT(wf2.attributeid) FROM wordfrequencies as

wf1, wordfrequencies as wf2 WHERE wf1.wordid =

wf2.wordid AND wf1.attributeid = srcAttribute AND

wf2.attributeid <> wf1.attributeid

This statement looks up all attributes that have any words in common (wf1.wordid

= wf2.wordid) with the source attribute. The attributes that have any words in

common with the source attribute are known as target attributes. The search then

creates a vector of wordids and frequencies for the current attribute, and then

creates vectors for all target attributes. A score for each target attribute is then

calculated by comparing each target vector with the source vector using cosine

similarity. An example of this is shown in Figure 7.3.

As with the MOT1.0 (and MOT3.0) relation search, the author can choose whether

to restrict the search to the keywords attribute38, or compare contents from other

attributes.

Figure 7.3. Related Concept Search using TF-IDF

38 This is achieved by adding an extra WHERE clause to the above SQL query.

158

 7.4 PEAL2

Chapter 5 described the introduction of PEAL [53], which aims to simplify the

specification of LAG strategies by providing adaptation authors with IDE-style

features. Following on from PEAL, Jan Bothma (a 3rd-year BSc Warwick Computer

Science student) created PEAL2 as part of his 3rd-year project in the academic year

2009-2010. PEAL2 focuses on providing a way of visualizing the flow of a LAG

strategy through the use of flowchart style [128] icons.

PEAL239 introduces a visual programming feature, allowing authors to view the logic

of their adaptation strategy using graphical flowchart elements (seeFigure 7.4). As

with the original version of PEAL, PEAL2 allows the adaptation specification to be

exported into a LAG file.

The interface for PEAL2 is divided into four main tabs.

 Description: A simple text box aims to encourage authors to provide a

natural language description of what the strategy does, and what is required

of the content author to use this strategy. The description tab appears red if

it is empty, to encourage authors to add this important information. The

description is important since it describes how the strategy works to non-

programmer authors.

 Initialization: A visual programming section which allows the author to

specify the initialization part of the strategy – see Figure 7.4. As described in

Chapter 2, the initialization is only run once, when the user initially registers

39 http://mot.dcs.warwick.ac.uk/peal2/

159

on the course. Hence, the visual program lets this be created in a different

tab.

 Implementation: A visual programming section allows the author to specify

the implementation part of the strategy – see Figure 7.5. Within the

implementation tab there is a visual flowchart style representation to

remind the user that their code will be run for each concept every time a

user accesses a concept (as described in Chapter 2).

 Text Editor: The final tab retains all the code editing features of the original

version of PEAL. Moreover, PEAL2 allows the user to switch between the

visual authoring views and the code editing view, with the code being

updated synchronously with the flowchart view.

Figure 7.4: Part of an initialization loop in PEAL2

Figure 7.5 An implementation loop in PEAL2

160

 7.4.1 Visual Programming User Interface in PEAL2

Casual verbal feedback had shown that it can be difficult for users to remember the

precise meanings of the initialization and implementation sections. Specifically, the

user needs to remember that the code within the implementation section is run

every time the user clicks on a concept and for each concept in the lesson, which is

dissimilar to the procedural programming style they are accustomed to. For this

reason, the implementation section automatically contains a visual element, to

remind the user when the section will be run (see Figure 7.6)

Figure 7.6: The default implementation section in PEAL2

PEAL2 uses other flowchart conventions [128] (such as using a diamond shape for

decisions) to show other constructs of the LAG language. For instance, the diagram

shown in Figure 7.7, represents the code shown in Figure 7.8.

Figure 7.7: Simple code example in PEAL2

161

Figure 7.8: Extract of LAG code in text mode of PEAL2

 7.5 Delivering a course

The output of the MOT tool is stored in lightweight, exportable formats: the CAF

format, using standard XML web technology, and the LAG format, using an

adaptation language. These formats describe the content and adaptation strategy,

respectively, that are needed to define the adaptive course. These files can be

delivered via an adaptive delivery engine, such as AHA![56], ADE[50], WHURLE[54],

etc. However – as described above – the newer features of multiple labelling are

currently only supported by ADE.

 7.6 Evaluation

To evaluate the effectiveness of the above improvements, the MOT toolset was

used with the students from the ‘Dynamic Web-based Systems’ module in the

winter term of 2010. This was performed in a very similar manner to the

experiment described in Section 5.5 . As before, the students were given an

introduction to the system, and encouraged to complete some smaller, non-

assessed pieces of coursework during the term so that they could become familiar

with the system. During this time, the module lecturers taught them the principles

of adaptive hypermedia.

The structure of the coursework was very similar to the 2009 coursework

(described in Section 5.5), with the students selecting two ‘Dynamic Web’ related

162

topics, and then creating two adaptive courses for each topic. The only major

change to the structure of the coursework is that some groups were offered the

chance to implement some adaptive software (such as an authoring tool or a

delivery engine) instead of completing the normal coursework.

 7.6.1 Analysis of Created Content

As part of the assessed coursework, the students were asked to create four

adaptive courses, based on their allocated subjects (two courses per subject).

Concretely, this means creating at least two Domain maps, and between two to

four Goal maps (as described in other chapters, reusability allows more than one

course to be generated from a single Goal map).

There are a number of ways that could be used to judge how appropriate a course

actually is. One such method would be to subject the created courses to real-world

students, who could be given a pre-test and a post-test – the scores of which could

be used to assess how much each student had learnt through the system. Methods

such as these have previously been used by Ghali [58] to discover the utility of

various social interaction features.

However, the utility of the content created by the students is likely to vary

dramatically between groups, because they are not pedagogical experts. Moreover,

it is beyond the scope of this thesis to investigate exactly how adaptation should be

applied to maximise the teaching value of the course. Some sources suggest that

rather than making real-world teaching materials a showcase for the opportunities

provided by adaptive hypermedia, the adaptation strategy should be subtle enough

for the user to not be distracted by it [4]. The purpose of the toolset is, however, to

163

allow authors to express their content using whatever adaptation techniques they

feel are appropriate. For this reason, it is essential that the adaptive toolset offers

as much flexibility for specifying adaptation as possible, and encourages authors to

add semantic metadata to allow complex adaptation strategies to be expressed.

For this reason, the evaluations investigate the usage of the tools by the students,

and particularly focus on the complexity of the domain maps, goal maps and

strategies that are created. If the students are able to define large, complex and

well-structured domain and goal maps, it is likely that expert pedagogical authors

will be able to use the tool to create sufficiently detailed (and pedagogically useful)

courses.

 7.6.1.1 Domain Content

As with the analysis performed in Chapter 5 , this section compares the Domain

content from three different perspectives: All Domain Maps, Best Domain Map per

group and Average Domain Content per Group. For the definitions of these

perspectives see Section 5.5.2.2 .

 Number of Cases Concepts Depth of
Average Concept

Number of
Attributes

Attributes per
Concept

Number of
Custom
Attribute Types

Percentage
Attributes
(excluding title)
containing more
than 2 unique
HTML tags

MOT1.0:
Average for All
DMs

4 22
StdDev: 12.44

2.75
StdDev: 0.31

63
StdDev: 37.28

2.8
StdDev: 0.56

1.25
StdDev: 1.89

2.43
StdDev: 4.86

MOT3.0:
Average for All
DMs

29 22.24
StdDev: 12.22

2.93
StdDev: 0.7

54.62
StdDev: 30.18

2.52
StdDev: 0.6

1.75
StdDev: 2.79

19.4
StdDev: 21.93

MOT3.1:
Average for All
DMs

21 26.38
StdDev: 11.71

2.77
StdDev: 0.25

75.43
StdDev: 40.25

2.81
StdDev: 0.59

1.71
StdDev: 1.9

15.98
StdDev: 17.13

MOT3.0: Best
DM Per Group

10 27.1
StdDev: 12.3

3.06
StdDev: 0.66

65
StdDev: 32.62

2.45
StdDev: 0.58

1.6
StdDev: 2.17

24.2
StdDev: 25.97

MOT3.1: Best
DM Per Group

8 32.75
StdDev: 11.51

2.86
StdDev: 0.19

90.88
StdDev: 45.68

2.66
StdDev: 0.58

1.5
StdDev: 2.07

19.1
StdDev: 20.73

MOT3.0:
Average DM per
Group

10 22.2
StdDev: 10.12

2.85
StdDev: 0.61

54.34
StdDev: 21.5

2.53
StdDev: 0.42

1.64
StdDev: 1.59

20.5
StdDev: 25

MOT3.1:
Average DM per
Group

8 27.19
StdDev: 7.37

2.77
StdDev: 0.13

77.9
StdDev: 30.89

2.81
StdDev: 0.55

1.65
StdDev: 1.8

17.7
StdDev: 18.08

Table 7.1: Domain Production with MOT3.1 (2010) compared with MOT3.0 (2009) and MOT1.0 (2008)

165

Table 7.1 shows that for each category of measurement, the number of concepts

has increased through the usage of MOT3.1 above that of MOT3.0 and MOT1.0.

However, this difference is not statistically significant.

When considering all domains and the average domain per group, the increase in

the number of attributes is statistically significant. Moreover, when considering all

submitted domains, the number of attributes per concept also shows a statistically

significant increase over MOT3.0. Table 7.2 shows the effect size for these

improvements when using an independent t-test at a 95% confidence interval, and

using Pearson’s correlation coefficient (r), as described in Chapter 5 .

 Degrees of Freedom t r (Effect Size)

Average DM per
Group: Attributes

16 -1.908 0.43 (medium)

All DMs: Attributes 48 -2.091 0.29 (small)

All DMs: Attributes
per Concept

48 -1.7 0.24 (small)

Table 7.2: Effect sizes for attribute creation in 2010

The depth of the average concept was actually slightly smaller in 2010, yet still

larger than the depth in 2008. However, the change in depth is not statistically

significant.

Similarly, the percentage of attributes containing more than two HTML tags, and

the number of custom attributes defined were also slightly lower in 2010, but these

changes were also not statistically significant.

Interestingly, in 2010 (using MOT3.1) no groups used the relatedness relations

features at all. As suggested in Chapter 5 (which discussed how there was only one

such relation used in 2009), this lack of use could be directly related to the fact that

the LAG language only provided limited support for such relations.

166

 7.6.1.2 Goal Map Content

A similar analysis can be applied to the Goal Map content in the submitted CAF

files. As with the analysis in Chapter 5 , the following criteria are considered: All

GMs, Best GM per Group and Average GM per Group – for details about these

categories, see Section 5.5.2.3 .

 Number
of Cases

Average Number of
Distinct Labels

Average Number of
Sublessons

Percentage of Labelled
Sublessons

Percentage of Weighted
Sublessons (i.e., labels
with weight other than
0)

2009 (MOT3 0): All GMs 40 3.83 (SD: 3.09) 62.38 (SD: 35.38) 53.25 (SD: 34.73) 37.29 (SD: 34.73)

2010 (MOT3.1): All GMs 24 5.88 (SD: 10.78) 83.17 (SD: 48.56) 68.26 (SD: 37.27) 32.26 (SD: 41.17)

2009 (MOT3.0): Best GM
per group

10 4.7 (SD: 3.9) 96.4 (SD: 41.31) 54.89 (SD: 33.16) 42.3 (SD: 31.91)

2010 (MOT3.1): Best GM
per group

8 11.25 (SD: 17.96) 106 (SD: 63.05) 84.44 (SD: 31.44) 67.27 (SD: 40.75)

2009 (MOT3.0): Average
GM per group

10 3.83 (SD: 2.26) 62.38 (SD: 21.03) 52.29 (SD: 21.39) 38.94 (SD: 24.02)

2010 (MOT3.0): Average
GM per group

8 5.3 (SD: 4.87) 86.96 (SD: 42.14) 69.55 (SD: 28.25) 39.53 (SD: 25.41)

Table 7.3: Goal Map Analysis in MOT3.1 versus that of MOT3.0

168

Table 7.3 shows an overall increase in the number of distinct labels, the number of

sublessons and the percentage of labelled sublessons. When looking at all Goal

Models, there is a decrease in the percentage of weighted sublessons. However,

when looking at the Best GM per group and the Average GM per group, there is a

general increase. Nevertheless, the only statistically significant results shown by

these results are that for the All Goal Models category, the number of sublessons

was higher (t(62) = -1.976, p < 0.05, r = 0.24) and that when considering the Best

GM per group, the percentage of labelled sublessons was significantly higher (t(16)

= -1.922, p < 0.05, r = 0.43).

The increase in the average number of distinct labels is a direct result of introducing

multiple labelling. For instance, the statistics presented in Table 7.3 would consider

the labels “image:0;beginner:0” and “image:0;advanced:0” as two distinct labels,

even though the strategy may check for three separate sub-labels (image, beginner

and advanced). When considering only the individual unique sub-labels, there was

an average of only 3.92 (SD: 2.64) when considering the average goal map per

group. This rises to 4.33 (SD: 4.68) when considering all 2010 goal maps or 6.5 (SD:

7.33) when considering the Best Goal map per group.

The fact that the percentage of weighted sublessons is lower for 2010 than for 2009

could be because of the increase in usage of multiple labelling. Due to the limitation

in addressing a specific weight in LAG when using multiple labels, some groups

opted for strategies that did not utilise the weights. Interestingly, one of the groups

that used multiple labels appeared to be combining the labels with a number, such

as “textL:0;1L:0;”, “textL:0;4L:0;” and “sumL:0;16L:0”. However, the strategy they

169

created to use the goal map did not actually utilise such labels. This implies that the

students desired a way of adding complex multiple labels to the content, yet the

implementation of LAG (and therefore MOT) was insufficient. This multiple labelling

problem is addressed in Chapter 10.

 7.6.1.3 LAG Strategy Content

The LAG code created by students was also statistically examined as follows. We

were analysing if the improved version of PEAL had any impact on the type of code

the students wrote. Here, the quantitative analysis is presented, in terms of

quantity of code, description and comments. For each category, we count both the

number of lines and the number of characters.

As with other analysis (and as explained in Section 5.5.4.2) each group is considered

from three separate perspectives: All Strategies, Best Strategy per Group and

Average Strategy per Group.

170

 N Lines
of
Code

Lines of
Description

Lines of
Comments

Characters
of Code

Characters
of
Description

Characters
of
Comments

PEAL
(2009)
All
Strategies

38 46.18
SD:
25.65

8.66
SD: 6.78

6.53
SD: 9.92

957.79
SD:
613.274

493.45
SD: 599.37

391.61
SD:
680.928

PEAL2
(2010) All
Strategies

31 48.94
SD:
37.18

10.94 SD:
6.78

10.19 SD:
9.59

964.32 SD:
614.27

711.1 SD:
573.61

574.52 SD:
448.44

PEAL
(2009)
Best
Strategy
per Group

10 66.4
SD:
22.76

10
SD: 7.5

12.1
SD: 17.15

1457.9
SD: 685.54

680.8
SD: 788.88

757.5
SD:
1182.25

PEAL2
(2010)
Best
Strategy
per Group

9 76.56
SD:
51.79

11.67
SD: 11.68

16 SD:
14.49

1560.33
SD:
1211.04

650.33
SD: 682.43

818.78
SD: 206.66

PEAL
(2009)
Average
Strategy
per Group

10 45.7
SD:
17.02

8.53
SD: 5.51

6.2
SD: 7.04

950.55
SD: 456.59

481.83
SD: 521.36

372.03
SD: 517.02

PEAL2
(2010)
Average
Strategy
per Group

9 47.75
SD:
22.22

10.06 SD:
7.57

9.03
SD: 6.65

932.94
SD: 503.48

639.64
SD: 475.7

510.61
SD: 349.68

Table 7.4: LAG Content when using PEAL2 in 2010 versus PEAL in 2009

Table 7.4 shows a small increase in the amount of code in the submitted strategies

for the group of 2010 when compared to the 2009 one. However, this difference is

not statistically significant. Similarly, there is an increase in the amount of

comments and description, but this also is not statistically significant.

The introduction of the original version of PEAL (described in Chapter 5) had shown

a significant improvement in the amount of code, description and comments over

the 2008 cohort that could only use a text-editor to create LAG files. However, the

difference between the strategies created using PEAL2 and those created using

PEAL is not as significant.

171

Since the visual way of writing LAG strategies was implemented as an extension of

the original PEAL, it is likely that many students decided not to use the visual

features of PEAL2, and simply used the original features of PEAL. This would explain

why there doesn’t appear to be much difference between the usage of PEAL and

PEAL2.

The icons used in PEAL2 are very large, and complex strategies are thus quite

difficult to display within the web-browser’s window. Figure 7.9 shows a screenshot

of an (incomplete) Beginner-Intermediate-Advanced strategy. The font size in the

browser had to be reduced several times in order to see an overall view of the

strategy. It is, therefore, quite difficult to use PEAL2 with large strategies, and

scalability is certainly an issue. This could be one of the reasons why there appears

to be no significant difference between the strategies created in PEAL and those

created in PEAL2.

172

Figure 7.9: Extract of a Beginner-Intermediate-Advanced Strategy in PEAL2

 7.7 Conclusion

This chapter has described a further iteration in the development of the MOT

toolset, MOT3.1, which was based directly on the feedback gathered from MOT3.0.

The chapter has also presented an evaluation of this version of the MOT toolset.

Specifically, this chapter has introduced the idea of specifying adaptation using

graphical programming techniques.

Evaluations of the submitted content have indicated that multiple labelling is a

useful feature. However, the support for multiple labelling was not found to be

sufficient enough to encourage authors to create strategies that fully utilize such

labels. Further work on this area is presented in Chapter 10.

The evaluation described in this chapter has found no direct evidence that the

currently used visual programming tool (PEAL2) assisted the authors with the

173

process of specifying an adaptation strategy. There is no statistical evidence to

show that the quality of the strategies got worse (indeed, there is a very small

general improvement in the quantity of the submitted content), this could be

because the students simply used the text-based features of PEAL2.

PEAL2 has not demonstrated that authors have a clear preference for such visual

authoring of adaptation. However, the next chapter discusses an alternative

method for visually specifying adaptation.

174

 8 Visual graph-based authoring: GAT

 8.1 Overview

This chapter expands on the description of the GRAPPLE project provided in

Chapter 2, and documents the changes that have been made as part of the work on

this thesis, to improve the usability of the GRAPPLE Authoring Toolset.

 8.2 Related Research: The GRAPPLE Project

The GRAPPLE EU FP7 STREP project [4] sets out to “enable adaptive life-long

learning for learners in higher education and industry” [129]. One of the primary

aims of the project was to integrate adaptive learning environments with existing

LMSs – as described in Chapter 2. This chapter uses the ‘Milky Way’ example, which

was created by Ploum [130], and is widely used as an example when describing

GRAPPLE [4], [26].

The adaptive authoring and delivery aspect of the project focussed on two main

tools – GALE and GAT – as briefly revisited below.

 8.2.1 The Generic Adaptive Learning Environment (GALE)

The Generic Adaptive Learning Environment (GALE) [26] is a delivery engine for

adaptive hypermedia. It is based on the previous research carried out at Technische

Universiteit Eindhoven (TU/e), and is a direct successor to the AHA! delivery engine

[23]. In terms of authoring, the primary input format for GALE is the CAM XML

language [37], which is authored using GAT.

175

 8.2.2 The GRAPPLE Authoring Toolset (GAT)

The GRAPPLE Authoring Toolset (GAT) was designed to make the process of

authoring for adaptive hypermedia easier. The toolset was designed using Adobe

Flash Builder40, allowing it to be run in any browser that supports Adobe Flash

Player41. The design and implementation of the toolset was carried out as part of

Work Package 3 of the GRAPPLE project. The authoring framework for GRAPPLE

uses features from both the AHAM model [32] and the LAOS model [35], and is

based on research on most existing authoring frameworks [46].

The design and implementation of the authoring tool was divided into four separate

areas: the Domain Model (DM) tool, the Concept Relationship Type (CRT) tool, the

Concept Adaptation Model (CAM) tool and the Shared interface. The researchers at

the University of Warwick were directly responsible for the CAM and the Shared

components of the authoring tool, but also led the Work Package that oversaw the

development of the overall authoring tool.

This section provides a basic overview of the features provided by the authoring

tool (and is thus presented as ‘Related Research’). Such an explanation is necessary

in order to describe the work presented in Section 8.3 which details the usability

and functionality changes that were made to the CAM and shared tools based on

previous research described in this thesis.

40 http://www.adobe.com/products/flash-builder.html

41 http://www.adobe.com/uk/products/flashplayer.html

176

 8.2.2.1 Domain Model Tool

Led by eXact Learning Solutions, Italy.

The Domain Model [44] tool allows authors to divide their content into Concepts

which are linked by relationships to form a graph structure.

 8.2.2.1.1 Concepts

Concepts are represented as nodes in the Domain graph. Each concept can have a

number of resources and properties.

 8.2.2.1.2 Resources

Resources refer to the URL of the document containing learning content. Any

document that can be displayed in the user’s web browser can be used as a

resource – although HTML pages are typically used42. Specifically, XHTML pages can

be used to provide more detailed adaptation (as described below).

 8.2.2.1.3 Properties

Each concept has a number of properties that are used as semantic metadata. The

properties can be addressed as part of the adaptation strategy using GALE code,

either as part of an XHTML resource, or within a pedagogical rule (see Section

8.2.2.3).

 Name: The name can be used as the name of the concept when generating

the hierarchical menu, and is also used to identify concepts within the

42 All HTML pages are automatically converted to XHTML by GALE at time of delivery.

177

authoring tool43. It is also used by the delivery engine to generate the URI of

the concept, such as gale://gale.tue.nl/cam/Milkyway/Star - where

Milkyway is the name of the CAM (course) and Star is the name of the

concept.

 Description: The description is used primarily within the authoring tool

rather than being displayed to the learner.

 Order: The order property is numeric, and is used to decide the concept’s

position in the hierarchical menu.

 Title: If the title property is specified, it will be the title of the concept shown

in the hierarchical menu (instead of the name).

 Type: GALE automatically creates a header that says “has read X pages and

still has Y to read”. When calculating the values of X and Y, GALE only

considers concepts that have their type set to page.

Figure 8.1 shows the list of properties in the editing pane for the Star concept. As

well as the above defined properties, the creator of the Star concept has added

some custom properties; image, info and info1.

43 Please note that internally the tool uses GUIDs for identifying concepts. However, the

name is used as a human-readable unique identifier that is shown to the author.

178

Figure 8.1: The Properties of the Star Concept

In the case of the Planet concept, the associated XHTML resource contains the

following GALE code:

<h1><gale:variable expr="${?title}"/></h1>

<h4>Is <gale:variable expr="${->(parent)?title}"/>

of: <a><gale:variable expr="${->(isPlanetOf)?title}"/>

<gale:attr-variable name ="href"

expr="${->(isPlanetOf)?title}"/>

<gale:adapt-link/></h4>

179

<h2>Image of <u><gale:variable

expr="${?title}"/></u></h2>

<gale:attr-variable name="src"

expr="${?image}"/><gale:attr-variable name="width"

expr="300"/>

The GALE-specific XML instructs the parser to substitute the values from the

properties – the resulting output is shown in Figure 8.2. This means that the author

can create a template ‘planet’ concept and reuse it to generate each of the planets,

by simply modifying the properties for each concept rather than the resource.

Figure 8.2: Part of the generated pages for the Mercury and Venus concepts

However, using template concepts in this way means that the domain author would

require knowledge of the XHTML and GALE XML tags, since GAT does not provide

180

any support for the creation of the XHTML resource. It is therefore expected that

many domain authors will use larger static resources (as described in Chapter 9).

 8.2.2.1.4 Relationships

Each concept can take part in relationships. Relationships form the directed edges

of a graph structure (see Figure 8.3), and represent a semantic relationship

between exactly two concepts such as ‘is-a’ or ‘belongs-to’. The relationships used

can be defined by the user, and can therefore be specific to the content. The

semantic information from the relationship definition can be used by the

adaptation. For instance, the ‘parent’ relationship, is used to generate the

hierarchical navigation menu. The reuse of domain relationships in pedagogical

settings should normally be done within GALE code (specified either as part of the

resource as described above, or in the CRT tool – see Section 8.2.2.3). However, for

the ‘parent’ relationship, a shortcut was used such that it is always interpreted as

the relationship to inform the navigation menu. This is a decision that moves away

from the separation of concerns between content and pedagogy, but was made in

the project for expediency sake.

181

Figure 8.3: Part of the Milky Way example domain (the Star concept is currently selected)

 8.2.2.2 Concept Adaptation Model Tool

Led by the University of Warwick, UK – first version developed by Maurice

Hendrix[46], updated versions developed by Jonathan Foss

The Concept Adaptation Model (CAM) tool [37] (later also called ‘Course Tool’, for

simplicity) allows authors to specify how the Domain concepts should be presented

by the adaptive course. This is achieved by enabling the user to choose from a

variety of pre-created pedagogical rules. In this way, the Course Tool combines

input from the other two tools, Domain Tool and Pedagogical Rules Tool, in order to

create a real course instance.

Each pedagogical rule contains one or more sockets, which are placeholders for the

(one or more) concepts that will be involved in that rule. The rule then defines how

the adaptation that is specified in the rule should be applied to the concepts in the

sockets. Sockets have names that allow the adaptation code to address them.

Typically, rules that require two sockets name them source and target – denoting

182

that the rule reads values from the concepts in the source and consequently

manipulates a value on the target concepts.

Figure 8.4: A G-Prerequisite CRT rule as displayed in the CAM tool

There are 13 different rules that are defined by default. Authors can create a course

by using the CAM tool to insert any combination of these rules into their course,

and then populating it with concepts from the Domain model. The GRAPPLE

authoring team has created a number of pre-defined pedagogical rules, which are

to represent the initial stage of the rule library, as well as highlight how the

pedagogical rules can be used and show the range of possibilities available. Thus

these rules are considered essential for a non-programmer to use, as main building

blocks for any adaptive course, as follows.

 G-Start: Defines which concept should be shown when a user first registers

on the course.

 G-Layout: Generates the basic page layout (including the navigation menu,

header and footer) when any of the concepts in its socket are accessed. The

hierarchical navigation menu is created by the static-tree-view component

in GALE, which uses the parent relationship (and the order property) from

the domain – as described above.

 G-Prerequisite: States that a concept (or a group of concepts) is a

prerequisite of another concept. Concretely, GALE will not set the suitability

value (of any of the concepts in the target socket) to true until the user’s

183

knowledge of the concept(s) in the source socket has exceeded a threshold

value (by default, 80%). As described in Chapter 2, from the point of view of

the learner, the navigation menu will show the target concept(s) as black

text (with a red icon) until all prerequisites have been satisfied, and the

navigation menu link will turn blue (with a green icon).

A more detailed explanation of all pedagogical rules can be found in the online

GRAPPLE Tutorial [131]. The set of pre-created pedagogical rules are designed to

allow beginner authors to create a wide variety of different adaptation strategies.

However, expert authors may wish to create their own pedagogical relationship

types using the Concept Relationship Type tool.

 8.2.2.3 Concept Relationship Type Tool

Led by University of Graz, Austria

Concept Relationship Types (CRTs) [132] (also called ‘Pedagogical Relationship

Types’ as described in Section 8.3.1.1) are the pedagogical rules that describe how

adaptation should be applied to certain (groups-of) concepts. The idea of Concept

Relationship Types was originally used by AHA! [23]. The CRT tool allows expert

authors (i.e. programmers and pedagogical experts) to write GALE code that

describes the adaptation that should be applied to the concept(s) in the rule’s

sockets. The tool is not intended for the non-programmer author, who can use pre-

existent pedagogical rules as described above. Unlike the other tools in GAT, the

CRT tool is entirely dialog-based, rather than graphical. The interface allows the

author to define the following types of information about the pedagogical relation.

184

 General: Allows the author to specify basic information about the CRT, such

as name, description and how many sockets will be available in the CRT.

 Meta Info: Allows the user to specify a comment (pedagogical description),

and define various parameters. This description is important for non-

programming authors, and thus should be written in laymen’s terms, but be

clear enough, so that the pedagogical rule can be used by such authors. The

interface allows the CRT creator to define default values for these

parameters. However, the CAM interface allows the author to further adjust

these variables for individual instances of the rule.

 Code: A simple text box that allows the author to specify the GALE code that

will be used by the pedagogical rule.

 User Model: Allows the author to define user model variables that will be

used by the rule.

 8.2.2.4 Shared Interface

Led by the University of Warwick, UK – first version developed by Maurice

Hendrix[46], updated versions developed by Jonathan Foss

To provide a coherent look-and-feel between the three separate tools of the

toolset, a shared component in the project was developed. This component is also

responsible for functions that apply to all tools, such as file management and

communication with other tools such as GUMF [133] and GALE [26].

185

 8.3 Enhancing the Usability and Functionality of the GRAPPLE

Authoring Toolset

The GRAPPLE Authoring Toolset aims to simplify the process of authoring for

adaptive hypermedia, and as such should be usable by a wide variety of users (of

varying technical abilities). The content authors may be educators (i.e. teachers and

lecturers) from a variety of different disciplines to a variety of different types of

students (of any age). Concretely, the toolset was designed to allow all content

authors to be able to easily create domain maps based on their own content.

Moreover, through the use of modular ‘building brick’-style pedagogical rules, the

GRAPPLE project aimed to allow non-technical authors to specify the adaptation

that should be applied within their own courses. However, as part of the project,

various issues with the implementation of the GRAPPLE Authoring Toolset were

identified.

As described above, the University of Warwick was primarily concerned with the

design and implementation of the shared and CAM components. This section

describes the improvements that were made in response to user feedback.

Moreover, many of these improvements are directly in alignment with some of the

principles that have been described in previous chapters when discussing the MOT

toolset.

 8.3.1 Interface Changes

 8.3.1.1 Name Changes

Some of the qualitative feedback provided at the ECTEL2009 and ICALT 2009

conferences [46] had shown that the terms Domain Model (DM), Concept

186

Relationship Type (CRT) and Concept Adaptation Model (CAM) were confusing.

These terms were renamed to Domain, Pedagogical Relationship Type (PRT) and

Course respectively, in the new version created during this thesis. Moreover,

whereas individual CRT instances in the CAM had been referred to as CRT instances,

dialog boxes in the Course tool now refer to specific instances as pedagogical rules.

Similarly, the terminology used for model sharing permissions was changed.

Previously, the tool used the terms readwrite, read and nopermissions – now Public

(can be read and modified by anybody), Read Only (can be read by anybody but can

only be modified by the original author) and Private (can only be read and modified

by the original author) are used, again, for more clarity.

 8.3.1.2 Welcome Screen

Previous versions of GAT had presented the user with an empty screen when the

tool was first opened. The user then had to go to the File menu and choose to

either create a new model or open an existing model. A welcome screen was

designed to immediately present the user with some suggestions of frequently used

tasks (see Figure 8.5). It was designed to be colourful to attract the user’s attention.

Each button contains a main heading and a sub-heading that describes the

functionality, thus introducing the user to the terminology used by the tool. This is

similar to the type of welcome screens that are commonly used in software such as

SPSS [6] and Microsoft Access[134] which (unlike other software such as Microsoft

Word[39]) offer the user a choice of activities when the program is launched. The

fonts and colours used were selected in such a way that they are not obtrusive, but

187

at the same time convey the feeling that it’s ‘child’s play’ to use the system; similar

to the use of vivid use of colour in Scratch[69].

Figure 8.5: The Welcome screen in GAT

 8.3.1.3 Toolbar

In line with many other common applications, GAT has a button toolbar (shown in

Figure 8.5) that allows simple access to some of the most frequently used functions.

Where possible, commonly recognised icons have been chosen to accompany the

text on the buttons. The icons are based on the accepted usability conventions for

icon sets, and look similar to those used in widely-used software such as Microsoft

Word[39], Microsoft PowerPoint[92] and Apache OpenOffice[93].

 8.3.1.4 Advanced Mode

As described above, non-technical authors should be able to design adaptive

courses by only using the Domain and the Course tool. Moreover, beginner users

need not concern themselves with the creation of new PRTs. This separation of

advanced and beginner features was made much clearer in the version designed as

part of this thesis work – when GAT launches, initially only the options for creating

188

and modifying Domains and Courses are available. The user can choose to work

with the pedagogical relationship type tool by selecting ‘Advanced Mode’ from the

Tools menu.

 8.3.1.5 Prevention of accidentally closing the window

Since GAT is an Adobe Flash application, it can easily be terminated by closing the

web-browser window. To prevent the user from accidentally closing the window

and losing their unsaved work, a piece of JavaScript code was introduced to warn

the user before the web-page unloads.

 8.3.1.6 Export and Import functionality

Export and Import features were created to allow models to be saved as XML files

to the user’s local file-system. Users would not normally need to work with XML

files, since the models are stored within the GAT server’s database. However,

import and export functionality is useful when users wish to transfer files between

different GAT installations. Previously, this functionality was only available (via a

hack) by copying/pasting the XML in the ‘Debug’ tab (which is present in each tool).

 8.3.1.7 ‘Manage Models’ Screen

In conjunction with the welcome screen, a new screen was created to allow simple

access to each separate type of model. The ‘Manage Models’ screen (see Figure

8.6) allows the user to perform various tasks with the selected model.

 Export Model: Allows the user to save the selected model to an XML file on

their local file-system. This is not usually necessary, since all models are

saved in the GAT online database, however it is designed to allow models to

be shared between two GAT installations, or any systems which can process

189

the GAT output files (in conjunction with an import function that reads XML

files).

 Clone Model: Allows users to create a clone of the model. This is particularly

useful if a user wishes to create a model that is based on another user’s

model.

 Delete Model: Removes the model from the GAT database.

 Properties: Launches a dialog that allows the user to change the model’s

name, description or sharing permissions.

Each model type has two separate tabs (‘My [modeltype]’ and ‘Public

[modeltype]’), one shows all the models that have been created by the current

user, and another shows all the models that can be read by the current user (all

content that the user has permission to read).

All this represents a reorganisation of previous functionality. In the previous version

of GAT, all models, domain models, courses, even advanced pedagogical relations

were called DM, CAM, CRT (or PRT) and listed all together in one big list. User

studies [46] showed that it was difficult for users to find the ones they made, to

differentiate between the domain models and the courses (as often they would

have the same or a similar name), to find recent ones, etc., although filtering

functionality had been provided (via a search box similar to that shown in Figure

8.6). Dividing these model types into sections, together with the simpler naming

190

convention, was aimed at being much more user-friendly.

Figure 8.6: The ‘Manage Models’ screen

 8.3.1.8 Multiple Selection Rectangle

Another issue in the previous implementation of GAT was that, whilst the domain

and course tools were graphical, actual graphical manipulation of the objects on the

screen was reduced. Specifically, concepts had to be selected individually, and this

was alleviated in the new version, to bring the toolset in line with modern

commercial software principles. In common with many graphical drawing programs,

GAT now allows users to select multiple items at once by drawing a ‘rubberband’

selection rectangle [135]. This was implemented in the Shared component, thus

allowing the feature to be used by both the Domain tool (for selecting concepts)

and the Course tool (for selecting rules), to give a more common ‘look and feel’.

 8.3.1.9 Drag & Drop Concepts from Domain to Course

Amongst the limited graphical manipulation facilities of the previous

implementation was that of the copying functionality. Previous versions of GAT

allowed the user to double-click the socket (to open the ‘Edit socket’ dialog) then

click Insert Concepts, choose a Domain from the file manager and then select from a

list of concepts. Alternatively, the user could select concepts from the Domain tool,

and select copy from the menu. The concepts could then be pasted into the ‘Edit

191

socket’ dialog. Both of these methods performed the required functionality, but

were considered problematic from a usability point of view. This was mainly

because each of these methods required several steps (involving a number of

dialogs). Moreover, the process of inserting concepts into sockets is a vital part of

the course creation process and must be performed many times. Similarly, there

was an expectation from the user that since the tools are presented in the form of a

graph, they would expect to be able to select multiple items from it in the graph,

rather than having to carry out such a laborious process.

The updated version of GAT allows authors to dock a domain window next to a

course window. The user can then drag a concept from the domain, and drop it

directly into a socket in the course.

 8.3.2 Course Tool Changes

This section describes specific changes that were made to the Course (previously,

CAM) tool.

 8.3.2.1 Rectangular Socket Shape

Previous versions of the course tool had used ovals for displaying the sockets of a

rule. This meant that concept names were often truncated. The updated version

uses rounded rectangles that are the same width and height as the ovals, but allow

more concept names to be displayed. Moreover, if the list of concepts is too long to

be displayed, the socket is expanded upon hovering, allowing the full list of

concepts to be displayed when users move their mouse over the socket (see Figure

8.7).

192

Figure 8.7: A truncated list of concepts and an expanded socket

 8.3.2.2 Pedagogical Rule Toolbox

Figure 8.8: The course tool with Rule toolbox

Previous versions of the course tool had simply provided the user with a blank

canvas and allowed them to right-click on the canvas to access a menu item to

insert a pedagogical relation. This menu would then present the user with a dialog,

from which they could choose a pedagogical relation to insert. That meant that at

least two or more clicks were necessary for each pedagogical relation. This was

considered inefficient, as inserting pedagogical relations is a repetitive action that a

193

user (author) would have to do, often having to insert the same pedagogical

relations repetitively.

Instead, the updated version of the course tool provides a toolbox on the left side

of the screen. This allows the user to select the appropriate rule, and drag-and-drop

it into the course canvas, in one step. Moreover, instead of having a long list of a

variety of rules (some of which might not necessarily be finished, and still being

slowly updated by other authors) the rules are divided into relevant categories. The

toolbox has the following four categories.

 GRAPPLE Rules: The basic rules that were originally created as part of the

GRAPPLE project. These were selected to be the most frequently used

adaptation rules (including start, stop and prerequisite rules), which are

indispensable for non-programmer users to be able to add any adaptive

features to a course.

 My Rules: All rules created by the current user.

 Rules in Use: All rules that are currently used in the current course. Thus,

when opening a course by another author, a user can see at a glance what

rules are used in it.

 All Rules: All rules in the GAT database.

 8.3.2.3 Selecting rules according to the type

Hendrix [46] had suggested that the course tool could be improved by allowing the

user a finer control over which rules should be shown. Figure 8.9 shows that the G-

Start and G-Layout rules are selected in the toolbox, and hence the G-Start and G-

Layout instances in the course are highlighted.

194

Figure 8.9: Selecting rules by type in the Course tool

 8.3.2.4 Performance Improvements

The course tool was demonstrably slower when many pedagogical rules were

inserted into a course. It was found that delays happened because the graphics

library that was being used recalculated the positions of each of the graphic

elements (i.e. the diamond shape, the arrow and the sockets) every time the user

made any change (such as adding/deleting/moving rules). To minimize the amount

of calculations that needed to be done, the positions of the rules were stored,

therefore improving the responsiveness of the tool.

 8.3.2.4.1 Related Lines

As with previous versions of GAT, related lines are drawn between sockets that

contain concepts in common. For example, Figure 8.10 shows a simple example

where Mercury is a pre-requisite of Venus, and Venus is a prerequisite of Earth.

There is therefore a related line (with a grey concept icon showing ‘Venus’)

between the target socket of the first prerequisite and the source socket of the

195

second prerequisite. In this case, the related line is designed to assist the author in

visualizing the flow of the course.

Figure 8.10: A chain of prerequisites with a related line

However, if a G-Layout rule (containing all three concepts) was added to the course

shown in Figure 8.10, there would be a related line drawn between the G-Layout

rule’s socket and the other four sockets. Since the G-Layout rule merely affects the

presentation of the concept and does not have any effect on the sequence of the

course, the related line does not provide much information to the author.

Furthermore, when there are many pedagogical rules within a course, the course

becomes densely populated with related lines. This means it is often difficult to

identify which sockets are being referenced by the related lines. For example,

Figure 8.11 shows part of the Milky Way [4] example with many related lines in the

middle that are difficult to understand.

196

Figure 8.11: Part of a course with too many related lines

In addition to the cognitive overhead, the positions of each related line needed to

be recalculated every time the screen needed to be redrawn (as described in

Section 8.3.2.4). For this reason, the updated version of GAT adds a checkbox that

allows the user to hide the related lines, thus increasing the responsiveness of the

tool, whilst removing unnecessary information from the interface.

 8.4 Conclusion

This chapter has described the GRAPPLE Authoring Tool, which allows authors to

specify adaptation using graphical methods. The chapter has focused on the recent

updates to GAT, specifically looking at methods of improving the usability.

Future work could investigate ways of providing adaptive functionality within the

authoring tool. A simple way of doing this would be to remember the level of the

author and automatically ensure that when a user selects advanced mode, the

system remembers the user’s preference for advanced mode. This could be made

more adaptive by allowing the tool to monitor the types of resource that the user

usually uses. For instance, if a user frequently works with static document

resources, the system could assume the user is a beginner author with little

197

experience in adaptation. However, if the user frequently uses XHTML content

containing GALE code, the system could assume that the user has more experience

in the authoring of adaptation, and could therefore recommend usage of the

Pedagogical Relationship Type tool.

Similarly, the experience of using resource templates (as described in Section

8.2.2.1.2) could be enhanced by adding extra features to the domain tool. The

domain tool could automatically read the XHTML resource to identify which

properties are used by the XHTML resource template. The tool could then prompt

the user to ensure that they set these properties to appropriate values. Moreover,

a preview function could be added to the tool so the user can instantly see what

effect the value of the properties has on the template.

Many of the usability changes described in this chapter are in direct response to the

set of imperatives that have been derived during the continual development of the

MOT toolset, as documented in previous chapters of this thesis.

There are however substantial differences between the authoring approaches

taken by both GAT and MOT. This means that although each tool respects many of

the usability principles that have been described in this thesis, they implement the

imperatives in different ways. The next chapter compares the two approaches

according to the authoring imperatives, and presents the results of an evaluation of

both systems, thus allowing the imperatives to be refined further.

198

 9 Different authoring paradigms: Comparison between MOT

and GAT

 9.1 Overview

This chapter expands on the authoring principles and recommendations that have

gradually been introduced over the previous chapters. Specifically, this chapter

describes how the two separate toolsets respect the authoring imperatives. The

chapter also presents an evaluation between the two systems.

 9.2 Revisiting the Authoring Imperatives

Based on the results of previous research, we have gradually refined a set of main

authoring principles, as well as a set of recommendations for usability. In this

section, we revisit, update and extend the authoring imperatives defined in

previous chapters. This chapter specifically looks at how the frameworks (and

therefore authoring principles) have been implemented within the authoring tools.

 9.2.1 Functionality Imperatives

The following imperatives detail the basic functionality required for all adaptive

hypermedia authoring systems.

1) A way of describing content and annotating content with relevant semantic

metadata: As described in Chapter 2, any system needs to be able to represent the

content (resources) to be used in the adaptation process [29], [35], [37]. Similarly,

sufficient semantic metadata must be associated with the content.

There is, however, a balance to be sought between having a high level of reusability

(by using a high number of semantic metadata labels) or lowering the authoring

199

effort and thus either generating these labels (semi-) automatically, or allowing for

a manageable, low number of labels to be added manually by the author. Please

note that the way in which the metadata should be represented or processed is not

imposed by this requirement. However the complexity imperatives (below), for

instance, would recommend the use of standards where possible.

Furthermore, to ensure the reusability of content (and in order for content to be

conditionally presented) the content needs to be divided into smaller pieces. Here,

the author must decide what the granularity of each piece should be [51]. Should

each piece contain full documents, or parts of documents, or even smaller pieces?

By definition, static content cannot be adapted. Therefore, fine-grained static

content can be more flexibly personalised to the needs of the learner than coarse-

grained content. Moreover, the user model of the system (which is typically

implemented as an overlay of the content), needs to be able to store information

about the user’s knowledge of a content fragment (since the user model is usually

implemented as an overlay model of the concepts [12] – as described in Chapter 2).

Therefore, the system will be able to produce a more detailed model of the user’s

knowledge if content fragments are authored with a fine-grained detail.

However, if the pieces are too small (fine granularity), the authoring process will be

time-consuming and complex. Whereas if the pieces are too large (coarse

granularity), the adaptation will be limited. Thus, a balance between authoring

flexibility and authoring ease has to be found.

200

2) A way of describing adaptation: The adaptive behaviour determines how the

static components (such as the content) can be reused and presented to a user (or

a group of users) in a variety of different ways, depending on user-related,

environment-related, topic-related, pedagogy-related, etc., information.

As with content, it is important to consider the granularity of the adaptation

description, in terms of reusing parts of already created adaptation. Here, again,

the semantics limit the size of the smallest possible ‘piece of adaptivity’. However,

common sense (and the limited time of an author) imposes the need to balance

between reuse flexibility and ease of authoring. Such a division would also need

annotation of the separate pieces with appropriate metadata. Note that we do not

impose here any specific way of representing the adaptation. For generic adaptive

hypermedia, no mention of pedagogy is made, although clearly an appropriate

pedagogical model is a vital goal for adaptive educational hypermedia.

3) A way of addressing many different adaptation techniques: Ideally, the tool

should be as flexible as possible and allow all users to be able to use a large variety

of possible adaptation techniques. Brusilovsky [13] defined a taxonomy of

techniques that can be used to provide adaptation. More recently, Knutov [20]

refined Brusilovsky’s taxonomy based on techniques exhibited by more recent

adaptation systems, particularly redefining some of the presentation techniques. In

practice, some of the techniques will be more difficult for users to author than

others.

These functionality requirements are minimalistic, representing the basics on which

all adaptive authoring systems are built. As long as there is a way of expressing

201

adaptation, and managing and labelling content, adaptive hypermedia can be

produced. More advanced authoring systems can also add other layers to

separately express other models (such as the user-, learner-, pedagogical-,

presentation- models, etc.).

 9.2.2 Complexity Imperatives

The following imperatives are designed to simplify the process of authoring courses

for adaptive hypermedia. They are not completely independent, in fact, they build

on each other.

1) Separation of concerns: To ensure reusability and flexibility, the static content

(e.g., domain model or content) should be kept as a separate challenge to the

authoring of adaptive content (e.g., the adaptation strategy) – as explained in

Section 2.9.1 This imperative was also one of the original imperatives from Section

5.2.1 CI1.

2) Reuse: To lower the complexity of the authoring process, it is essential to allow

authors to reuse existing work (created by themselves and by others). Ideally, the

system should allow each element of the authoring process to be reused by other

courses. This includes content, links, adaptation descriptions, and pedagogies.

Granularity (as recommended by the functionality imperatives) also has a major

role to play in how reusable the content will be.

3) Clear definition of roles: The separation of concerns principle allows users to

specialize on particular parts of the authoring process. To fully demonstrate this to

202

the user, the system should provide separate operating modes, for example

‘Beginner’ and ‘Advanced’ or ‘Author’ and ‘Programmer’.

4) Use of frameworks: As described in Section 5.2.1 CI2.

5) Use of standards: As described in Section 5.2.1 CI3.

 9.2.3 Support Imperatives

The following imperatives describe how an authoring system can support the

author through more intuitive techniques.

1) Simple access to pieces that need to be reassembled for different types of

adaptation: The system should allow the author easy access to functionality such as

reordering, labelling, copying & pasting, linking and editing (e.g., of content,

strategies, etc.). This was described in Section 5.2.2 SI1.

2) Shallow learning curve: As described in Section 5.2.2 SI2, the system should be

easy to learn, and should allow beginner authors to use a wide variety of features in

simple ways.

3) Familiarity: As described in Section 5.2.2 , the system should be familiar to the

author, thus use as many conventions as possible (functionality, etc.) which are

familiar to the author. In particular, the system should provide:

a) Consistency with existing applications and systems

b) Interoperability with familiar course creation formats

c) Interoperability with familiar course creation standards

203

d) Interoperability with familiar course creation systems

4) Coherence: The authoring tools should provide a coherent toolset. So rather than

requiring the user to use a variety of separate tools, the toolset should maintain a

consistent ‘look & feel’. This provides a greater integration between components of

the tool.

5) Visualization: The authoring system should provide a clear and consistent way of

displaying course content and adaptation strategies, via simple and familiar

paradigms. Moreover, the system should clearly show a representation of the

overall course. Additionally, an authoring system could provide various views for

the different parts of the authoring process, for the different levels of detail, etc.

 9.3 Applying the Authoring Imperatives

This thesis has described two toolsets that allow the user to author adaptive

hypermedia courses; the GRAPPLE Authoring Tool (GAT), and the MOT toolset.

Although both methods strive to allow non-technical authors to achieve the same

goal (i.e., create an adaptive course), the tools are implemented in slightly different

ways. The fundamental difference between the two tools is that GAT intentionally

tries to make the authoring process a visual experience, whereas MOT attempts to

keep the authoring process simple by using more familiar hierarchical paradigms,

such as that used in a file manager (as described in Chapter 3). This section defines

the main differences between the two tools with respect to the authoring

imperatives described in the previous section.

204

 9.3.1 Functionality Imperatives

 9.3.1.1 Describing Static Content

In MOT3.1, each concept can have a number of attributes that describe the concept

in a different way (e.g. using a different medium). Each attribute has a type name

(such as text, image or video). Attributes are written within MOT3.1 using the HTML

editor, and are stored in the MOT3.1 database before being exported into the CAF

XML format.

In GAT, each concept has at least one resource associated with it. Each resource is

the URL of a piece of learning material. This means that the URL (rather than the

content) is exported as part of the CAM model. Instead of type names, it is possible

for the user to specify their own metadata properties for each resource. However,

only one learning resource for each concept can be delivered to the user at a time,

and the metadata can only be addressed by using GALE code.

GAT resources only allow users to provide the URLs of web documents, rather than

editing content directly within the tool. This means that if an author wishes to

create their own material, they must create it in an external editor, and make their

own arrangements for uploading it to a separate web host.

If GAT users were to create Domains that were at least as complex as the average

domain map reported by users of MOT3.1 in Chapter 7, this means that GAT

Domains will contain at least 27 concepts, and would therefore require the author

to upload over 27 documents. Of course, this would assume that each concept only

had a single resource, although many adaptive strategies (such as visual-verbal)

require each concept to have different content alternatives. If a visual-verbal style

205

course was to be created using GAT based on a domain with 27 concepts, the

author would have to upload 54 separate pieces of content. It is therefore likely

that (on average) each GAT resource will have much more coarse-granularity static

content than that of a single MOT attribute44.

 9.3.1.1.1 Annotating Static Content with Relevant Semantic Metadata

In MOT, labels and weights are added to sublessons using the Goal Model tool.

When the adaptation strategy runs for each concept, the strategy checks the value

of the label/weight of the concept and then chooses the appropriate action. This

allows the entire strategy to address concepts that have been labelled in a

particular way.

In GAT, labels are applied by populating the sockets of pedagogical relations. Rather

than applying a label that can be accessed globally by the strategy, the sockets in

GAT describe how a particular pedagogical relation should treat the concepts.

As explained in Chapter 8 GAT also allows ‘properties’ to be specified for concepts

(at the Domain model level). Properties are distinct from resources (in GAT) or

attributes (in MOT) in that they allow a metadata type to be specified. Such

metadata can be queried by the adaptation strategy, allowing different rules to be

triggered depending on the metadata of the chosen concept. However, such

44 XHTML based resources can contain GALE code, which allows fragments of content to be

shown/hidden depending on various conditions (such as Domain properties, and User

Model variables). However, this would require a more technical knowledge of GALE code

and is not directly supported by GAT.

206

behaviour needs to be specified using GALE code and is therefore not supported by

GAT.

 9.3.1.2 Describing Adaptation

In the MOT toolset, the adaptation is completely specified within the LAG file. The

author must create a LAG file (optionally using PEAL/PEAL2) to describe the

adaptation strategy.

In GAT, the author must populate the course with instances of PRTs, and then

populate the sockets of each PRT with concepts. The adaptation code is written

within the PRT, allowing multiple pedagogical relations (of a variety of types) to be

combined.

One of the main differences between the two authoring paradigms concerns the

granularity of the adaptation. In GAT, adaptation specialists write small fragments

of GALE code within the definition of a PRT. However, in MOT the adaptation is

written in a larger LAG file – leading to a much more ‘coarse-grained granularity’ of

adaptation code.

 9.3.1.3 A way of addressing a variety of adaptation techniques

The final functionality imperative aims to ensure that the adaptive hypermedia

authoring system can allow the author to specify a variety of different techniques.

The available adaptation is determined by the functionality of the delivery engine

and the authoring tools. An analysis of the adaptation available for each paradigm is

described in Section 9.5 .

207

 9.3.2 Complexity Imperatives

 9.3.2.1 Separation of Concerns

One of the main benefits of the separation of concerns principle is that it allows

different authors to concentrate on the area of the authoring process that they

specialize in. In terms of both MOT and GAT, the separation of concerns principle

provides three rules:

 Domain content should only contain information about the static content –

i.e., the factual teaching material;

 Pedagogical metadata should only contain information about the structure

of the course – providing an instantiation of the domain concepts by

describing how they should be taught;

 Adaptation should be expressed in a way that does not inherently bind itself

to a particular course or domain.

An application of the separation of concerns principle would recommend that each

of these three tasks should be achievable by separate authors, who can specialise in

their own authoring field (Domain, Metadata or Adaptation) in order to collaborate

on the creation of an adaptive course. This principle also promotes reusability as

described in the following.

 9.3.2.1.1 Separating the Domain from the Course

In the MOT toolset, Domain content only contains the factual attributes that

describe each concept, and the relationships between those concepts. However, in

GAT, Domain concepts contain properties such as ‘order’, which are used by the G-

Layout PRT to generate the order of the navigation menu for the course. This

208

means that the author would need to explicitly change the properties in the domain

to change the structure of the course.

Similarly, in GAT the structure of the navigation menu is directly inherited from the

‘parent’ relationships in the Domain45. A similar situation occurs in MOT in that

when the author converts a Domain Map into a Goal Map, the conversion process

automatically preserves the hierarchical structure of the Domain Map into the

initial structure of the Goal Map. However, the author of the Goal Map is able to

rearrange the structure of the Goal Map hierarchy (and therefore the structure of

the navigation menu), without affecting the original Domain Map. This extra stage

gives the course author a chance to modify the layout of the navigation menu,

however GAT does not provide an option for this intermediate step.

In some ways, the GAT method of linking the Domain with the final structure of the

course simplifies the authoring process, in that the design process happens entirely

within the Domain tool. However, if an author wishes to reuse a concept from

another author’s domain, they would have to copy the domain and manually edit

the parent relationship and the order property in order to choose the concept’s

position in the new hierarchy.

45 In previous publications (before the G-Layout PRT was finalized), the ‘is_part_of’

relationship is instead of ‘parent’.

209

 9.3.2.1.2 Separating the Adaptation Strategy from the Domain and the Course

As described above, to fully implement the separation of concerns principle, the

adaptation strategy also needs to be considered separately from the Domain

content and the course.

The MOT toolset achieves this by separating the LAG strategy from the CAF

content. The CAF file contains separate elements for the Domain model(s) and the

Goal model, whilst the LAG file contains only the adaptation description. This

prevents the adaptation author from needing to be concerned about the Domain

content or the structure of the Goal model. Of course, in order to create a working

strategy, the Goal model creator must communicate with the adaptation author to

ensure that the correct pedagogical labels are used.

By contrast, there are two stages in GAT where adaptation can be authored.

 9.3.2.1.2.1 GALE code within PRTs

The PRT tool allows adaptation authors to define adaptation in terms of how the

course should treat the contents of the sockets. Usually, the adaptation author is

able to write a rule that is generic, and does not need to refer to any particular

domain concepts, thus showing a clear separation of concerns. If necessary, the

author could write GALE code that assumes particular properties or concepts exist

within the course, for instance, if the author was writing a PRT that chose a

particular property (from a concept in one of the rule’s sockets) to display based on

the value of a user model variable. Such a rule would have to assume that the

properties existed within the concept.

210

 9.3.2.1.2.2 GALE code within XHTML resources

As described in the previous chapter, XHTML resources (specified at the domain

model level) can contain GALE tags. This is directly against the separation of

concerns principal, since it binds the adaptation code into the static content.

 9.3.2.2 Reusability

Granularity also has a role to play in reusability. As described by the support

imperatives, there are two types of content authoring where granularity is

important. If content is written with granularity that is too coarse, this limits the

possibilities for reuse.

Reusability is especially important when authors specialise and collaborate on the

creation of an adaptive course. There are two primary uses for reuse.

 9.3.2.2.1 Reuse within the same layer

Some authors may wish to copy static content for use within more than one course.

MOT and GAT both directly support the copying and pasting of concepts between

two different domains – thus promoting the reuse of static content. Moreover,

both tools allow such content to be reused by users other than the original author –

thus promoting collaborative authoring.

GAT’s use of external references provides a very simple approach for the reuse of

static content in that a domain author can (manually) copy the URLs used by

another domain map. MOT also allows users to ‘link’ to concepts from other

domain maps, rather than directly copying the concepts. This means that if the

source concept (the concept being linked to) changes, the update will be instantly

reflected in the target domain map.

211

In the case of MOT, the interpretation of the link is performed at design time (when

the CAF file is exported). This allows the author to check that the source concept

still contains suitable information before deploying the finished course. However,

using GAT’s approach the domain author must trust that the web resource remains

suitable (and doesn’t get changed by the resource’s author), throughout the entire

period that the course will be used. In some ways, this may allow the GAT approach

to provide more up-to-date material (the web resource’s owner can update the

content, without the course author needing to perform any updates) however,

reuse of resources in such a context would remove a lot of control from the

domain/course author.

In the MOT toolset, PEAL provides a code library to allow adaptation authors to

reuse fragments (or whole strategies). Adaptation authors in GAT can clone an

entire PRT (or copy parts of the GALE code) and edit the behaviour accordingly.

 9.3.2.2.2 Mixing and matching between different layers

In MOT, authors can create a new adaptive course based on an existing Domain by

exporting the Domain to a new Goal model. The course author can then choose an

appropriate strategy, and start adding metadata. The course author can then

rearrange the Goal model; add concepts from other Domains or sublessons from

pre-existing Goal models, or delete any unnecessary sublessons.

By contrast, an author in GAT can create a new course and choose which concepts

(from various pre-existing domains) should be included in the course. However,

because of the lack of separation of concerns between the domain and the course

212

layers, the course author will be unable to change some features that are

determined by the Domain’s metadata, such as the layout of the course.

Similarly, the granularity of the adaptation affects reusability. MOT allows for reuse

of code snippets, using the PEAL editor, but mostly encourages reuse of whole

strategies, whereas GAT divides the adaptation into reusable pedagogical

relationship types (PRTs), of low granularity.

PRTs allow code to be written in smaller, reusable chunks that are later instantiated

with concepts and linked together in the course tool. GAT aims to allow non-

technical authors to create a whole adaptive course using these ‘building blocks’.

Although the small adaptation rule types (PRTs) are designed to be reused within

many different courses, the combination of these adaptation rules is specific to the

chosen domain. This means that if an author creates a large pedagogy (using many

different PRTs) based on a particular topic, the author cannot use the same

pedagogy to teach a different topic without starting again.

The opposite situation occurs in MOT, where the adaptation is specified in a whole

LAG file, allowing the entire pedagogical strategy to be reused by different goal

models (and therefore domain models). However, since the granularity of the

adaptation strategy is so large, non-programmers can only reuse the entire

pedagogical strategy, rather than having to build the strategy from its basic

elements.

To enable content to be reused, PEAL2 supports both a private and a shared space

for storing adaptation programs or snippets. GAT allows content to be public,

213

private or read-only to other authors. In MOT, all content is readable by all authors,

but only writable by the original author.

 9.3.2.3 Clear Definition of Roles

In order to ensure that as many teachers as possible can contribute to the

authoring process for adaptive courses, the authoring system needs to make it clear

how the authoring process can be separated into different roles.

 9.3.2.3.1 MOT

The various roles that need to be performed as part of the authoring process are

detailed in Chapter 6. Concretely there are three main roles in the authoring

process using the MOT toolset:

1. A subject specialist authors content into a domain map (using MOT)

2. A pedagogical expert adds pedagogical metadata to the content by

exporting the domain map into a goal map (using MOT)

3. A programmer creates a LAG strategy (using PEAL2)

If necessary, these three stages can be carried out by three different people. These

people can either collaborate with each other on the authoring of a course, or

reuse pre-existing content that was created for other courses.

In practice, it is likely that the three stages will be performed by fewer than three

people. For instance, the pedagogical expert might be capable of writing a strategy,

or the domain author might prefer to specify their own goal metadata.

214

The idea of sharing strategies via a university web page46 is designed to encourage

this separation of concerns (and therefore roles), allowing MOT users to choose a

pre-existing pedagogical strategy without the need to learn LAG code. Similarly, CAF

files can be published online, allowing for the static content to also be swapped

between educators. Moreover, all domain and goal model content is readable by all

other MOT users, allowing the possibility for authors to base courses on pre-

existing material.

 9.3.2.3.2 GAT

The same three stages (Domain, Metadata, Adaptation strategy) can also be applied

to GAT. As described in the previous chapter, GAT attempts to provide a clear

definition of roles by providing an ‘Advanced Mode’. This prevents inexperienced

users from accessing the Pedagogical Relationship Type tool, yet still allows them

access to the creation of Domains and the creation of Courses.

In GAT, domain content can contain both course metadata (properties) and content

adaptation (XHTML GALE code[4], [26]). Due to the difficulties with reuse explained

above, it is likely that the course author will need to (at least) modify the domain

model, to ensure that the domain properties work with the pedagogical rules within

the course.

 9.3.2.4 Use of Frameworks

The MOT toolset is based directly on the LAOS [35] framework. The adaptation

model for MOT is specified using the LAG [119] framework. Currently, this

46 Such as http://prolearn.dcs.warwick.ac.uk/strategies.html

215

framework is implemented by the LAG language, but (depending on the capabilities

of the adaptive delivery engine) the language could be changed to anything that

was capable of following the LAG framework such as LAG-XLS [19].

The GRAPPLE project inherits many of its features from the AHAM [29] framework,

but also inherits features from the LAOS framework [37]. Due to GALE’s

architecture it is also theoretically possible to replace the GALE code interpreter

with an interpreter for another adaptation language [26].

 9.3.2.5 Use of Standards

Although there are no defined adaptation standards, both MOT and GAT use more

generic web-based standards. In the case of MOT, hypermedia is usually stored in

HTML. However, this is merely to simplify the process for the user. Content

attributes could theoretically be written in any language (such as plain-text or XML).

Similarly, ADE [50] could be easily modified to ensure that the correct MIME-type is

delivered to the end user. The main difficulty with using a non-HTML standard is

that the content fragments would have to be reassembled in such a way that the

output file was coherent. For HTML, the coherency of the output file is a relatively

trivial thing to ensure, however for more complex formats such as image, audio or

video files there might be more complicated headers (such as transport-streams or

checksums) to consider.

GAT allows users to refer to learning materials using any valid URL. GAT’s Domain

representations are also stored in IMS-VDEX47 format.

47 http://www.imsglobal.org/vdex/

216

Additionally, MOT uses e-learning standards, such as import from IMS-CP, IMS-QTI

and SCORM [87]. Furthermore, MOT uses ‘de facto’ standards, such as PowerPoint

[92] and WikiText. Thus, the MOT approach is currently more advanced in the use

of standards. However, both approaches have proposed portable export languages

which could lead to future adaptation standards, such as the CAM XML language

[43] in the case of GAT, and the CAF XML [3] and LAG [53] language in the case of

MOT.

 9.3.3 Support Imperatives

 9.3.3.1 Adaptive Functionality

Basic adaptive functionality exists in MOT3.1 by providing context-sensitive menu

options. For instance, when selecting a domain, the submenu automatically

changes to domain-specific options, and when the user edits a concept the

submenu changes to concept-specific options. Similarly, when a sublesson is

selected in MOT3.1, the centre section of the layout (see Chapter 7) changes to

allow labels to be added to the sublesson. Such changes provide a visual cue to the

user about what actions can be performed with the selected item(s). Furthermore,

PEAL2 has features such as automatic completion of code, allowing for support for

the more advanced authors.

By contrast, GAT only provides basic adaptive functionality by using greyed-out

menus where appropriate. For instance, if there are no valid CAMs currently

available, the Deploy menu will be disabled – this is analogous to Link Disabling in

Brusilovsky’s Taxonomy[12], [13].

217

However, in the case of both MOT and GAT, such adaptive behaviour is limited to

the context of the material being edited at the time. Neither toolset provides

functionality that adapts to the need of user. Such functionality could potentially be

implemented, especially with regard to the clear separation of roles that occurs

within these tools.

 9.3.3.2 Simple Access

As described in Chapter 7, MOT3.1 implements various search functions for concept

maps, concepts, and goal maps. Similarly, the tree-based interface attempts to

simplify the process of reordering, labelling, copying & pasting and linking. As

mentioned in Chapter 7, MOT3.1 introduces a new search algorithm for related

concepts, based on TF-IDF[127], [136]. This improves search accuracy, by weighting

search terms according to their frequency, and is designed to assist authors with

finding relevant content (e.g. for reuse).

GAT also allows for various search functions for its domains, pedagogical relations

and courses, although since resource content in GAT is not stored within the tool, it

would be more difficult to implement a tool that searches within the content of

domain concepts.

 9.3.3.3 Shallow Learning Curve

Both MOT and GAT aim to provide a shallow learning curve, but their approaches

are different. Each system divides complex functionality into simpler basic

functions. The Clear Definition of Roles principle is designed to prevent the user

from becoming overwhelmed, and this is implemented through the separate tools

within each toolset. For instance, beginner users need not be concerned with the

218

specifics of writing adaptation code. However, such separation is only implemented

at quite a coarse level, for instance entire tools are hidden from the user. As

described above, one of the ways that this could further be improved is through the

use of adaptive functionality, which would encourage teachers to learn about how

to use more advanced features of the tools, rather than simply using the basic parts

that they already know how to use.

 9.3.3.4 Familiarity

 9.3.3.4.1 Consistency with existing applications and systems

The familiarity is addressed in each system by using well-known computing

paradigms. For example, MOT represents hierarchical domain and goal map

structures using a tree control. This extends on the hierarchical tree file-folder

metaphor that is common on many file managers as described in Chapter 3.

GAT has a graphical approach, using less familiar user interface controls. However,

the graphical display does follow reasonably simple paradigms, such as directed

graphs and flowcharts to display domains and courses respectively. The drag-and-

drop methods of creating (and selecting) the elements of these tools will be familiar

to users who have used graphical drawing tools.

 9.3.3.4.2 Interoperability with familiar course creation formats

MOT3.1 expands on MOT3.0’s ability to import content from any MediaWiki, and

parses the article’s WikiText. As with MOT3.0, MOT3.1 allows authors to import

presentations, allowing domain models to be automatically populated with

concepts containing attributes with an image and text from presentation slides.

Rather than allowing users to edit content directly, GAT allows authors to link to

219

external web resources. This means that GALE (and therefore GAT) can utilize any

document that can be displayed by a web browser. However, no specific import or

editing of these resources is supported.

Maurice Hendrix’s thesis [46] (p161) quotes a comment from the initial evaluation

with GAT in 2009, which said: “Importing outside domains into the DM component

would be very beneficial, for example from ontologies from outside the tool, from

IMS-LD or from other standards. This would also increase reusability”.

This comment strengthens the findings from Chapter 4, showing that users

appreciate the idea of content reuse, especially based on pre-existing content from

other formats. Unfortunately, no such importers were developed for GAT.

 9.3.3.4.3 Interoperability with familiar course creation standards

MOT supports familiar standards for course creators, such as IMS-CP, IMS-QTI, and

SCORM. Both systems support HTML, which is also largely familiar to web users.

Thus overall, the MOT approach supports a greater palette of familiar course

creation standards, with regards to directly importing content.

 9.3.3.4.4 Interoperability with familiar course creation systems

The most familiar course creation systems currently are LMS-based systems, such

as Blackboard48, Sakai49, Moodle50, etc. The MOT toolset tackles this by allowing

imports from standards supported by these and other popular LMSs. The GAT

48 http://www.blackboard.com/

49 http://sakaiproject.org/

50 http://moodle.org/

220

toolset supports direct interoperability with some of these popular LMSs via an

event bus which connects with the GRAPPLE project toolset[137], which also

connects to Sakai, Moodle, CLIX from IMC51 and the eXact learning solutions from

Giunti labs52.

 9.3.3.5 Coherence

GAT provides an integrated, coherent toolset, allowing adaptation to be specified

within the same application as the content definition.

Conversely, the MOT approach requires content to be specified and labelled within

MOT3.1, but the adaptation needs to be specified in a separate tool (PEAL). This

may provide a slightly less coherent experience for authors who need to use both

tools, however many users will specialize in only one of the tools.

In GAT, a course can be directly deployed to GALE by clicking on a ‘Deploy’ menu

item – this is a one-step process. However, in the MOT toolset, users must

separately upload XML and LAG files from within the ADE interface.

 9.3.3.6 Visualization

Amongst the fundamental differences between the MOT and GAT paradigms are

the user interface controls and the ways that information is displayed to the author.

GAT employs a visual, graph-based way of authoring domain concepts. This allows

concepts to be quickly copied, selected and moved using drag & drop metaphors

that are often used in drawing applications. Relationships are displayed to the

51 http://www.im-c.de/

52 http://www.giuntilabs.com/

221

author as arrows that form edges in the graph of concept nodes. Relationships

have a name that can be used as metadata such as ‘parent’ and ‘is-a’.

These principles are also used in the course tool, which displays the pedagogical

rules graphically. The course tool allows the user to quickly drag & drop, insert and

copy pedagogical rules, and also allows concepts to be visually dragged from a

domain, straight into a rule in a course. Pedagogical rules can also be provided with

a default colour, or the author can change the colour of individual instances. This

allows course authors to quickly identify different types of rules.

The MOT toolset, by contrast, is much less graphical. The hierarchical display of

domain and goal maps uses more standard desktop paradigms, such as the tree

control (which also allows drag & drop copying).

In MOT, extra relatedness relations links can be added but these cannot be

graphically shown within the overall domain; they can only be shown when viewing

an individual concept. The relatedness relations can have a name (as with GAT) but

unlike GAT’s relationships, the relatedness relations do allow for percentage based

weights to be specified (showing how closely related the two concepts are).

Moreover, in MOT relationships between concepts can span between domain

models – i.e., a concept can have a relatedness relation with a concept from

another domain model (even if the domains are created by two separate authors).

By contrast to GAT’s visual methods of specifying a course, the MOT toolset uses

LAG files written in PEAL, which can optionally be visualized using PEAL2. Here,

much of the difference in visualization is due to the issues of granularity (described

222

above). However, PEAL2 should not be seen as a direct equivalent of the course

tool in GAT, since it allows the user to specify complex adaptation, and therefore is

also equivalent to the PRT tool.

The PRT tool only provides a simple textbox for GALE code (see Figure 9.1), whereas

PEAL provides many more IDE-style features such as code completion and syntax

highlighting (shown in Figure 9.2).

Figure 9.1: GALE code within the PRT tool

Figure 9.2: LAG Code within PEAL

 9.3.3.7 Adaptive Functionality

Neither tool directly adapts to the needs of the individual user; however various

parts of the tools adapt to the context. For instance, MOT3.1 aims to minimize

cognitive overhead by only offering features that are directly related to the current

223

task. Specifically (as described in Chapter 7), MOT3.1 changes the menu options

depending on whether the user is currently editing a whole domain map or just a

specific concept. Similarly, the advanced mode in GAT could potentially be thought

of as an adaptive feature (especially with some extra modifications, such as those

described in Section 8.4). Future research could investigate this further by adding

more complex assistance to beginner users, and providing more features to the

more experienced users.

 9.4 Comparing the roles of the individual tools

The previous section has compared the usage of the systems with respect to the

imperatives. Although there are effectively three separate tools in each toolset,

there is not a clear one-to-one mapping between these tools. Table 9.1 shows a

direct comparison of the various terms and features used within the two systems

and indicates which part of the toolset is designed to author each feature.

224

Table 9.1: Comparing the various features and terminology used in the MOT and GAT toolsets

 9.5 Comparing the Available Adaptation Techniques

The previous section has highlighted how each system has different expectations on

the role of the author and the amount that the user is expected to learn. The

imperative in Section 9.3.1.3 states that the authoring tool should allow the user to

utilise a wide variety of adaptation techniques.

MOT GAT

Domain
Model Tool

Domain map Domain

Domain Tool

Concepts Concepts

Attributes Resources

Parent relationships
Relationships

Relatedness relations

Properties

Goal Model
Tool

Goal map structure

Labels/Weights

Sockets

Course Tool
Sublessons

Courses

PEAL LAG strategy
Pedagogical

Relationship Types
PRT Tool

225

The primary usage of the GRAPPLE Authoring Tool is for the author to create

courses via a ‘learning through information exploration’ process [4]. This process

only requires the usage of the Domain tool and the Course tool, and relies entirely

on the initially created set of PRTs that were created specifically for the GRAPPLE

project (see Chapter 8). For this reason, when comparing the adaptation that can

be performed by the author, we consider beginner and advanced authors for each

system.

1. Beginner author: A non-technical content author, similar to Professor Smith

from Chapter 6. In GAT, Professor Smith can only use the domain tool and

the course tool with predefined PRTs. She can design domain and goal maps

using MOT3.1, but does not know how to program in LAG.

2. Intermediate author: A technical content-author – similar to Professor Jones

from Chapter 6 – who understands about how to write code with LAG, and

only wants to create reusable PRTs that can be shared with non-technical

‘beginner’ authors.

3. Advanced author: An expert programmer who has learnt both LAG and

GALE. This author is therefore proficient at creating LAG strategies, but is

also confident at creating new PRTs and XHTML files that contain GALE code

(a technique for which GAT provides no direct assistance). The advanced

author mainly creates code that is used in their own courses, and so does

not need to worry about creating code that is generic enough to be reused

by others.

226

Each of the different adaptation techniques requires at least one of the above

authors. Table 9.2 explains which of these authors is needed in order to produce

each of the separate types of adaptation from Knutov’s [20] updated taxonomy.

 MOT GAT

Content
Author

(reusing
common

strategies)

Adaptation
Author

Domain/Course
Author (reusing

Pedagogical
Rules)

Pedagogical
Rule Author

GALE
Expert
Author

Content Adaptation Techniques (Canned Text, Multimedia)

Inserting/removing
fragments

Yes Yes No Yes Yes

Altering fragments No No* No No Yes

Adaptive Presentation Techniques

Dimming fragments No** No*** No No Yes

Sorting fragments Yes Yes No Yes Yes

Stretchtext No** No*** No No Yes

Zoom/Scale No No No Yes Yes

Layout Yes Yes Yes Yes Yes

Link
Sorting/Ordering

No No No No Yes

Link Annotation No No Yes Yes Yes

Combinatorial
techniques

No No No No Yes

Adaptive Navigation Techniques

Link generation No No No No Yes

Guidance
(Direct/Global)

Yes Yes Yes Yes Yes

Link hiding
(Disabling/Removal)

Partly**** Partly**** Yes Yes Yes

Key *: To be implemented in a future version of LAG
**: Could be simulated by adding a separate similar attribute
***: This has been implemented in a recent version of LAG
(September 2012)
****: Internal links cannot occur within the main body of the
content, so only the navigation menus can be adapted

Table 9.2: Comparison of the authoring techniques available in MOT and GAT

Table 9.2 shows that whilst GALE supports a wider variety of adaptation techniques

than ADE, many of the techniques require more advanced knowledge of

programming. This is primarily because many of these techniques require inline

227

code (which the MOT toolset does not currently support). Such inline code is hard-

coded into the content, making it impossible for a non-expert to reuse the

adaptation in their own content, thus compromising GAT’s adherence to the

separation of concerns principle. Moreover, the GAT tool provides no direct

assistance for the creation of such inline code.

 9.6 Evaluation of MOT versus GAT

As described in previous chapters, the MOT toolset is used as part of the

coursework for the MSc/MEng module ‘CS411: Dynamic Web Based Systems’.

Chapter 7 described how MOT3.1 was used by the students as part of a long-term

usage study. During this time, a two-hour seminar introduced the students to the

GAT toolset. A short demonstration on how to use GAT was provided to the

students, and they were then asked to create a basic course using GAT themselves,

by using both the Domain and Course tools. The students were shown the basic

principles of the PRT tool; however since the creation of new PRTs requires a

detailed knowledge of GALE code they were encouraged to only use the pre-

defined PRTs – this is in deference to other GRAPPLE evaluations[4]. During the

time of evaluation, various pre-created models were already existent in the system,

such as the ‘Milky Way’ demonstration domain and course[130].

After each test subject had created a course, a demonstrator checked that the

course was valid (and that they had therefore understood the principles of GAT),

before providing the subject with a questionnaire.

 9.6.1 Hypotheses

The questionnaire was designed to test the following hypotheses.

228

H9.1. It is easier to author content within MOT3.1 than GAT

a. Authors prefer to edit pre-existing content rather than editing from

scratch.

b. Authors prefer using an integrated authoring tool.

c. Authors prefer to edit content at high-granularity (i.e. small pieces).

d. In general, MOT3.1 is easier to use than GAT.

H9.2. Concepts are easier to use in MOT3.1 than in GAT.

H9.3. Users prefer the flexibility of concept metadata provided by GAT.

H9.4. Users desire the ability to specify multiple types of relationships (as

in GAT).

H9.5. MOT3.1’s approach to designing the course hierarchy (via the Goal

Map tool) is preferred over GAT’s approach which binds the design into the

domain map.

H9.6. Users prefer labelling within MOT3.1 over using sockets in GAT.

H9.7. When reusing a strategy, users prefer to reuse entire strategies over

creating a new course using smaller pieces of adaptation.

H9.8. When creating a new strategy, users prefer to author entire

strategies, rather than writing individual rules.

H9.9. Authors prefer to specify adaptation using the MOT toolset than

using GAT.

H9.10. In general (away from the tools)

a. Users prefer graph-based tools for editing concepts.

b. Users prefer high granularity adaptation code (using small pieces as

‘building blocks’).

229

 9.6.2 Questionnaire Results and Discussion

Due to limitations of the questionnaire software53 the survey was divided into two

sections. For the first section, there 19 respondents, however only 16 respondents

completed the first section. The second section was completed by 13 respondents.

The full questionnaire is provided in Appendix A.

Many of the questions were grouped (partly to give more structure to the

questionnaire, and partly due to the limitations of the software), which meant that

many of the questions required more than one answer. For instance, Figure 9.3

shows an example question that has 4 separate sub-questions. At the end of each

question, a textbox allowed the respondent to provide some more detailed

comments.

53 The questionnaire was designed using free version of Survey Monkey

(http://www.surveymonkey.com/) which only allows 10 questions.

http://www.surveymonkey.com/

230

Figure 9.3: A sample question from the questionnaire – with 4 sub-questions

Where a respondent gave a nonsensical answer (i.e., they said they preferred a

system but also said they were both the same), the response was removed from

the sample for that particular question54. In most cases, the questionnaire software

ensured each question was compulsory. However, it was impossible to enforce this

on questions that allowed the user to select multiple options. Adding a neutral

(such as ‘similar’ or ‘don’t care’) answer to each question ensured that the

respondent was actively expressing an opinion, rather than simply skipping the

question.

Due to the categorical nature of the data, a χ2 (Chi-Squared) Goodness-of-Fit test

was used, against an expected uniform distribution (33.33% for each value) across

the three possible answers (e.g., ‘MOT’, ‘GAT’ and ‘Similar’). However, when

54 This situation occurred on 8 occasions (across different questions)

231

applying this test only two statements can be seen to be statistically significant at a

5% confidence interval. Similarly, if all votes for ‘Similar’ are removed from the

sample, and a separate χ2 Goodness-of-Fit test is used against another uniform

distribution (50% for each value), only two statements are statistically significant.

This lack of statistical significance is largely due to the small number of test

participants.

 9.6.2.1 Content authoring (H9.1)

The first question had five separate options (shown with the frequency of

responses in Table 9.3) to which the students were invited to select as many as they

wished.

When authoring an adaptive course or presentation, do you

prefer to use…

Frequency

Pre-existing content only 1
Pre-existent content which can be further edited 10
Editing from scratch 5

Editing HTML files in any HTML editor (like in GAT) 11
Using a dedicated, integrated editing tool (like in MOT3.1) 12
Table 9.3: Frequency of responses to Question 1

This question asks for the opinions about two related issues:

 9.6.2.1.1 Should content be based on pre-existing content? (H9.1a)

Table 9.3 shows that only 1 out of the 19 respondents (5.26%) liked the idea of

creating a course based on pre-existing content – this would equate to using GAT to

only reference other people’s resources. A similarly small number of respondents

(5, 26.31%) said they preferred to edit content entirely from scratch, with most

people wanting to edit pre-existing content. This would appear to support H9.1a,

232

but it also indicates the importance of the ability to import content from other

sources – potentially using the principles that were defined in Chapter 4.

 9.6.2.1.2 Should the content editor be integrated into the authoring tool? (H9.1b)

Seven of the respondents said that they preferred both “Editing HTML files…” and

“Using a dedicated, integrated editing tool”. These respondents remain in the data

presented in Table 9.3, since a vote for both choices would imply that users have no

clear preference. This lack of a clear preference appears to be supported by the fact

that there was no clear preference shown by the remaining respondents.

Therefore, there is no evidence to support H9.1b.

There are a few reasons that might indicate why this result was inconclusive. One of

the respondents who chose the “Editing HTML files in any HTML editor (like in

GAT)” as opposed to an integrated editor provided the following comment in

response to this question:

“I generally prefer to know exactly what is happening with the model, so user

interfaces usually get in the way, requiring special options to change parts which

are easy to edit in the code. User interfaces do have an advantage with large

models, but must be very polished (especially regarding keyboard navigation,

responsiveness of UI, no data-loss bugs)”

This indicates that authors might prefer to use a stable and mature HTML editor

(that they are already familiar with) rather than being forced to use the editor that

is integrated into the tool. However, it must also be noted that these users are

Computer Science students and are therefore comfortable with the idea of

233

uploading content for subsequent reuse within an adaptive course. Many non-

technical authors may be less familiar with the process of acquiring web-space

(indeed, for security reasons, this may be impossible within their educational

institution) and uploading their own content. In such a scenario, the integrated

authoring tool might be more convenient.

 9.6.2.1.3 Granularity of Authoring (H9.1c)

There was also an inconclusive result pertaining to the granularity of content. Out

of the 19 students, 8 (42.11%) said that they preferred using high granularity (as in

MOT3.1) with 6 (31.58%) saying they preferred low granularity content (as in GAT).

The remaining 5 stated that they had no preference.

One comment stated that it is “Easier to write and think with low granularity,

though I can see the benefit of high granularity.” Another said that it depends on

the type and complexity of the content, whilst another comment pointed out that

high granularity provides a higher level of adaptability.

Section 9.3.1.1 described some of the issues surrounding the different levels of

granularity of static content. Although high granularity does allow a greater detail

to be specified when applying adaptation, low granularity usually makes the

authoring process much easier. There is therefore no evidence to support H9.1c.

 9.6.2.1.4 Ease of Use (H9.1d)

10 out of 18 of the students (55.56%) stated that GAT is easier to learn than

MOT3.1, with 5 users (27.78%) saying that MOT3.1 was easier to learn, and 3 users

(16.67%) having no preference. However, 9 out of the 18 (50%) stated that after the

initial learning process, MOT3.1 is easier to use, with only 4 saying that GAT was

234

easier to use and the rest with no preference. Although these statistics are not

statistically significant, this suggests that MOT3.1 has a steeper learning curve, but

is easier to use after the user has spent time understanding the MOT authoring

paradigm.

With regard to visualization of content, 12 out of the 19 students (63.16%)

preferred GAT, with only 5 preferring MOT and the other 2 undecided. This is

statistically significant at the 5% level when performing a χ2 (Chi-Squared)

Goodness-of-Fit test compared with an expected distribution of 33.33% for each

option.

However, with respect to the speed of preparing and using content in each system,

there was no clear preference, with 6, 5 and 8 students choosing ‘GAT’, ‘MOT3.1’

and ‘similar’ respectively.

One comment said that “Both have issues with responsiveness which severely limits

their speed of preparation, but because MOT takes a less interactive approach

(generally requiring less actions but more forms to set parts up), it is faster to use

overall” whilst another user said: “GAT seems to be more fiddly with lots of things to

know and lots of steps to do. MOT is more to the point. I find MOT’s tree view

clearer than GAT’s graphical view”. Overall, the above statistics show no evidence

to support H9.1d.

 9.6.2.2 Using Concepts (H9.2)

There were no significant results with respect to the usage and visualization of

concepts within the systems, providing no evidence to support H9.2. One comment

235

said that “comparing the visualisation is difficult; GAT provides more holistic

information which is better, but this is at the cost of a very messy interface and for

big models, a very long render time”.

 9.6.2.3 Concept Metadata (H9.3)

8 out of 16 (50%) of the respondents said they preferred the idea of having multiple

properties for domain concepts (as demonstrated by GAT). Only 2 out of 16 (12.5%)

said that they preferred using the type of an attribute as a property, with the

remaining 6 respondents having no clear opinion.

However, it can be seen that 8 out of 16 (50%) of the students thought that GAT

properties were easier to use (after the initial learning period). Moreover, 7 out of

16 (43.75%) thought that GAT was better at visualizing domain properties than

MOT3.1, which had only 2 out of 16 votes (12.5%), with the rest showing no

preference.

Similarly, 7 out of 15 respondents thought that GAT was faster for preparing and

using properties, whereas only 1 thought that MOT3.1 was faster, and the other 7

showed no preference.

The above statistics do not allow H9.3 to be accepted; however overall there was a

slightly more positive response towards the way that GAT handles domain

properties than towards the way that MOT3.1 handles properties. Specifically,

MOT3.1 only allows attributes to be defined for a concept, but it allows the

attribute to have a particular type. The type is analogous to GAT’s domain

properties, since it allows the author to specify metadata about the content.

236

However, adding a wider variety of properties to MOT’s domain model would allow

adaptation strategies to address certain concepts according to the concept’s

metadata.

 9.6.2.4 Relationships (H9.4)

8 out of 16 respondents (50%) said that they preferred to have multiple

relationships within the domain model (as exhibited by GAT). The remaining 8

respondents were divided equally between the “hierarchical and relatedness

relations” (25%) as exhibited by MOT3.1, and “no strong opinions” (25%).

Similarly, a statistically significant 9 out of 12 respondents (75%) said that the

visualization of properties of relationships in GAT is better than that in MOT3.1 (2

votes, 16.67%). This refers to the fact that the edges of the domain graph in GAT

display the relationship type.

The ease of learning how to use domain relationships was valued equally, with 4

respondents choosing the options ‘MOT’, ‘GAT’ and ‘similar’ respectively. In terms

of ease of use (after learning) there was a fairly large preference for the usage of

MOT3.1 DM relations (7 out of 11, 63.64%) over GAT (3 out of 11, 27.27%) with 1

person (9.09%) saying that they’re similar.

There was almost no difference with regards to the speed of using the systems (5, 4

and 2 for ‘GAT’, ‘MOT3.1’ and ‘similar’ respectively).

The above statistics combined show that there does appear to be a small

preference for the way that relationships are catered for within GAT. However,

(mainly due to the small sample size) there is no statistically significant evidence to

237

show that users desired the ability to use multiple relationships, therefore not

confirming H9.4.

 9.6.2.5 Design of the Course Hierarchy (H9.5)

8 out of 16 respondents said that they preferred the option of reusing the same

domain for different goal models (as in MOT), whereas 5 preferred to keep the

order of the concepts bound to the domain model (as in GAT).

Only 4 out of 16 respondents (25%) said that there should be an intermediary step

(e.g., the goal map tool) to decide whether the hierarchy defined in the domain

model should be used within the goal map tool. 6 out of 16 respondents said that it

should be possible to directly relate the domain concept hierarchy to the final

course hierarchy (like in GAT). The remaining 6 respondents had no clear

preference.

There is therefore no evidence to support H9.5. These results are rather surprising,

since the method of designing a hierarchy in GAT is not graphical. However, one of

the comments said: “Reusing the DM isn’t important to me”, so it could be that

since the students experience with GAT was limited to a single session, they were

thinking primarily about how to design the domain model so that they could create

a single course. One way of investigating this issue further would be to ask the

students to base their course on somebody else’s domain model, which would

mean that they had no choice but to use the layout specified by the original

domain.

238

 9.6.2.6 Labelling versus Sockets (H9.6)

MOT and GAT have different ways of applying pedagogical metadata. In MOT3.1,

(multiple) labels are used, whereas in GAT concepts are inserted into sockets. The

sockets can be thought of as a label, since they tell the adaptation strategy (the

GALE code within the PRT) how to treat the concepts. An alternative way of

specifying metadata within GAT would be to specify properties (and values) within

the domain, however this would compromise the separation of concerns principle

(as described earlier in this chapter).

The students showed no preference between the labelling methods, with 6 out of

12 (50%) students preferring to use labels, and 5 out of 12 preferring to use sockets.

One respondent chose ‘Labelling… via the DM’. There is therefore no statistical

evidence to support H9.6.

 9.6.2.7 Reusing Strategies (H9.7)

The students were asked to complete the phrase “In terms of granularity of

strategy reuse, I prefer reusing…” with each student allowed to choose more than

one option. The majority of users (7 out of 11, 63.63%) said they preferred to reuse

small pieces of adaptation. There were two votes for each of ‘whole adaptation

strategies’ and ‘specific pieces of adaptation’. There was also a single vote to say

that each technique was of ‘similar value’.

Similarly in the context of reusing existing material, 6 out of 12 (50%) of the

students said that GAT PRT relations are easier to learn how to use. However, only

3 out of 11 (27.27%) of students said that after learning how to use the systems,

GAT was easier to use. 4 out of 11 said that PEAL was easier to use (after learning

239

how to use the systems), and the remaining 4 said that they were both of similar

difficulty.

Although not statistically significant, the majority of users (6 out of 11, 54.54%)

showed a preference for GAT with regards to the visualization of sub-strategies.

Only 1 person said they preferred the way that PEAL allows sub-strategies to be

shown, with 4 indicating that they are similar.

This is not an especially surprising result since although PEAL supports the reuse of

fragments of LAG code (as described in Chapter 5) it only allows the sub-strategy to

be displayed textually. The features introduced by PEAL2 allow the entire strategy

to be shown graphically, but this is separate from the code library interface that

allows such reuse. The reuse of pedagogical rules within GAT can therefore be more

clearly visualized within the course tool.

There is no statistical evidence to support H9.7 (partly due to the small sample

size). Moreover, it appears that there is a general preference towards using smaller

pieces of adaptation (such as the usage of pedagogical rules in GAT). Research by

Javed Khan at the University of Warwick [138] is currently investigating how to

display small extracts of LAG code in such a way that they can easily be combined

visually by authors to create a larger adaptation strategy.

 9.6.2.8 Creating New Strategies (H9.8)

The students were also asked to complete the phrase “In terms of granularity of

strategy writing, I prefer…”, and were allowed to select more than one answer. 7

out of 10 participants said that when creating a new strategy they preferred to

240

write ‘whole adaptation strategies’ (as exhibited by LAG). 3 users said that they

prefer writing specific parts of adaptation strategies, there was 1 vote for small

pieces of adaptation and 1 user said they were all of equal value.

This indicates a clear preference for writing whole strategies rather than writing

small pieces of adaptation, therefore supporting H9.8.

 9.6.2.9 Adaptation specification (H9.9)

Although the users were not taught how to use GALE code, they were introduced to

it and encouraged to look at the code within the PRT tool.

The majority of users (7 out of 12, 58.33%) said they thought they could create

strategies of greater complexity using the MOT toolset. 3 users (25%) said they

thought they could create strategies with greater complexity using GAT, with 2

(16.67%) saying they could create strategies of similar complexity using either tool.

In some ways, this result is unsurprising, since the users had already spent more

time using the MOT toolset (approximately 5 weeks compared with a two-hour

seminar). However, the students were divided about how easy LAG and GALE code

are to use; out of the 11 respondents to the question, there were 4 (36.36%) votes

for LAG and 4 (36.36%) for GALE, with 3 (27.27%) undecided. However, there 5

users (45.45%) said that once learned, LAG is easier to use, and only 1 user (9.09%)

thought that GALE code was easier to use.

Surprisingly, 6 out of the 11 users (54.54%) thought that the visualization of GALE

code is better within the PRT tool than the visualization of LAG code within PEAL.

Only 3 (27.27%) people preferred PEAL for visualization of code, with 2 people

241

expressing no preference. This is a surprising result, because the PRT tool (unlike

PEAL) provides no syntax highlighting.

Similarly, 5 out of 11 users (45.45%) thought that the process of writing code in GAT

is faster than that of writing code in PEAL. Only 2 users (18.18%) preferred the

speed of PEAL, whereas 4 users (36.36%) thought they were similar.

The above statistics are unable to prove H9.9. This could be partly because the

sample size was small, but also appears to be based on a misconception about the

systems. It is strange that users appear to believe that the visualization of the PRT

tool is better than that of PEAL. However, it could be that users misunderstood the

question, and thought it was referring to the visualization of PRTs within the course

tool.

 9.6.2.10 General Authoring Principles (H9.10)

The final question concerned the student’s general thoughts about authoring for

adaptive hypermedia, and expressly asked them to think “away from GAT &

MOT+PEAL”. Out of the 11 respondents, 5 (45.45%) preferred graph-based tools for

editing concepts and 3 preferred hierarchical tools. The remaining 3 respondents

declared no preference.

Similarly, 4 out of 11 respondents preferred a high level of granularity for

adaptation strategies (involving small pieces of code), with 3 students preferring

low level granularity, and 4 students having no preference.

242

Neither H9.10a nor H9.10b can be supported based on the results of this final

question. There appears to be a small preference for graph-based tools, but further

research is needed.

 9.7 Conclusions

This chapter has described the differences between the two toolsets that have

been investigated by this thesis, and has provided a survey of the available

adaptation techniques available through the use of each toolset.

This chapter presents the results of an evaluation between the two systems. The

results of the evaluations indicate that each tool has both advantages and

disadvantages. Moreover, the qualitative feedback has provided clues about the

features that need to be present in the next iteration of the development of MOT.

The design, implementation and evaluation of the next iteration are documented in

the next chapter.

243

 10 Integration of authoring approaches: Improving MOT

based on GAT ideas

 10.1 Overview

The previous chapter described the fundamental differences between the

approaches exhibited by the MOT toolset and the GAT toolset. This chapter

describes a new iteration of MOT, which investigates how some of the best features

of MOT can be retained, whilst integrating some of the functionality of GAT.

 10.2 Improving the MOT Toolset

The previous chapter highlighted the differences between two adaptive

hypermedia authoring toolsets – MOT and GAT. Whilst the questionnaire based

evaluation about the differences between the toolsets had not provided many

conclusive results, there appeared to be a number of features in GAT that could

extend the functionality and usability of the MOT toolset.

This chapter documents the creation of MOT4, which maintains compatibility with

the LAOS framework, whilst extending the functionality and flexibility of the

authoring tools.

 10.3 Requirements

This section describes the basic set of requirements that were identified for the

improvement of MOT4.0. These requirements are based on continual refinement of

the authoring imperatives (described in Sections 2.9.2 , 5.2 and 9.2), and are

designed to address features that were directly requested by the students during

the real-world usage (such as the ability to use multiple labels).

244

 10.3.1 Graphical Relationships

Analysis of the coursework that was submitted during the evaluations described in

Chapters 5 and 7 has shown that there was only one instance of students using the

relatedness relations feature. As described in previous chapters, the hierarchical

nature of MOT’s domain model limits the extent to which such relations can be

visualized. However (as described in Chapters 8 and 9), GAT’s domain visualizes all

relationships as edges of a graph.

To enable users to more clearly visualize the types of domain relationship that can

be created, it was decided to replace MOT’s hierarchical domain map with a visual

domain graph.

 10.3.2 Multiple Labelling

Chapter 7 described how MOT3.1 introduced a way of allowing sublessons to be

given more than one pedagogical label. However, the implementation of such

multiple labelling was limited, particularly in regard to addressing the weights that

belonged to particular labels. Section 7.6.1.3 described how the students desired

the functionality of addressing such weights.

The sockets in GAT can be thought of as a form of multiple labelling; each concept

can occur in more than one socket, therefore allowing disparate types of

adaptation to be applied to the same concept. Moreover, as Chapter 9 described,

the design of GAT encourages concepts to contain properties that (due to the

unclear separation of concerns) are frequently used to denote properties that are

of a pedagogical nature. For instance, if a rollout strategy was to be implemented in

GAT, each concept would require a showatmost property to be defined within the

245

domain layer of individual concepts. However, the showatmost property is

pedagogical rather than factual, and could therefore change depending on the

adaptation strategy. The introduction of multiple labels to the MOT toolset ensures

that such pedagogical properties can be clearly defined in the goal model, through

the usage of multiple labels.

 10.3.3 Domain Properties

Some properties, however, may be of a factual nature and should therefore be

stored in the domain layer. For example, if a domain was to contain information

about historical events with each concept representing a different event, the date

could be stored within a domain property. Unlike the pedagogical labels described

above, the date is factual, and therefore has no direct influence on the pedagogical

strategy. However, a variety of pedagogical strategies could be created to utilise

this information; for example authors could use a strategy that presents events in

either chronological or reverse chronological order depending on the user’s

preference.

 10.3.4 External Resources

The evaluation documented in Chapter 9 had shown that some users desired the

ability to use their own (external) resource editor, rather than being forced to use

the WYSIWYG HTML editor that was integrated into MOT3.1.

 10.4 Designing the Adaptation Languages

To facilitate the additional features, both the CAF XML format and the LAG

language had to be overhauled.

246

 10.4.1 The LAF XML Format

Previous chapters have described how new features have been added to MOT

whilst maintaining compatibility with the CAF format (for example, multiple

labelling in MOT3.1). However, to maximise the potential of the additional features

of MOT4, a new XML format named ‘Learning Adaptation Format’ (LAF) was

developed.

 10.4.1.1 Domain Storage

Code listing 10.1 shows an extract of a LAF representation of a domain. Each

domain is assigned a globally unique identifier (GUID). This ensures that (unlike in

previous versions of MOT), there is no ambiguity about which domain map is used

when importing the file. In MOT1.0 when a CAF was imported that contained a

domain map with the same name as a pre-existing domain map, the author would

be prompted to rename the domain map. This issue was fixed in MOT3.1 (and

MOT4) by internally referring to domain maps using database concept IDs (rather

than using XPath as recommended by the CAF specification).

<LAF>

 <domain id="71a4dbfc-9ffe-4c4b-9851-69d1b699d0a3">

 <metadata>

 <author>jonny</author>

 <name>XML</name>

 <date>2012-03-21 15:18:19</date>

 </metadata>

 <concept id="0">

 <attribute type="title">XML Topics</attribute>

 <attribute type="keywords"/>

247

 <attribute type="text"><p>This course

describes the main topics surrounding

XML</p></attribute>

 <metadata>

 <position x="197.59665182765" y="-

53.544829989606"/>

 </metadata>

 </concept>

 <concept id="1">

 <attribute type="title">XPath</attribute>

 <attribute type="keywords"/>

 <attribute

type="text"><p>XPath</e

m> is a way of selecting groups of

nodes from an XML Document</p></attribute>

 <metadata>

 <position x="74.915666545471" y="-

18.438141049076"/>

 </metadata>

 </concept>

 <relationships>

 <relation from="0" to="1" type="is-parent-of"

weight="100"/>

 <relation from="0" to="2" type="is-parent-of"

weight="100"/>

 <relation from=”2” to=”1” type=”uses”

weight=”80”/>

 </relationships>

…</domain>…</LAF>

Code Listing 10.1: Extract of Domain LAF XML

248

 10.4.1.1.1 Metadata

The LAF file now contains a metadata tag, which currently contains the name of the

Domain, the date/time the LAF was exported from MOT, and the author’s MOT

user name.

 10.4.1.1.2 Concepts

Concepts in LAF are stored with attributes in a very similar way to concepts in a CAF

file. However, rather than storing concepts in a hierarchical XML tree (like CAF), LAF

places all concept definition elements within a domain element.

 10.4.1.1.2.1 Concept Positions

As described in Chapter 2, there is no semantic meaning to the order of concepts

within a domain. However, previous research on MOT1.0 had shown that users

were disorientated when the order of a domain was not preserved between

sessions. This is even more important with a graph-based display, since the position

of concepts can change in two dimensions (rather than simply the depth position in

a hierarchy). The two-dimensional position of each concept is therefore stored in

the LAF file. This allows the layout of the domain to be preserved if a user wishes to

migrate the domain from one MOT4 installation to another. The position is stored

in a metadata tag within the concept, which is not currently used by ADE. This

metadata tag could be extended to include extra display information such as the

size/colour of the concept node in future version of MOT.

249

 10.4.1.2 Concept Relationships

In contrast to the hierarchical nature of the CAF XML format, LAF stores all concepts

directly within the <domain> element. This is very similar to the CAM XML format

described in Chapter 8. Relationships are defined using a relation tag such as:

<relation from=”0” to=”1” type=”is-parent-of” weight=”100”/>, which in this case

would define that concept 0 is a parent of concept 1. Storing relationships in this

way allows non-parent relationships to be defined.

The relation tag is therefore able to store the edges of the Domain graph using a

similar XML structure to CAM XML:

<relationship>

<sourceTerm>6E536B9A-F321-242E-BFD2-

002B67B27F54</sourceTerm>

<targetTerm>C403B750-83E1-E327-6E97-

0028C5CF29CC</targetTerm>

<relationshipType

source="http://www.grapple.org/relations.xml">

parent

</relationshipType>

<metadata/>

</relationship>

Moreover, the LAF style of defining relations also directly replaces the functionality

of the CAF-relatedness relation by storing a weight as an attribute of the relation

tag. This improves on the functionality that was existent in GAT, by allowing the

weight to be used as metadata within the adaptation strategy.

250

 10.4.2 Course Storage

The functionality of the goal model is similar to that of previous versions of MOT.

For this reason, the basic layout of the LAF XML for a course is very similar to that of

a goal model in CAF.

 10.4.2.1 Metadata

As with the domain tag, metadata is stored in the course tag containing the goal

map’s name, the author’s name and the date/time of last modification. Code listing

10.2 shows an extract from a goal map written in CAF format.

<lesson weight="0" label="">

<link weight="0" label="xml:5;basic:0">XML\XML

Topics\title</link>

<link weight="0" label="xml:6;basic:1"> XML\XML

Topics\text</link>

</lesson>

Code listing 10.2: Extract from a CAF Goal Model

Code listing 10.3 shows the equivalent lessons written in LAF format.

251

<lesson>

<link type=”title” concept=”0” domain=”71a4dbfc-9ffe-

4c4b-9851-69d1b699d0a3”>

<label weight=”5”>xml</label>

<label weight=”0”>basic</label>

</link>

 <link type=”text” concept=”0” domain=” 71a4dbfc-

9ffe-4c4b-9851-69d1b699d0a3”>

 <label weight=”6”>xml</label>

 <label weight=”1”>basic</label>

 </link>

</lesson>

Code listing 10.3: Extract from a LAF Goal Model

 10.4.2.2 Referring to Attributes using Sublessons

As Code listing 10.3 shows, rather than using XPath to address the concept from the

domain model, the domain’s GUID is used together with the concept id. Finally, the

type is used to choose the attribute of the sublesson.

 10.4.2.3 Multiple Labels

The main change to the LAF format’s storage of goal models is the way the native

support for multiple labels. This allows the weight of each label to be treated

separately, and therefore interpreted by the LAG strategy.

 10.4.3 The LAG4 Grammar

In parallel to the development of MOT4 (and hence LAF), a new version of LAG

(LAG4) was created by Joshua Scotton at the University of Warwick. The update to

the LAG grammar was aimed to provide more flexibility to the author by providing

new constructs, such as ‘for-each’ which loops through a subset of concepts.

252

Similarly, the notion of filters is introduced to LAG4, which allows groups of

concepts to be listed based on the value of a property. For instance the phrase for-

each(GM.Concepts.type == “introduction”) can also be expressed (using a filter) as

for-each(GM.Concepts[type == “introduction”]).

 10.4.3.1 Layout

Another major change introduced in LAG4 allows the strategy to choose which area

of the screen to modify. ADE contains 5 separate screen areas – Centre, North, East,

South, and West. By default ADE displays the navigation menu in the west pane, a

todo list in the east pane and the content in the centre. However, using LAG4 code,

the function of each of these areas can be adapted. For example, the code shown in

Code Listing 10.4 shows how the todo list in the east pane can be replaced with a

“Course finished” message when the user has visited every concept.

if(UM.GM.todoCount < 1) then(

Layout[E].type = “text”

Layout[E].content = “Course finished”

)

Code Listing 10.4: Sample LAG code to change the layout of a course

 10.4.3.2 Multiple Labels

Whereas previous versions of the MOT toolset had required usage of the LIKE

syntax to identify usage of multiple labels, the new format of LAF allowed ADE to

separately address each label and weight. Therefore, the expression

GM.Concept.Labels[‘beginner’] will evaluate to true if (and only if) the

253

current sublesson contains a label called ‘beginner’. Similarly, the expression

GM.Concept.Labels[‘level’].value will return the weight that is

associated with the level label for the current sublesson.

 10.4.3.3 Domain Properties

Previously, attributes within the MOT toolset have been used only for display

purposes. However, the new LAG grammar supports the ability to address the value

of one of their attributes. For instance, if a domain was created that contained a

concept for each town in Warwickshire; the following code would show all the

towns that had a population of greater than 80,000.

PM.GM.Concepts[DM.population > 80000].show = true

Such a property is directly analogous to the type of properties that are defined in

the Domain tool of GAT. However, as Chapter 8 described, such properties within

GAT are often used for the storage of pedagogical information. By contrast, the

MOT toolset recommends that only factual information is stored as a domain

property, and all pedagogical information is added using labels within the course

tool (at the goal model level). This therefore maintains the MOT toolset’s respect of

the separation of concerns principle, and therefore allowing domains to be reused

within a variety of different pedagogical strategies.

 10.5 Implementing My Online Teacher 4

 10.5.1 Terms Used

Following the same reasoning as the redefinition of GAT terms described in Chapter

8. An attempt was made to simplify the language used within MOT4 by changing

254

the terms Domain Map and Goal Map to Domain and Course respectively. Note,

however, that the term ‘GM’ is still used in the LAG syntax.

 10.5.2 Domain Design

Feedback from the evaluations described in the previous chapter had shown that

users preferred the visualization of relationships using GAT. Similarly, the analysis of

the submitted coursework described in Chapter 5 and Chapter 7 showed that few

authors were using non-parent relationships.

The graph-based display of the MOT4 domain is implemented using JavaScript

InfoVis Toolkit55. In MOT4, users can optionally drag-and-drop concepts to change

their position (like in GAT), but unlike GAT they can also utilise the toolkit’s

automatic placement feature which is based on a force-directed placement

algorithm[139]. For ease of display (and readability) only the properties of the

relationships that involve the selected concept are displayed. For instance, whilst

Figure 10.1 shows that there are relationships between ‘The game of Gipf’ and its 6

neighbouring concepts, only the relationships directly involving the selected

concept (‘The rules’) are highlighted, with their relationship types and weights.

55 http://thejit.org/

255

Figure 10.1: A domain in MOT4 with the concept ‘The rules’ selected

 10.5.2.1 Domain Relationships

The evaluation had also suggested that the users preferred MOT3.1’s interface for

managing relationships (such as that shown in Figure 10.2). For this reason, MOT4

retained the style of the MOT3.1 ‘New Relation’ feature (including the ability to

calculate the strength of relatedness relations, as described in Chapter 7). Rather

than using a label to define the type of relationship, MOT4’s new relationship dialog

adds an editable autocomplete text box to allow the user to choose the relationship

type. Moreover, the ‘Calculate Relatedness’ feature that was implemented for

MOT3.1 was retained, and can be used to assist the author in adding relationships

between concepts.

256

Figure 10.2: Adding a relationship in MOT3.1

Figure 10.3: Adding a relationship in MOT4

Having all previously used relationship types available within a drop-down

autocomplete menu encourages authors to reuse existing relationship types, thus

creating a type of folksonomy of relationship types [140].

As with GAT (and other versions of MOT), only the parent relationship has any

intrinsic meaning in the MOT toolset. It was also decided to clarify the meaning of

the parent relationship, by renaming it to is-parent-of. The is-parent-of relationship

is directly analogous to the hierarchical parent relationship in previous versions of

MOT, and is used when generating the goal model (and therefore the hierarchical

menu in ADE). Please note, however, that unlike parent relationships in GAT the is-

257

parent-of relationship in MOT merely provides a template for the hierarchy of the

final navigation menu. The layout of the navigation menu can be fine-tuned by the

user using the Course (Goal Model) tool.

Figure 10.4: Extract of the Milkyway Domain within GAT

Figure 10.5: Extract of the Milkyway Domain within MOT4

Since the parent relationship is important in the process of designing the course

hierarchy, another option allows the user to rearrange the domain in a ‘tree layout’

mode (see Figure 10.6).

258

Figure 10.6: Tree layout mode in MOT4

 10.5.2.2 Concept Operations

When a user creates a concept, it is immediately added as a child concept of the

currently selected concept. A new feature named ‘Add Many Concepts’ allows the

author to create several concepts at once by inputting a list of concepts (separated

by newline characters).

Based on the user interface techniques employed in GAT, MOT4 allows multiple

concepts to be selected at a time using a rubber-band technique[135].

 10.5.2.3 Creating New Attributes

As with the definition of relationship types (described above), users can specify new

attribute types or select existing ones using an autocomplete drop-down list

(similar to that used with relationship types as described above). As with

relationship types, the custom attribute list is designed to encourage users to reuse

existing attribute types, thus producing a folksonomy of attribute types.

259

Figure 10.7: Creating a domain with custom attributes in MOT4

 10.5.3 Course Design

Instead of using the JavaScript-based tree component used in MOT3.1 (see Chapter

7), the hierarchical display of a goal model was redesigned to use HTML, CSS and

jQuery, based around the nestedSortable jQuery plugin56. This was chosen because

it uses the same components as jQuery UI57, and therefore provides a coherent

look-and-feel to the whole MOT4 system. The tree is based around a series of

56 http://mjsarfatti.com/sandbox/nestedSortable/

57 http://jqueryui.com/

260

nested HTML ‘ordered lists’ (), with each sublesson being represented by a

separate list item (). This allows more customization of the individual items

than was previously possible with the dedicated JavaScript component used in

MOT3.1.

Figures 10.8 and 10.9 compare the more text-based way of displaying labels within

MOT3.1 to the slightly more graphical way of separating labels into separate boxes.

The MOT4 method aims to reduce the cluter and therefore improve the readability

of the labels. Similarly, the truncated preview of the sublesson has been removed

from the goal model tree. Rather than using three panes for the layout (as in

MOT3.1), the MOT4 interface only uses two panes by moving the sublesson

preview feature into a tab (see Figure 10.10)

Figure 10.8: A goal map in MOT3.1

261

Figure 10.9: A Course (Goal Model) view in MOT4

 10.6 Evaluations

Based on the improvements made to MOT4, the following hypotheses were

created.

H10.1. Users create more (non-parent) domain relationships using MOT4

than students previously have done using other versions of MOT.

H10.2. Users add more labels to each sublesson than in previous versions of

MOT.

H10.3. Users appreciate the automatic layout feature for arranging domain

graphs.

H10.4. Users create less complex LAG files when being forced to use a text-

editor.

This section describes the evaluations that took place to test these hypotheses.

262

 10.6.1 Evaluation of MOT4.0

The fourth year MSc module ‘Dynamic Web-based systems’ at the University of

Warwick used the updated MOT toolset to carry out a similar coursework to that

described in Chapters 5 and 7.

Six groups were formed of 2-3 students. As with the evaluations described in

Chapters 5 and 7, groups were required to choose two subjects (relevant to the

module) and create a domain about each of their chosen subjects. From each of

these domains, they were required to create two adaptation strategies, to produce

a total of four different adaptive courses. Whereas in previous years the

coursework deadline had been approximately 6 weeks after the student’s initial

exposure to the system, this particular cohort was allowed to continue working

until after the Easter break. However, due to the collaborative nature of the

coursework, the extra time may not have been overly beneficial to the groups.

Indeed, whereas in previous years the students were continually providing

feedback and requesting features during the module’s lectures and seminars, many

groups did not begin the coursework until the end of the module. This meant that

there was less interaction between the students and the researchers.

An introductory seminar demonstrated the usage of both MOT4 and ADE to the

students, after which the students were asked to start using the system and ask a

lab assistant about any usage problems. At the start of term, LAF import support for

ADE was still experimental so the students were advised to use CAF during their

initial experiments. The students were later notified (in a subsequent coursework

263

workshop session) when the LAF support had been implemented to allow enhanced

support for multiple labels, as described in Section 10.4.2.3 .

The radical change in the syntax of LAG had caused the existing PEAL and PEAL2

editors were out of date. The students therefore used standard text editors to

author the strategies.

 10.6.1.1 Analysis of Submitted Content

This section presents a quantitative analysis of the CAF/LAG files that were

submitted as coursework by the students.

 10.6.1.1.1 Domain Map Content

As with the previous evaluations described in Chapters 5 and 7, it is necessary to

analyse the content from three perspectives: All Domain Maps, Best Domain Map

per Group and Average Domain Content per Group.

Table 10.1 shows that the number of concepts created by the students in the 2011

cohort has actually decreased compared with the usage of MOT3.1 in 2010

although it is still slightly higher than that of 2008 with MOT1.0. Similarly, there is a

reduction in the number of attributes used.

None of these differences are statistically significant when considering either the

‘Best DM per group’ or the ‘Average DM per group’. However, when considering ‘All

DMs’, the reduction in the number of attributes is statistically significant (with a

two-tailed significance of p = 0.061), and the reduction in the number of attributes

per concept is also statistically significant (two-tailed significance of p = 0.006).

Moreover, when considering the ‘All DMs’ category, the number of attributes that

264

contained more than two different HTML tags was significantly higher when using

MOT4 than when using MOT3.1 (t(43) = -2.526, p < 0.05, r = 0.36).

Interestingly, none of the groups that used MOT4 used any non-parent

relationships at all. This could be partly to do with the fact that ADE had not

completely implemented the syntax that is required to address the new LAF style

relationships. Moreover, none of the students submitted any LAF files, preferring to

remain with the legacy CAF format.

N Concepts Depth of Average
Concept

Number of
Attributes

Attributes per
Concept

Number of Custom
Attribute Types

Percentage
Attributes (excluding title)
containing more than 2 unique
HTML tags

MOT1.0:
All DMs

4 22
SD: 12.44

2.75
SD: 0.31

63
SD: 37.28

2.8
SD: 0.56

1.25
SD: 1.89

2.43
SD: 4.86

MOT3.1:
All DMs

21 26.38
SD: 11.71

2.77
SD: 0.25

75.43
SD: 40.25

2.81
SD: 0.59

1.71
SD: 1.9

15.98
SD: 17.13

MOT4: All
DMs

24 23.67
SD: 10.54

2.95
SD: 0.57

56.33
SD: 25.44

2.36
SD: 0.45

1.67
SD: 2.55

35.49
SD: 31.53

MOT3.1:
Best DM
Per Group

8 32.75
SD: 11.51

2.86
SD: 0.19

90.88
SD: 45.68

2.66
SD: 0.58

1.5
SD: 2.07

19.1
SD: 20.73

MOT4:
Best DM
Per Group

6 29.33
SD: 11.96

3.14
SD: 0.49

68.5
SD: 24.4

2.36
SD: 0.37

1.67
SD: 1.37

41.12
SD: 35.87

MOT3.1:
Average
DM per
Group

8 27.19
SD: 7.37

2.77
SD: 0.13

77.9
SD: 30.89

2.81
SD: 0.55

1.65
SD: 1.8

17.7
SD: 18.08

MOT4:
Average
DM per
Group

6 23.67
SD: 4.73

2.86
SD: 0.11

56.33
SD: 14.11

2.36
SD: 0.35

1.67
SD: 2.06

35.75
SD: 34.39

Table 10.1: Domain Production for 2010 compared with 2009 and 2008

266

 10.6.1.1.2 Goal Map Content

As with the analysis of previous evaluation results, the goal map analysis considers

the following criteria: All GMs, Best GM per Group and Average GM per Group.

As described above, no groups used the LAF format. This meant that no groups

used the more advanced features concerning multiple labelling. Moreover, only one

group used the old MOT3.1-style multiple labels, and even this group only used a

single pair of labels (represented as “tod:1;inter:1”) to apply to two of their

sublessons. Indeed, the LAG strategy that was submitted to accompany this goal

map did not use the correct syntax to address such multiple labels, so the authors

must have used this label by mistake.

Similarly, many of the labels that were utilized by the groups appeared to be based

on very basic (non-pedagogical) terms. For instance, one group used 10 separate

labels named ‘labelA’, ‘labelB’, ‘labelC’, etc.

Another group used the label ‘important’ which was applied to every ‘title’

sublesson, and always had a weight of 5. Apart from the fact that such sublessons

could easily be identified by using the DM.Concept.type expression, using

such monotonous labels makes the labels irrelevant.

Number
of Cases

Average Number of
Distinct Labels

Average Number of
Sublessons

Percentage of Labelled
Sublessons

Percentage of
Weighted Sublessons
(i.e., labels with weight
other than 0)

2010 (MOT3.1): All GMs 24 5.88
SD: 10.78

83.17 (SD: 48.56) 68.26 (SD: 37.27) 32.26 (SD: 41.17)

2011 (MOT4): All GMs 24 3.96
SD: 3.544

57.25 (SD: 24.47) 69.71 (SD: 39.83) 55.74 (SD: 42.13)

2010 (MOT3.1): Best GM
per group

8 11.25
SD: 17.96

106 (SD: 63.05) 84.44 (SD: 31.44) 67.27 (SD: 40.75)

2011 (MOT4): Best GM
per group

6 4.67
SD: 4.59

74 SD: 22.17 65.3 (SD: 40.76) 47.77 (SD: 45.11)

2010 (MOT3.0): Average
GM per group

8 5.3
SD: 4.87

86.96 SD: 42.14 69.55 (SD: 28.25) 39.53 (SD: 25.41)

2011 (MOT4): Average
GM per group

6 3.96
SD: 3.3

57.25 SD: 11.66 70.87 (SD: 30.41) 56.64 (SD: 27.46)

Table 10.2: Comparison the Goal Maps created using MOT4 (in 2011) to those created in MOT3.1 (in 2010)

268

 10.6.1.1.3 LAG Strategies

This section provides a quantitative analysis of the LAG strategies that were

submitted as part of the coursework, according to the various measures that were

defined in Chapter 5.

 N Lines
of
Code

Lines of
Description

Lines of
Comments

Characters
of Code

Characters
of
Description

Characters
of
Comments

PEAL2
(2010) All
Strategies

31 48.94
SD:
37.18

10.94 SD:
9.1

10.19 SD:
9.59

964.32 SD:
840.3

711.1 SD:
573.61

574.52 SD:
448.44

Text
Editor
(2011) All
Strategies

25 33.76
SD:
28.34

4.4
SD: 2.96

2.12 SD:
2.88

678.4 SD:
599.83

324 SD:
195.65

111.88
SD: 167.8

PEAL2
(2010)
Best
Strategy
per Group

9 76.56
SD:
51.79

11.67
SD: 11.68

16 SD:
14.49

1560.33
SD:
1211.04

650.33
SD: 682.43

818.78
SD: 206.66

Text
Editor
(2011)
Best
Strategy
per Group

6 51.17
SD:
38.88

5.67 SD:
3.27

2,67 SD:
3.88

1036.5 SD:
809.35

374.17 SD:
184.96

149.83 SD:
244.49

PEAL2
(2010)
Average
Strategy
per Group

9 47.75
SD:
22.22

10.06 SD:
7.57

9.03
SD: 6.65

932.94
SD: 503.48

639.64
SD: 475.7

510.61
SD: 349.68

Text
Editor
(2011)
Average
Strategy
per Group

6 34.96
SD:
23.99

337.5 SD:
140.37

2.04
SD: 2.89

697.7 SD:
515.2

337.5 SD:
140.37

105.17 SD:
162.09

Table 10.3: A quantitative analysis of the strategies submitted in 2010 and 2011

Table 10.3 shows that many of the quantitative measures of the complexity of the

strategies actually decreased between 2010 and 2011.

269

Table 10.4 shows the effect size of all the measures that were found to be

statistically significant (at 95% confidence interval) when performing a one-tailed t-

test.

Measure Category t-value Effect size (r)

Lines of Description All strategies t(37.571) = 3.76 0.52 (large)

Lines of Comments

All strategies t(36.506) = 4.447 0.59 (large)

Best strategy per
group

t(9.636) = 2.623 0.65 (large)

Average strategy per
group

t(11.68) = 2.782 0.63 (large)

Lines of Code All strategies t(54) = 1.683 0.22 (small)

Characters of
Description

All strategies t(38.284) = 3.513 0.49 (medium)

Characters of
Comments

All strategies t(39.821) = 5.302 0.64 (large)

Best strategy per
group

t(11.193) = 2.915 0.66 (large)

Average strategy per
group

t(13) = 2.633 0.59 (large)

Table 10.4: Effect size of the statistically significant differences within the quantitative analysis of the created
strategies

By all measures, the strategies submitted in 2011 had significantly fewer lines (and

characters) of comments, with a large effect size. Similarly, there is some evidence

to say that there were significantly fewer lines (and characters) of description in

2011, but only when using the ‘All Strategies’ category. There was also a small (but

statistically significant) drop in the number of lines of code submitted in 2011 when

considering all strategies submitted by the students.

A number of factors may have affected the quantity of code within the strategies

submitted in 2011. Firstly, the new LAG4 syntax has simplified many operations (as

described in Section 10.4.3) this may have led to the strategies being able to

describe strategies using fewer lines/characters of code. Secondly, the change in

format of the coursework (as described in Section 10.6.1) may have affected the

potential for collaboration between the students, and therefore discouraged the

270

groups from creating innovative strategies. This seems plausible based on the fact

that there was also a reduction in the quality of the submitted goal maps, however

further research would be required to ascertain the pedagogical quality of each

submitted strategy. Finally, the students did not have the support of any dedicated

LAG editors (such as PEAL or PEAL2). Similarly, the small decrease in the amount of

code could be used to support the need for IDE-style editors.

 10.6.1.2 Evaluating MOT4 against GAT

As with the previous year’s module, towards the end of the term a seminar

introduced the students to GAT (as described in Section 9.6). The students were

given a short introduction to the tool, and were encouraged to use the tool within a

two-hour seminar, as with the previous year’s evaluation, the students were shown

the PRT tool, but were not required to create their own PRTs.

After each participant had finished creating a simple adaptive course using GAT, a

teaching assistant provided the participant with a link to an online survey.

The survey design software58 allowed for a greater customization of the questions

than the software that was used for the previous MOT versus GAT evaluation

(described in Chapter 9), allowing for more detailed questions to be asked. In

particular, there were no neutral options provided, ensuring that the students had

to give an opinion.

Unlike the previous year’s evaluation (which had taken place approximately two

weeks before the coursework deadline), the longer period of time allowed for the

58 The student version of Survey Gizmo was used: http://students.sgizmo.com/

271

coursework (described in Section 10.6) meant that the GAT seminar took place

approximately seven weeks before the coursework deadline. For this reason, many

students still had very fundamental misconceptions about the process of adaptive

hypermedia. Indeed some students said that they hadn’t used MOT at all yet, and

therefore found it impossible to compare between the two toolsets, such students

were did not complete the questionnaire. Those who did respond were asked

“Other than the initial demonstration seminar, please estimate the number of hours

you (personally) have spent working with MOT” – the average response was 5 hours

(SD: 3.55).

There were only 8 respondents to the questionnaire – the full questionnaire can be

found in Appendix B. Many of the results were inconclusive, showing either a 50%

split between each system, or a 5:3 split between the options.

There were only three questions that showed any clear majority.

 6 out of the 8 students said that GAT was better for cloning concepts.

 6 out of the 8 students said they preferred authoring adaptation by using

“smaller ‘building blocks’ (as in GAT)” over using “entire strategies at a time

(as in MOT)”.

 Similarly, 6 out of the 8 students said they preferred creating a “GAT course

based on existing PRTs” over writing a “whole LAG file”.

Since this questionnaire had no neutral (undecided) position, the results could be

analysed using a binomial test, but none of these results are statistically significant.

However, out of the three questions that provided such a 6 out of 8 (75%) result,

272

two of them concerned the usage of fine-grained adaptation strategy. This

therefore appears to rule out the possibility that the students were randomly

selecting their answers. However, the small sample size suggests that the result

should not be considered particularly significant.

As well as having basic “which do you prefer…” style questions, the survey asked the

students how confident they felt with using the various tools. Each question had a

Likert [8] scale with the options: Very Uncertain, Uncertain, Neutral, Confident and

Very Confident. For the purposes of analysis, these categories can be represented

as numbers (with -2 representing ‘Very Uncertain’ and 2 representing ‘Very

Confident’). Scoring the answers in this way assumes a monotony of the Likert scale,

which seems to be a reasonable assumption because of the natural language of the

terms (and the fact that it was presented in the questionnaire as a linear scale). The

average score given for each of the tools is presented in Table 10.5.

Tool Average Score

MOT Domain 0.5

MOT Goal 0.75

LAG Code 0.375

GAT Domain 0.625

GAT Course 0.375

GAT PRT (Creating from Scratch) 0
Table 10.5: The students 'confidence' score for the tools

Interestingly, none of the average scores for the tools are negative, suggesting that

the students were not especially uncertain about the usage of the tools. However,

the difference between each tool and the small sample size prevents a conclusive

statement from being made about the varying complexities of the tools.

273

At the end of each question, the students were invited to make a comment. Some

of the most interesting comments included:

“Linking to URIs is nice as it allows you to use additional content, but to create

attributes in MOT is easier to use and it's nice to have all the content in one place.”

“The possibility of using external URLs is definitely an advantage.”

Chapter 9’s evaluation showed a lack of a clear preference between using an

integrated editor and using external resources. The above comments also suggest

that users would appreciate the option to use either an integrated authoring tool or

external responses. This feature could potentially be implemented in MOT by

providing a template for an iframe HTML tag.

Concerning the authoring of adaptation (using reuse), one student said:

“The GAT approach is more like I would expect such a tool to be like, but the UI was

too complex.”

Other comments included:

“GAT is possibly more intuitive, and it looks better!”

“GAT has more operation steps”

“MOT has less operations”

“GAT looks difficult but it is delivered easier than MOT”

274

 10.7 MOT4.01

After the UK evaluations, various minor adjustments (including some minor bug

fixes) were made to MOT4.

 10.7.1 Look and Feel

The look-and-feel of MOT4 had primarily utilised the jQuery UI59 library. However,

the theme that had been previously chosen was rather grey and boring. One of the

comments described in the previous section had said that GAT looks better.

Chapter 8 described how the GAT ‘Welcome Screen’ had been designed to be child-

like by using bright colours. A similar principle was applied to MOT4.01, by ensuring

that a consistent theme was applied to all controls. Similarly, more intuitive

controls were added to the course tool; Figure 10.10 shows how the original MOT4

used a resizable pane to differentiate between the labelling tool and the sublesson

preview. Figure 10.11, uses tabs and clearer headings to differentiate between

these two features.

59 http://jqueryui.com/

275

Figure 10.10: Screenshot of the course tool within MOT4

Figure 10.11: Screenshot of the course tool within MOT4.01

 10.7.2 Tooltips

In an attempt to provide more assistance to the author, a context-sensitive tooltip

feature was added. Tooltips were added to a large variety of different controls. For

instance, Figure 10.12 shows that the labelling feature has two types of tooltips; a

yellow assistant tooltip (activated when users place their mouse over the control)

276

and a red warning tooltip (in this case activated when an invalid character is found

in the weight textbox).

Figure 10.12: Tooltips when adding labels

 10.7.3 Evaluation of MOT4.01

The previous evaluation had not demonstrated the usage of non-parent

relationships. This was largely due to the fact that the LAG syntax had only recently

allowed such relationships to be addressed.

A further evaluation was performed at the Politehnica University of Bucharest,

Romania with a class of students who were studying a module named ‘Semantic

Web’. As part of the module, they are expected to learn information about XML,

and are therefore expected to be familiar with topics such as structuring

information and applying metadata. For this reason, a piece of coursework was

devised to assess their knowledge of XML related topics.

The students are not taught about adaptive hypermedia, so the evaluation focussed

on the students’ usage of MOT4.01 rather than the creation of adaptation

strategies.

277

 10.7.4 Hypotheses

The evaluation of MOT4.01 needed to clarify the findings of the evaluation

described in the previous section. For this reason, two of the initial hypotheses are

kept.

H10.1. Users create more (non-parent) domain relationships using MOT4

than student’s previously have done using other versions of MOT.

H10.3. Users appreciate the automatic layout feature for arranging domain

graphs.

The teaching of the LAG language was beyond the scope of the Semantic Web

module so H10.2 and H10.4 were removed from this evaluation. It was decided not

to test H10.2 because the labels are closely related to the strategy.

Two further hypotheses can also now be investigated.

H10.5. The tooltips are considered helpful.

H10.6. MOT4.01 is consistent with other applications.

H10.6 was added to support the familiarity imperative defined in Chapter 9.

The students were divided into 8 groups of 3-4 students and were given 4 weeks to

build domain maps and goal maps about various XML topics (including XML, XSLT

and XPath). The seminar that introduced the coursework demonstrated the basics

of ADE (so that they could preview their content) and described the basics of the

LAG language.

278

 10.7.5 Example Strategies

The students were not expected to design LAG strategies, but were taught how to

reuse some example strategies. LAG files expressing the following strategies were

given to the students to reuse.

 A ‘setmode’ strategy is based around a hypothetical set of users

(Technology Journalist, Web Designer, Developer, and Web Developer) who

each require different amounts of information about the XML related

topics. When the learner views a sublesson that has a label named

‘setmode’, the weight of that label becomes stored in the user model

(‘UM.mode’). When the user views a sublesson that has a label named

‘mode’, the sublesson is hidden unless the weight of the label matches the

mode in the user model.

 A ‘ChooseRel’ strategy was designed to encourage the users to use the non-

parent relations feature, and thus create more complicated domain maps.

The strategy allows learners to choose a relationship type by clicking on a

sublesson that has a label named ‘setrel’. If the sublesson has a second

label (for example ‘composedOf’) the name of the second label becomes

the active relationship type. A ToDo list on the right-hand side of the screen

shows the relationship type, but also all concepts that are related to the

currently viewed concept by the active relationship type.

 10.7.6 Analysis of Submitted Content

In contrast to the previous evaluation of MOT4, 8 out of the 9 groups submitted a

file in LAF XML format. Table 10.6 shows that 5 out of the 8 groups used some non-

279

parent relationships, and those that did created an average of 8.4 instances of such

non-parent relationships. This does show that the students were able to create

more complex concept relationships – thus supporting H10.1.

Group Number of
Concepts

Number of Non-Parent
Relationship Types

Number of Non-Parent
Relationship Instances

1 51 0 0
2 18 1 9

3 73 0 0

4 34 0 0

5 39 1 9

6 49 2 7

7 14 1 9

8 37 1 8

Average 39.38 0.63 4.13
Table 10.6: Number of Concepts and Relationships used with MOT4.01

Table 10.7 shows the Bucharest students (using MOT4.01) created a higher number

of concepts than the Warwick students (using MOT4.0), with a higher number of

attributes. The depth of the average concept was also higher, as was the number of

custom attribute types. However, there were fewer attributes per concept and a

smaller percentage of attributes. None of these differences are statistically

significant.

280

N Concepts Depth
of
Average
Concept

Number
of
Attributes

Attributes
per
Concept

Number
of
Custom
Attribute
Types

Percentage
Attributes
(excluding
title)
containing
more than
2 unique
HTML tags

MOT4: Best
DM Per
Group

6 29.33
StdDev:
11.96

3.14
StdDev:
0.49

68.5
StdDev:
24.4

2.36
StdDev:
0.37

1.67
StdDev:
1.37

41.12
StdDev:
35.87

MOT4.01:
DM

8 39.38
StdDev:
18.88

3.45
StdDev:
0.92

83.88
StdDev:
39.02

2.29
StdDev:
0.69

7.22
StdDev:
10.66

24.21
StdDev:
16.58

Table 10.7: Comparing Domain Content submitted by the UK students (using MOT4) to that submitted by the
Romanian students (using MOT4.01)

The main reason for the difference is due to the fact that two very different

coursework tasks assigned to the students. Whereas the UK students had to create

courses that used original strategies, the Romanian students only needed to reuse

existing strategies. Indeed, there was a large variety in the quality of the domain

maps submitted by the Romanian students. For instance one group decided to

concentrate on only the structure of the Domain – this group created 73 concepts

but only provided ‘title’ attributes (with no actual content).

The types of strategies supplied to the students also clearly had an effect on the

quality of the domains. The UK evaluation (described in Section 10.6.1) had not

supplied any example LAG strategies that utilised the new relationships feature,

which meant that no groups decided to use the feature. By contrast, one of the two

example strategies supplied to the Romanian students did use the new relationship

syntax, which encouraged the students to utilise the more advanced features of the

MOT4 Domain tool.

281

Similarly, a large (but statistically insignificant) rise in the number of custom

attribute types defined is due to the fact that some students decided to address the

‘setmode’ strategy by defining typenames such as ‘Web developer’, rather than

simply adding labels. In some ways, this suggests that the users were trying to add

pedagogical information into the domain. This could be because the students were

not taught about the basic principles of adaptive hypermedia (such as the

separation of concerns principle), and were therefore not designing their domains

to be reused.

Similarly, the quality of the goal maps submitted is entirely influenced by the

strategies supplied to the students. It is therefore unnecessary to compare the goal

map content to that submitted by the UK students. However, every group used the

labelling feature: on average each group added at least one label to 70.23% of their

sublessons (SD: 31.14). Moreover, on average each group added at least two labels

to 26.08% of their sublessons (SD: 32.94).

Although no statistical significance can be found within these statistics, they show

that the students spent a reasonable amount of time using the system, and it was

valuable to gather feedback about their usage of the system.

 10.7.7 MOT4.01 Questionnaire

As part of the coursework submission process, the Romanian students were asked

to submit a questionnaire. There were 28 responses, and as with the UK evaluations

each participant was asked how many hours they had personally spent using MOT,

the average response was 9.93 hours (SD: 5.34). The full questionnaire can be

found in Appendix C, whilst this section describes the most interesting results

282

The questionnaire provided a 4-point Likert scale, and asked the respondent to rate

a series of statements. The options in the scale were Strongly Disagree, Disagree,

Agree and Strongly Agree which for ease of analysis were coded as 1-4 respectively.

As with previous evaluations described in this thesis, the analysis used assumes a

monotony of the Likert scale. Each statement had 28 responses.

The first set of statements was designed to find the students’ opinion about how

consistent MOT4.01 is with other tools. Table 10.8 shows the statements and the

most frequent response together with the mean and standard deviation.

Statement Most
frequent
answer
(Mode)

Mean Standard
Deviation

MOT is consistent with other applications I have
used

3 2.5 0.64

The interface for editing (adding/deleting/copying
concepts) a Domain structure was consistent with
other software I have used

3 2.64 0.56

The interface for adding/deleting attributes was
consistent with other software I have used

3 2.5 0.69

The interface for editing the content of attributes
was consistent with other software I have used

3 2.64 0.62

The interface for rearranging a course (by dragging
the tree) was consistent with other software I have
used

3 2.5 0.64

The interface for adding labels to a course was
consistent with other software I have used

3 2.57 0.69

Table 10.8: Likert-scale responses about consistency

Table 10.8 shows that overall the students appeared to have no strong opinion

about how consistent the tool is with other software. At the end of the question,

they were asked to name any pieces of software that they had previously used that

were similar to MOT4.01. Four of the respondents mentioned blogging and content

283

management services such as Blogspot60, Wordpress61 and Joomla62. Two

respondents mentioned Zooma63, which is a text-based tool for mapping

ontologies. Other students mentioned Enity-Relationship and UML diagram

software such as astah64. Each of these tools has a separate purpose to MOT;

however future research may be able to build on the usability techniques employed

by these different tools.

Table 10.9 shows the statements and responses to the next question, which

focussed on ease of use.

Statement Most frequent
answer
(Mode)

Mean Standard
Deviation

It is easy to create concepts in MOT 3 3.14 0.65

It is easy to copy concepts in MOT 3 2.75 0.8

It is easy to delete concepts in MOT 3 3.1 0.57

It is easy to reuse concepts in MOT 3 2.57 0.79

It is easy to add attributes in MOT 3 2.96 0.84

It is easy to edit attributes in MOT 3 2.89 0.79

It is easy to create relationships in MOT 3 2.96 0.58

It is easy to delete relationships in MOT 3 3.04 0.58

It is easy to add labels in MOT 3 3.1 0.79

It is easy to delete labels in MOT 3 3.14 0.76
Table 10.9: Responses to questions about 'ease of use'

This indicates that most students thought the tool was fairly easy to use. Based on

the average response, it appears that copying concepts and reuse of content was

the most difficult. However (as described earlier in this section) the students’ task

60 http://www.blogger.com

61 http://www.wordpress.com

62 http://www.joomla.co.uk

63 http://zooma.sourceforge.net/index.html

64 http://astah.net/

284

was to only create one domain and one goal map, this meant that they did not

need to use many of the reuse features (such as the Wikipedia import, and copying

concepts between domains). Similarly, 19 out of the 28 respondents (67.86%)

answered ‘yes’ to the question “Do you think reuse (of existing content) is

sufficiently supported by MOT4.0.1?”. Also, when asked “Did you like the fact that

you could use the same Domain for different strategies, and the same strategy for

different Domains, or would you have preferred them to be edited together?” 23 out

of the 28 respondents said they appreciated the fact that they could use the same

domain for different strategies.

With regard to the ‘Calculate relatedness’ feature, 11 of the 28 respondents

(39.29%) said they tried it once, with 9 saying they didn’t know about the feature, 7

said they ‘used it sometimes’ and 1 person said they’d used it ‘often’.

21 out of the 28 respondents (75%) agreed with the statement “The MOT toolset is

coherent”. A further 2 respondents strongly agreed with the statement whilst 5

respondents disagreed. One of the comments provided said that “Importing stuff

over and over in ADE is painful”. This is an issue that has been identified in Chapter

7, and could be addressed by closely integrating the two tools in the future.

23 out of the 28 respondents (82%) said that they felt they had enough flexibility to

label the content in an appropriate way according to their strategy. The only

negative comment was that “If I convert a domain to a course, I can't edit the

domain without losing the labels.” This comment could be based on a

misconception about the usage of the tools, since editing attributes will

automatically update the sublessons in a course. However, it is true that if a domain

285

is dramatically restructured, the author will need to rebuild the course. Future work

could investigate how to update a goal model based on a modified domain model.

To investigate whether users prefer to manually or automatically rearrange the

domain graph, the users were asked to rate the series of statements shown in Table

10.10. The options presented to the respondents were Never, Sometimes, Often

and Very Often, which were coded 0-3 respectively. The question began:

“When editing/viewing a Domain, how often did you use the following arrangement

features…?”

When editing/viewing a Domain, how often did
you use the following arrangement features…

Most frequent
answer
(Mode)

Mean Standard
Deviation

Manual (Drag & Drop) 2 2.07 0.86

Automatic Rearrange 3 2.1 0.92

Automatic Rearrange with some manual (Drag &
Drop) adjustment

3 2.1 0.88

Tree Layout 1 1.54 1.1

Tree Layout with some manual (Drag & Drop)
adjustment

1 1.43 0.96

Table 10.10: The usage of the Domain rearrangement features

These results appear to show that the automatic rearrange feature was preferred

over the manually rearranging the concepts (thus supporting Hypothesis H10.1).

Similarly, the users were asked which layout provided the clearest view of their

domain. The options in the scale were Strongly Disagree, Disagree, Agree and

Strongly Agree which were coded as 1-4 respectively. The results are shown in

Table 10.11.

286

When editing/viewing a Domain, how often
did you use the following arrangement
features…

Most
frequent
answer
(Mode)

Mean Standard
Deviation

The Domain Auto Arrange feature provided a
clear view of my final Domain map

3 3.04 0.79

The Domain Tree View feature provided a clear
view of my final Domain map

3 2.93 0.9

The Course feature provided a clear view of the
structure of my course

3 3.25 0.52

Table 10.11: The usage of the hierarchical Domain rearrangement features

Interestingly, when viewing a Domain the users appeared to prefer the automatic

rearrange functions over the tree layout. However, when viewing the course they

seemed to appreciate the hierarchical view. This could be because the tree view of

a Domain still involves a graph-based display (as shown in Figure 10.13), however

the tree display of a Course is more text-based (as shown in Figure 10.14), and is

therefore more readable.

Indeed, when a large number of concepts are added to the domain, the tree view

placement occupies a much larger space and becomes more difficult to use. Further

research could add an alternative view to the Domain tool showing a hierarchical

view similar to that of the Course tool. However, such a view would prevent the

non-parent relationships from being displayed, and would therefore be functionally

equivalent to MOT3.1 (see Chapter 7).

287

Figure 10.13: The tree view of a Domain in MOT4.01

Figure 10.14: The tree view of a Course in MOT4.01

The students were also asked what they thought to the tooltips. 23 out of the 28

respondents said there were ‘Enough’ tooltips, whilst 3 said there were ‘Too many’.

A further 2 students said there were ‘Not enough’. Similarly, 24 out of the 28

students (85.7%) said that the information in the tooltips was ‘Helpful’, with a

further 2 people saying they were ‘Very helpful’ and another 2 saying they were

‘Unhelpful’. Overall these results show that the tooltips were useful, thus

supporting Hypothesis H10.5.

288

 10.7.7.1 SUS Test

The final part of the survey was based around the System Usability Scale (SUS) [88]

questionnaire, which asks the users to rate statements based on a 5-point Likert

scale (‘Strongly Disagree’ to ‘Strongly Agree’, numbered 1-5 respectively). The

statements and their response averages are shown in Table 10.12. Note that each

row alternates between a positive and a negative statement. The score for each

element is also presented. In accordance with the procedure for analysing the SUS

questionnaire, the score is calculated by subtracting 1 from all responses to the odd

numbered items, and subtracting the responses to all even numbered items from 5.

289

Statement Mode Mean Standard
Deviation

Score

1. I think that I would like to
use this system frequently

3 2.93 0.9 1.93

2. I found the system
unnecessarily complex

2 2.25 0.75 2.75

3. I thought the system was
easy to use

4 3.61 0.74 2.61

4. I think that I would need the
support of a technical
person to be able to use this
system

1 1.96 0.96 3.04

5. I found the various functions
in this system were well
integrated

4 3.54 0.88 2.54

6. I thought there was too
much inconsistency in this
system

2 2.46 0.88 2.54

7. I would imagine that most
people would learn to use
this system very quickly

4 3.71 0.81 2.71

8. I found the system very
cumbersome to use

2 2.61 1.03 2.39

9. I felt very confident using
the system

4 3.75 0.84 2.75

10. I needed to learn a lot of
things before I could get
going with this system

3 2.64 1.02 2.36

Table 10.12: Responses to each part of the SUS study

The next stage of the SUS process is to sum all the scores, and multiply by 2.5. The

final SUS score for the system is therefore 64. According to Sauro [141], this is

slightly below the average mark of 68. Figure 10.15 shows the mean of each score

displayed on a radar chart. This style of display was used in [46], [54], and – due to

the alternating positive and negative nature of the statements – ideally the graph

should be star shaped. However, the graph indicates that the students appeared to

broadly agree with most of the statements; positive and negative. Out of the

positive statements, the smallest response was for “I think that I would like to use

this system frequently”. This is unsurprising, since the students were not taught the

290

background of the long-term usage of adaptive hypermedia – they were merely

asked to create domain maps and goal maps. They may therefore be feeling that

they have no further use for the tools. Interestingly, the highest of the negative

statements was “I needed to learn a lot of things before I could get going with this

system” with a mean of 2.64, yet the statement “I would imagine that most people

would learn to use this system very quickly” yielded an even higher mean of 3.71.

Figure 10.15: The SUS results shown as a radar graph

0
0.5

1
1.5

2
2.5

3
3.5

4
Use Frequently

Unnecessarily Complex

Easy

Need support

Well Integrated

Inconsistency

Learn Quickly

Cumbersome

Confident

Needed to learn a lot

291

 10.8 Conclusions

This chapter has documented the creation of MOT4, which was designed to extend

the functionality of the MOT toolset. Specifically, MOT4 was designed to mimic (and

improve upon) the more graphical methods of visualizing Domain maps, thus

attempting to encourage users to specify domains that specify more complex

relationships between concepts than the usual hierarchical parent relationships

that are typically used within MOT.

The long-term usage evaluation of MOT4.0 (described in Section 10.6.1) did not

show an increase in the complexity of the domain maps or goal maps created by

the students. However, it is suggested that this was due to external factors,

including a change in the schedule of the coursework and a lack of documentation

for the new features within LAG.

The chapter described the improvements that were made in response to qualitative

feedback from this initial evaluation, thus creating MOT4.01. The evaluation of

MOT4.01 was carried out by providing students with sample strategies that

specifically used concept relationships, thus allowing the students to use more

complex domains.

In the follow-up questionnaire, the students were undecided about how consistent

MOT4.01 is with other applications, thus not confirming H10.6. This indicates that

the process of authoring adaptation is still rather different to the style of authoring

that many computer users are familiar with.

292

The students appeared to like the automatic rearrangement of concepts in the

domain visualization (thus supporting H10.3). However, they appeared to prefer the

text-based layout (as exhibited by the goal map view) over the graphical tree

structure. This suggests that the Domain should allow users to choose whether they

want to view a graph-style domain (as in MOT4 and GAT) or a tree-style domain (as

in MOT3.1).

293

11 Conclusions and Future Work

11.1 Introduction

This thesis has investigated ways of improving the authoring process for adaptive

hypermedia. Although the thesis has primarily explored the authoring process

through the evaluation of two separate tools, the evaluations have attempted to

isolate the various features that contribute to the usability of the tool, so that such

features can be integrated into other authoring systems.

11.2 Summary of Evaluation Results

The research looked at how visualization can help users with the adaptation

authoring process. The evaluation presented in Chapter 5 showed that the PEAL IDE

appeared to improve the quantitative complexity (statistically significant with a

large effect size when considering the amount of code) of the submitted strategies,

compared with strategies that had previously been submitted. This indicates the

importance of providing basic editing features (including code completion, syntax

highlighting and a code library). However, when introducing the visual features of

PEAL2, there was no evidence to suggest that the submitted LAG strategies had

improved. It seems likely that this was due to the fact that complex strategies

extended beyond the browser’s window, making it difficult for the user to visualize

the entire strategy.

Further research into the visualization of adaptation strategies was presented in

Chapters 9 and 10 with reference to the GRAPPLE Authoring Tool. The evaluation in

Chapter 9 indicated that most users preferred to write whole adaptation strategies

(as in LAG, Section 9.6.2.8) rather than focussing on specific smaller parts of

294

adaptation, however, the users also prefer to reuse small pieces of adaptation

(Section 9.6.2.7). However the evaluations found no conclusive results about

whether authors prefer writing with high granularity or low granularity of static

content.

In general, there was an inconclusive result concerning the visualization of the

(sub)-strategies. One of the reasons for this may be that the evaluation participants

were Computer Science students – this means that they are familiar with the

process of writing code.

The evaluation of MOT4 presented in Section 10.6.1.1 investigated whether the

introduction of a graph-based structure had any effect on the quality of the domain

maps compared with the tree-based structure of MOT3.1. There was a small (but

statistically insignificant) reduction in the number of concepts created in MOT4.

This could be an indication that a tree-based structure more clearly conveys the

structure of a course.

Interestingly, the graph-based structure did nothing to encourage the students in

the initial MOT4 evaluation to create non-parent relationships. This could be due to

the fact that the LAG4 adaptation language implemented within ADE [63] was

relatively new, and as such did not provide concrete examples for the usage of such

relationships.

The evaluation with MOT4.01 did however attempt to encourage the usage of such

complex relationships by providing an example strategy. When asked what they

thought about the visualization of these relationships, the users appeared to prefer

295

the automatic (force-directed [139]) rearrangement or even a manual placement

rather than utilizing the tree layout function.

The UK students in the initial MOT4 evaluation only used hierarchical relationships,

this may indicate that in most cases domains can be authored using only a

hierarchical tree view. For this reason, a future tool could offer students two views

of the domain; one with a hierarchical text-based tree (such as the one used in

MOT3.1 or the course tool of MOT4), and another view with the graph-based

structure (as used in MOT4).

The ability to address content using more than one pedagogical label was

investigated in MOT3.1. MOT4 later refined this with the LAF XML format; however

in the evaluation, none of the students used multiple labelling. This could have

been due to a lack of multiple labelling examples in the LAG4 documentation.

When investigating whether students preferred labelling (in MOT) or sockets (in

GAT) in the Chapter 9 evaluation (H9.6), there was no clear preference shown.

An approximately equal number of students said they liked to edit the content

within the tool compared with editing in an external editor. Some of the evaluation

comments described in Chapter 10 suggested that some users would appreciate the

option of being able to directly link to external resources, rather than having to use

the internal editor. Future research could therefore provide users with the option

to link to external resources within MOT4.

296

11.3 Importing Content from Linear Sources

Chapter 4 described a set of imperatives for creating an importer that can generate

adaptive content based on static material. The chapter described the creation of

two such importers – a Wiki importer and a presentation importer. Evaluations

(with both students and course authors) demonstrated that authors generally

desired the functionality provided by each of these importers. In response to user

feedback, the Wiki importer was extended to also extract the images from the

article.

11.4 Future Research

Chapter 4 described how the Wiki importer could further be extended to crawl

Wikipedia pages, and import several related articles at a time. An initial prototype

has investigated using DBPedia [142], which is a structured data set of information

that has been extracted from Wikipedia pages. This information can be downloaded

into RDF triples [91] that represent the relationships between two articles. Using

the graph-based relationship types made available by MOT4, it is possible to create

a domain that contains concepts (generated from Wikipedia articles) that have

semantically meaningful relationships with other concepts. For instance, a concept

named ‘PHP’ would be involved in an ‘influencedBy’ link with the ‘C++’ concept. A

LAG strategy could therefore be created that can display all concepts that are

‘influencedBy’ C++. This would effectively be a semantic enricher for the Wikipedia

importer, with clear parallels to the work by Hendrix et al. [89] (described in

Chapter 4).

297

11.5 Future Applications

Initiatives such as Coursera[143] and FutureLearn[144] aim to engage learners

through the use of Massive Open Online Courses (MOOCs), allowing any member of

the public to follow an online course. However, MOOCs often have a high student-

to-teacher ratio, often with thousands of students and a single teacher[145]. This

means that learners may not receive tuition that is specifically directed to them.

Personalisation technologies (such as adaptive hypermedia) could be used to

simulate the guidance of a real-world tutor. Currently, many universities use VLEs

such as Moodle [104] to deliver interactive activities, such as quizzes and forums.

However, such content is rarely adaptive or personalised since it does not store a

user model, and is therefore limited in how it can recommend content. Therefore,

there is an even greater need for educators to be able to create engaging teaching

materials through the expression of complex personalisation techniques. To assist

authors with this challenging task, it is vital that usable authoring tools are created.

Such authoring tools could be created based on the principles established in this

thesis.

Indeed, the thesis has described the design and development of a number of

authoring tools, and has described the results of evaluations to identify how to

make the authoring process easier. The evaluations presented in this thesis have

been primarily targeted at Computer Science students, who may have different

preferences to those of non-technical educators. Nevertheless, it was important

that the approval of technical users was sought before expecting the tool to be

usable by non-technical authors.

298

Further research could concentrate more heavily on the pedagogical utility of

delivering adaptive hypermedia. This could be achieved by testing adaptation tools

in a long-term teaching environment, enriching existing real-world teaching content

with adaptation techniques. This would allow the long-term educational benefits of

various adaptation strategies to be evaluated, as well as providing a greater

understanding of how authoring tools can be used by non-technical educators.

Encouraging a variety of authors to engage with the process of authoring for

adaptive hypermedia would aim to create a richer variety of static content and

pedagogical adaptation strategies. By employing the principles of reuse

documented in this thesis, a wider variety of educators would be able to share,

reuse and collaborate with each other on more engaging, personalised courses. This

would provide a larger number of case studies to demonstrate the pedagogical

utility of adaptive hypermedia.

299

Appendix A: MOT3.1/PEAL2 versus GAT Questionnaire

In the following, you will be asked a number of questions on your authoring

experience with two tools, GAT, which you have just used at a recent demo, and

MOT3.1, with which you have been authoring your coursework.

Please read the questions carefully, as they are asking very specific opinions on your

experience. If you have not understood the question, it's best to ask someone or to

comment on this in the comment field provided for each question.

The first set of questions is for beginner authors: these can edit and modify content,

concepts and some relations, but do not have to directly edit adaptation strategies,

sub-strategies or pieces of strategies.

Please answer first these questions on content creation and manipulation in domains

in the authoring process of adaptive presentations.

*

1. When authoring an adaptive course or presentation, do you prefer to use (select as

many options as you wish):

Using a dedicated, integrated editing tool (like in MOT3.1)

Editing from scratch

Pre-existing content only

Pre-existent content which can be further edited

Editing HTML files in any HTML editor (like in GAT)

Any comment?

2. Regarding the granularity of the content you are creating when authoring an

adaptive course or presentation, do you prefer:

Don’t mind either way

High granularity (small ‘chunks’ of content that can be reordered in a page, like

in MOT3.1)

Low granularity (big ‘chunks’ of content that basically form a page, like in

GAT)

Any comment?

*

3. Regarding the overall experience in authoring content for an adaptive course or

presentation, do you think:

300

MOT3.1 is easier to learn how to use

GAT is easier to learn how to use

MOT 3.1 and GAT are similar in the amount it takes me to learn how to use

them

After learning how to use them, MOT 3.1 content is easier to use

After learning how to use them, GAT content is easier to use

After learning how to use them, both GAT and MOT3.1 content are of similar

difficulty of use

Visualisation of content in MOT3.1 is better

Visualisation of content in GAT is better

The visualisation of content in MOT3.1 and GAT are of similar quality

When preparing and using content, GAT is faster

When preparing and using content, MOT3.1 is faster

The speed of content usage and preparation in GAT and MOT3.1 is similar

Any comment?

Please answer next these questions about concept creation and manipulation in

domains when authoring adaptive presentations.

*

4. Regarding the difficulty in learning how to use and manipulate concepts, which

system do you think takes less effort to learn:

 MOT3.1 GAT both the same N/A

cloning * cloning

MOT3.1

cloning

GAT

cloning both

the same
cloning N/A

reusing reusing

MOT3.1
reusing GAT

reusing both

the same
reusing N/A

copy copy

MOT3.1
copy GAT

copy both

the same
copy N/A

creation creation

MOT3.1

creation

GAT

creation both

the same
creation N/A

dragging dragging dragging dragging dragging

301

 MOT3.1 GAT both the same N/A
MOT3.1 GAT both the same N/A

deleting deleting

MOT3.1

deleting

GAT

deleting both

the same
deleting N/A

Any comment?

*

5. Regarding the overall experience in authoring concepts for an adaptive course or

presentation, do you think:

 After learning how to use them, MOT 3.1 concepts are easier to use

After learning how to use them, GAT concepts are easier to use

After learning how to use them, both GAT and MOT3.1 concepts are of similar

difficulty of use

Visualisation of concepts in MOT3.1 is better

Visualisation of concepts in GAT is better

The visualisation of concepts in MOT3.1 and GAT are of similar quality

When preparing and using concepts, GAT is faster

When preparing and using concepts, MOT3.1 is faster

The speed of concepts usage and preparation in GAT and MOT3.1 is similar

Any comment?

*

6. Regarding order of concepts and usability, I think that:

Reusing the same DM for different GM orders of concepts and thus for different

final presentations is better (like in MOT3.1).

Preserving the order of concepts in the DM for the final presentation is better

(like in GAT).

The two ordering mechanisms are of equal value to me.

Any comment?

*

302

7. Regarding the properties of concepts, I think that:

I have no clear opinion about the best number of properties for concepts.

Having only one property for DM concepts (the type of the attributes that

constitute it) used in multiple attributes is better (like in MOT3.1).

Having multiple properties for DM concepts is better (like in GAT).

Any comment?

*

8. Regarding the overall experience in authoring properties of concepts for an

adaptive course or presentation, do you think:

MOT3.1 properties of concepts (types) are easier to learn how to use

GAT properties of concepts is easier to learn how to use

MOT 3.1 and GAT properties of concepts are similar in the amount it takes me

to learn how to use them

After learning how to use them, MOT 3.1 properties of concepts (types) are

easier to use

After learning how to use them, GAT properties of concepts are easier to use

After learning how to use them, both GAT and MOT3.1 properties of concepts

are of similar difficulty of use

Visualisation of properties of concepts (types) in MOT3.1 is better

Visualisation of properties of concepts in GAT is better

The visualisation of content in MOT3.1 and GAT of properties of concepts are

of similar quality

When preparing and using properties of concepts, GAT is faster

When preparing and using properties of concepts (types), MOT3.1 is faster

The speed of properties of concepts usage and preparation in GAT and MOT3.1

is similar

Any comment?

*

303

9. For relations in the DM, I prefer:

Multiple types of relations (predefined or created by the author, as in GAT)

Two types relations (hierarchical and relatedness, as in MOT 3.1)

I have no strong opinions on the number of relation types necessary for a DM.

Any comment?

*

10. Regarding the parent-child relation in the DM and issues of reuse of the DM, I

believe that:

It doesn't make any difference to me if the hierarchy is defined in the DM or in a

separate step (GM or PRT).

There should be an intermediary step to decide if this DM concept hierarchy is to

be interpreted as a hierarchy in the final presentation (like in MOT3.1, where the

hierarchy is only established in the GM)

It should be possible to directly relate this DM concept hierarchy to the final

presentation (like in GAT)

Any comment?

11. Regarding the overall experience in authoring properties of DM relations for an

adaptive course or presentation, do you think:

MOT3.1 DM relations are easier to learn how to use

GAT DM relations are easier to learn how to use

MOT 3.1 and GAT DM relations are similar in the amount it takes me to learn

how to use them

After learning how to use them, MOT 3.0 DM relations are easier to use

After learning how to use them, GAT DM relations are easier to use

After learning how to use them, both GAT and MOT3.1 DM relations are of

similar difficulty of use

Visualisation of properties of DM relations in MOT3.1 is better

Visualisation of properties of DM relations in GAT is better

304

The visualisation of DM relations in MOT3.1 and GAT are of similar quality

When preparing and using DM relations, GAT is faster

When preparing and using DM relations, MOT3.1 is faster

The speed of DM relations usage and preparation in GAT and MOT3.1 is similar

Any comment?

12. Regarding adaptation labelling and reusability, as well as expressivity, do you

prefer:

Labelling for adaptation strategies via the socket mechanism (potentially

multiple sockets; like in GAT, CAM tool)

Labelling: for adaptation strategies via multiple labels and weights in the GM

(like in MOT 3.1)

Labelling for adaptation strategies via the DM (like in GAT, DM tool)

Any comment?

*

13. In terms of granularity of strategy reuse, I prefer reusing:

Specific parts of adaptation strategies (such as initialization and implementation,

like in PEAL+LAG)

Small pieces of adaptation (like in GAT, CAM tool)

Whole adaptation strategies (like in PEAL+LAG)

I consider reuse of whole adaptation strategies, specific parts, or small pieces of

adaptation of similar value.

Any comment?

*

14. Regarding the complexity of the resulting adaptation, I believe that I can create

strategies of greater complexity with:

MOT 3.1

GAT

I can create strategies of similar complexity with both GAT and MOT3.1

Any comment?

305

*

15. Regarding the overall experience in authoring PRTs (pedagogical relations in

GAT, CAM tool) or reusing multiple (sub-)strategies in PEAL (with reuse syntax for

LAG as given at course, reuse of initialization or of implementation) for an adaptive

course or presentation, do you think:

PEAL (sub-)strategy reuse syntax is easier to learn how to use

GAT PRT relations are easier to learn how to use

PEAL and GAT sub-strategy use are similar in the amount it takes me to learn

how to use them

After learning how to use them, PEAL (sub-)strategies are easier to use

After learning how to use them, GAT PRT relations are easier to use

After learning how to use them, both GAT PRT and PEAL (sub-)strategies are of

similar difficulty of use

Visualisation of (sub-)strategies in PEAL is better

Visualisation of PRTs in GAT is better

The visualisation of PEAL (sub-)strategies and GAT PRT are of similar quality

When preparing and using PRTs, GAT is faster

When preparing and using (sub-)strategies, MOT3.0 is faster

The speed of PEAL (sub-)strategies and GAT PRT usage and preparation is

similar

Any comment?

16. Regarding the overall experience in delivering an adaptive course or

presentation, do you think:

ADE is easier to learn how to use

GALE is easier to learn how to use

ADE and GALE are similar in the amount it takes me to learn how to use them

After learning how to use it, GALE is easier to use

306

After learning how to use it, ADE is easier to use

After learning how to use them, both ADE and GALE are of similar difficulty of

use

Visualisation in ADE is better

Visualisation in GALE is better

The visualisation in GALE and ADE are of similar quality

GALE is faster

ADE is faster

The speeds of ADE and GALE are similar

Any comment?

Authors are considered advanced if they author the code of an adaptation strategy.

Please answer these questions about editing strategy code, as you've been working as

advanced authors in PEAL, and have seen what type of work needs done by

advanced authors in GAT (via the CRT tool).

*

17. In terms of granularity of strategy writing, I prefer writing:

 Small pieces of adaptation (like in GAT, CRT tool)

Specific parts of adaptation strategies (such as initialization and implementation,

like in PEAL+LAG)

Whole adaptation strategies (like in PEAL+LAG)

I consider writing of whole adaptation strategies, specific parts, or small pieces

of adaptation of similar difficulty.

Any comment?

*

18. Regarding the overall experience in writing code in an adaptation language for an

adaptive course or presentation, do you think:

LAG code is easier to learn how to use

307

GALE code is easier to learn how to use

LAG and GALE code are similar in the amount it takes me to learn how to use

them

After learning how to use it, GALE code is easier to use

After learning how to use it, LAG code is easier to use

After learning how to use them, both LAG and GALE code are of similar

difficulty of use

Visualisation of LAG code is better (in PEAL)

Visualisation of GALE code is better (in GAT, PRT tool)

The visualisations of GALE and LAG code are of similar quality (in GAT, PRT

tool, respectively PEAL)

GALE code writing is faster (in GAT, PRT tool)

LAG code writing is faster (in PEAL)

The speeds of writing LAG and GALE code are similar (in PEAL, respectively

GAT, PRT tool)

Any comment?

*

19. Away from GAT & MOT+PEAL, would you prefer:

 Graph-based tools for concept editing

hierarchical tools for concept editing

I have no definite preference for graph-based tools or hierarchical tools

definition of high level granularity of adaptation strategies (small pieces)

definition of low level granularity of adaptation strategies (large pieces)

I have no definite preference for high or low level granularity for adaptation

strategies (small or large pieces)

Any comment?

308

Appendix B: MOT4 versus GAT survey

Thanks for looking at this questionnaire, we are trying to make our adaptive

hypermedia authoring systems as easy to use as possible, and we would really value

your opinion.

1) How experienced are you with traditional Web Development*

() None - I've never done Web development

() Basic - I have used WYSIWYG editors or content management systems

() Advanced - I am confident in directly writing source code for HTML/CSS

() Expert - I can do all the above, and have used server side technologies

2) Other than the initial demonstration seminar, please estimate the number of

hours you (personally) have spent working with MOT*

Please Comment (if necessary)

Learning and Using

Authoring systems may differ in the time you need to invest in learning them. For

instance, if a system is radically different to anything you've ever used before, it

may take you a fair amount of time to learn how to use it. We are interested here in

your estimation of the time it takes you to learn how to use a system.

3) For each of the following common Domain operations, which system do you

think is easier to learn?*

309

MOT GAT

Creating concepts () ()

Copying concepts () ()

Cloning concepts () ()

Reusing concepts () ()

Create/Edit relationships () ()

Please comment

4) Considering only the course creation tools, which system do you think is easier to

learn?*

() MOT (Goal Model tool)

() GAT (Course tool)

Please comment

5) Overall, which toolset do you think is easier to learn?*

() The MOT Toolset (Domain + Goal + LAG)

() The GAT Toolset (Domain + Pedagogical rules + Course tools)

Please comment

Considering you have already learned how to use them well, systems can differ

nevertheless in how easy it is to use them. We are interested here in your

estimation of how easy it is in your opinion to use these systems, once you have

learned them.

310

6) For each of the following common operations, which system do you think is

easier to use?*

MOT GAT

Creating concepts () ()

Copying concepts () ()

Cloning concepts () ()

Reusing concepts () ()

Create/Edit relationships () ()

Please comment

7) Considering only the course creation tools, which system do you think is easier to

use?*

() MOT (Goal Model tool)

() GAT (Course tool)

Please comment

8) Overall, which toolset do you think is easier to use?*

() The MOT Toolset (Domain + Goal + LAG)

() The GAT Toolset (Domain + Pedagogical rules + Course tools)

Please comment

Content visualization

311

9) The main difference between the display of the Domain in MOT and GAT is the

auto-arranging of concepts in MOT. Did you use this feature, or did you prefer to

arrange concepts yourself?*

() Auto arrange (as in MOT)

() Manual arrange (as in GAT)

Please comment:

10) MOT provides you with a separate tool (the Goal Map) to design the hierarchy

of your course. In GAT you design the hierarchy by using Domain relationships and

properites. Which of these hierarchy creating methods did you prefer?*

() Creating hierarchies in MOT

() Creating hierarchies in GAT

Please comment

Functionality

11) In GAT you create concepts which link to entire URIs. In MOT you create many

attributes to describe a concept. Which of these did you prefer?*

() Attributes (as in MOT)

() Linking to URIs (as in GAT)

Please comment

312

12) In GAT course adaptation is specified by using pedagogical rules to build an

entire course. In MOT, strategies are applied to entire goal maps. Which style of

adaptation authoring did you prefer?*

() Using entire strategies at a time (as in MOT)

() Using smaller 'building blocks' (as in GAT)

Please comment

Both MOT and GAT attempt to allow content (both static content and adaptation)

to be shared between users. GAT allows you to make your content private, shared

or world-writeable. Whereas in MOT all content is readable by other users, but can

only be shared by creating group accounts or sending XML and LAG files to each

other.

13) Which method of user permissions and sharing do you prefer?*

() Group accounts (or sharing LAG/XML files) in MOT

() Public/Shared/Private permissions in GAT

Please comment

Authoring flexibility

14) Imagine you had created your own domain content and you wanted to reuse

somebody else's adaptation. Would you rather...*

() Label your content in MOT, and reuse an entire adaptation strategy

() Create a Course in GAT using existing pedagogical rules

313

Please comment

15) Imagine you wanted to present content according to a particular adaptive

strategy, which has not yet been written. Would you rather...*

() Create a GAT course from existing PRTs

() Write a whole LAG file

Please comment

Overall

16) How confident are you in using the following areas...*

Very

Uncertain

Uncertain Neutral Confident

Very

Confident

MOT Domain () () () () ()

MOT Goal () () () () ()

LAG Code () () () () ()

GAT Domain () () () () ()

GAT Course () () () () ()

GAT Pedagogical

Rules (creating from

scratch)

() () () () ()

Any comments?

17) If you were given enough training in each system, which authoring system do

you believe would provide you with the greatest flexibility?*

314

() MOT

() GAT

Please explain your answer

Thank You!

Thank you for taking our survey. Your response is very important to us.

315

Appendix C: MOT4.01 Survey

Thank you for taking this questionnaire about MOT4.

Please be assured that your answers will not affect your coursework mark (your

name is required to ensure that you have submitted the questionnaire).

Name:

1) How experienced are you with traditional Web Development*

() None - I've never done Web development

() Basic - I have used WYSIWYG editors or content management systems

() Advanced - I am confident in directly writing source code for HTML/CSS

() Expert - I can do all the above, and have used server side technologies

2) Which coursework option did you choose?*

() Option 1 (using ADE and LAG files)

() Option 2 (using XSLT/XPath/XQuery to query the LAF file)

Why did you choose this option?*

__

3) Within your coursework group, which of these tasks did you personally do?*

[] Content
[] Domain/Relationships
[] Course Labelling
[] XSLT/XPath/XQuery (Option 2 only)
[] Other (please specify)

4) Approximately how many hours did you personally spend using MOT?*

316

__

Familiarity

5) Please rate the following statements:*

Strongly

Disagree
Disagree Agree

Strongly

Agree

MOT is consistent with other

applications I have used

() () () ()

The interface for editing

(adding/deleting/copying

concepts) a Domain structure was

consistent with other software I

have used

() () () ()

The interface for adding/deleting

attributes was consistent with

other software I have used

() () () ()

The interface for editing the

content of attributes was

consistent with other software I

have used

() () () ()

The interface for rearranging a

course (by dragging the tree) was

consistent with other software I

have used

() () () ()

The interface for adding labels to

a course was consistent with other

software I have used

() () () ()

Please comment. What other software have you used that is similar to this?

6) Please rate the following statements:*

Strongly

disagree
Disagree Agree

Strongly

agree

It is easy to create concepts in

MOT

() () () ()

It is easy to copy concepts in

MOT

() () () ()

It is easy to delete concepts in

MOT

() () () ()

It is easy to reuse concepts in

MOT

() () () ()

It is easy to add attributes in

MOT

() () () ()

317

It is easy to edit attributes in
MOT

() () () ()

It is easy to create

relationships in MOT

() () () ()

It is easy to delete

relationships in MOT

() () () ()

It is easy to add labels in MOT () () () ()

It is easy to delete labels in

MOT

() () () ()

Please comment

Features

7) Do you think reuse (of existing content) is sufficiently supported by MOT4.0?*

() Yes

() No

Please comment

8) Did you like the fact that you could use the same Domain for different strategies,

and the same strategy for different Domains, or would you have preferred them to

be edited together?*

() Same domain for different strategies (edited separately)

() Edit adaptation together with domain

Please comment

9) Are you familiar with the LAOS framework for specifying adaptation?*

() Very Familiar

() Familiar

318

() Slightly familiar

() Unfamiliar

10) Please rate the following statement: "My knowledge of the LAOS framework

helped me in dealing with the MOT4 system"*

() Strongly disagree
() Disagree
() Agree
() Strongly agree

Please comment

11) How difficult was it to distribute roles within your group whilst working with

MOT4.0?*

() Very Easy
() Easy
() Difficult
() Very Difficult

Please comment

Support and Functionality

Did you like the fact that MOT4.0 exports the content to XML? If you would have

preferred another format, which one would that be and why?*

13) Did you know that MOT4.0 can help you with suggesting related concepts?

Have you used this facility?*

() I used it frequently
() I used it sometimes
() I tried it once
() I didn't know about this

What other adaptive facilities would you have wanted?*

 Please rate the following statement: "The MOT4.0 toolset is coherent"*

319

() Strongly Agree
() Agree
() Disagree
() Strongly Disagree

Please comment

15) Did you feel that you had enough flexibility to label the content in an

appropriate way according to your desired strategy?*

() Yes
() No

Please explain your answer, especially what you might have missed.

Visualization

16) When editing/viewing a Domain, how often did you use the following

arrangement features?*

Never Sometimes Often Very Often

Manual (Drag&Drop) () () () ()

Automatic Rearrange () () () ()

Automatic Rearrange with

some manual (Drag&Drop)

adjustment

() () () ()

Tree Layout () () () ()

Tree Layout with some manual

(Drag&Drop) adjustment

() () () ()

Please comment:

320

17) Please rate the following statements:*

Strongly

disagree
Disagree Agree

Strongly

agree

The Domain Auto Arrange feature

provided a clear view of my final

Domain map

() () () ()

The Domain Tree View feature

provided a clear view of my final

Domain map

() () () ()

The Course feature provided a clear

view of the structure of my course.

() () () ()

Please comment:

Support and Documentation

18) What did you think to the number of tooltips?*

() Too many
() Enough
() Not enough

19) The information contained in the tooltips was:*

() Very Unhelpful
() Unhelpful
() Helpful
() Very Helpful

20) The documentation (http://ade.dcs.warwick.ac.uk/ADE-LAG4/) was:*

() Very Unhelpful
() Unhelpful
() Helpful
() Very Helpful

321

21) How often did you refer to the documentation

(http://ade.dcs.warwick.ac.uk/ADE-LAG4/)?*

() Frequently (every time I used MOT)
() Often (when I needed to learn something new)
() Occassionally (if I needed to check something)
() Never (I understood how to use the system immediately)

Please comment

Usability

22) Please rate the following statements about MOT (please ignore factors such as

LAG code, or XSLT/XQuery).*

Strongly

disagree
Disagree Neutral Agree

Strongly

agree

I think that I would like

to use this system

frequently

() () () () ()

I found the system

unnecessarily complex

() () () () ()

I thought the system

was easy to use

() () () () ()

I think that I would

need the support of a

technical person to be

able to use this system

() () () () ()

I found the various

functions in this system

were well integrated

() () () () ()

I thought there was too

much inconsistency in

this system

() () () () ()

I would imagine that

most people would

learn to use this system

very quickly

() () () () ()

I found the system very

cumbersome to use

() () () () ()

I felt very confident

using the system

() () () () ()

322

I needed to learn a lot
of things before I could

get going with this

system

() () () () ()

23) If you'd be interested in providing further feedback via a Skype conversation,

please write your email address here...

__

Please use this space to write any other comments about the system

Thank You!

Thank you for taking our survey. Your response is very important to us.

323

References

[1] P. Brusilovsky and W. Nejdl, “Adaptive hypermedia and adaptive web,” in

Practical Handbook of Internet Computing, M. P. Singh, Ed. CRC Press, 2003.

[2] P. Brusilovsky, S. Sosnovsky, and M. Yudelson, “Adaptive hypermedia

Services for E-learning,” in Workshop of Adaptive Hypermedia Techniques to

Service Oriented Environment at Adaptive Hypermedia Conference, AH

2004, Eindhoven, The Netherlands, 23-26 Aug 2004, pp. 470–479.

[3] A. I. Cristea, D. Smits, and P. De Bra, “Towards a generic adaptive

hypermedia platform: a conversion case study,” Journal of Digital

Information, vol. 8, no. 3, 2007.

[4] P. De Bra, D. Smits, K. Sluijs, A. Cristea, J. Foss, C. Glahn, and C. M. Steiner,

“GRAPPLE: Learning Management Systems Meet Adaptive Learning

Environments,” in Intelligent and Adaptive Educational-Learning Systems,

vol. 17, A. Peña-Ayala, Ed. Springer Berlin Heidelberg, 2013, pp. 133–160.

[5] B. W. Boehm, “A spiral model of software development and enhancement,”

Computer, vol. 21, no. 5, pp. 61–72, May 1988.

[6] M. J. Norušis and SPSS Inc., SPSS professional statistics 6.1. Prentice Hall,

1994.

[7] A. Field, Discovering Statistics Using SPSS (Introducing Statistical Methods

series). Sage Publications Ltd, 2009.

324

[8] A. Field and G. J. Hole, How to Design and Report Experiments. Sage

Publications Ltd, 2003.

[9] R. Likert, “A Technique for the Measurement of Attitudes,” Archives of

Psychology, vol. 22, no. 140, pp. 1–55, 1932.

[10] J. Robertson, “Likert-type scales, statistical methods, and effect sizes,”

Communications of the ACM, vol. 55, no. 5, pp. 6–7, May 2012.

[11] P. Cairns and A. L. Cox, “Using statistics in usability research,” in Research

Methods for Human-Computer Interaction, P. Cairns and A. L. Cox, Eds.

Cambridge University Press, 2008, pp. 112–137.

[12] P. Brusilovsky, “Methods and techniques of adaptive hypermedia,” User

Modeling and User-Adapted Interaction, vol. 6, no. 2–3, pp. 87–129, Jul

1996.

[13] P. Brusilovsky, “Adaptive Hypermedia,” User Modeling and User-Adapted

Interaction, vol. 11, no. 1–2, pp. 87–110, 2001.

[14] P. Brusilovsky, “Developing adaptive educational hypermedia systems: From

design models to authoring tools,” in Authoring Tools for Advanced

Technology Learning Environment, T. Murray, S. Blessing, and S. Ainsworth,

Eds. Dordrecht: Kluwer Academic Publishers, 2003, pp. 377–409.

[15] P. De Bra, L. Aroyo, and A. Cristea, “Adaptive Web-based Educational

Hypermedia,” in Web dynamics adaptive to change in content size topology

325

and use, M. Levene and A. Poulovassilis, Eds. Springer Verlag, 2004, pp. 387–

410.

[16] P. De Bra, “Adaptive educational hypermedia on the web,” Communications

of the ACM, vol. 45, no. 5, pp. 60–61, May 2002.

[17] N. V. Stash, A. I. Cristea, and P. De Bra, “Authoring of Learning Styles in

Adaptive Hypermedia: Problems and Solutions,” in Proceedings of the 13th

International World Wide Web conference on Alternate track papers &

posters - WWW Alt. ’04, New York, NY, USA, 17-22 May 2004, pp. 114–123.

[18] P. Paredes and P. Rodriguez, “A Mixed Approach to Modelling Learning

Styles in Adaptive Educational Hypermedia,” Advanced Technology for

Learning, vol. 1, no. 4, pp. 210–215, 2004.

[19] N. Stash, A. Cristea, and P. De Bra, “Learning Styles Adaptation Language for

Adaptive Hypermedia,” in Proceedings of the Adaptive Hypermedia (AH)

2006 conference, Dublin, Ireland, 2006, 21-23 Jun 2006, pp. 323–327.

[20] E. Knutov, P. De Bra, and M. Pechenizkiy, “AH 12 years later: a

comprehensive survey of adaptive hypermedia methods and techniques,”

New Review of Hypermedia and Multimedia, vol. 15, no. 1, pp. 5–38, Apr

2009.

[21] P. Brusilovsky and L. Pesin, “Visual annotation of links in adaptive

hypermedia,” in CHI ’95 Conference Companion on Human Factors in

Computing Systems, New York, New York, USA, 7–11 May 1995, pp. 222–

223.

326

[22] P. De Bra, P. Brusilovsky, and G.-J. Houben, “Adaptive hypermedia: from

systems to framework,” ACM Computing Surveys, vol. 31, no. 4es, p. 12–es,

Dec 1999.

[23] P. De Bra and J.-P. Ruiter, “AHA! Adaptive Hypermedia for All,” in

Proceedings of WebNet 2001 – World Conference on the WWW and the

Internet, Orlando, FL, USA, 23-27 Oct 2001, pp. 262–268.

[24] G. Weber and P. Brusilovsky, “ELM-ART: An Adaptive Versatile System for

Web-based Instruction,” International Journal of Artificial Intelligence in

Education (IJAIED), vol. 12, pp. 351–384, 2001.

[25] P. De Bra and N. Stash, “AHA ! Adaptive Hypermedia for All,” in Proceedings

Of The System Administration and Network Engineering (SANE) 2002

Conference, Maastricht, The Netherlands, 27-31 May 2002, pp. 411–412.

[26] D. Smits and P. De Bra, “GALE : A Highly Extensible Adaptive Hypermedia

Engine,” in Proceedings of The 22nd ACM Conference on Hypertext and

Hypermedia (Hypertext 2011), Eindhoven, The Netherlands, 6-9 Jun 2011,

pp. 63–72.

[27] J. Eklund and P. Brusilovsky, “InterBook: An Adaptive Tutoring System,”

UniServe Science News, vol. 12, no. 3, pp. 8–13, 1999.

[28] P. De Bra, T. Santic, and P. Brusilovsky, “AHA! meets Interbook, and more...,”

in Proceedings of World Conference on E-Learning (E-Learn), Phoenix,

Arizona, USA, 7-11 Nov 2003, pp. 57–64.

327

[29] H. Wu, G. Houben, and P. De Bra, “Aham: A reference model to support

adaptive hypermedia authoring,” in Proceedings of the Conference on

Information Science, Antwerp, Belgium, 12-16 Jul 1998, pp. 77–88.

[30] P. De Bra, G. Houben, and H. Wu, “AHAM: a Dexter-based reference model

for adaptive hypermedia,” Proceedings of the ACM Conference on Hypertext

and Hypermedia (Hypertext), 21-25 Feb, 1999, Darmstadt, Germany. pp.

147–156, 1999.

[31] F. Halasz and M. Schwartz, “The Dexter hypertext reference model,”

Communications of the ACM, vol. 37, no. 2, pp. 30–39, Feb 1994.

[32] P. De Bra, A. Aerts, D. Smits, and N. Stash, “AHA! meets AHAM,” in Second

International Conference on Adaptive Hypermedia and Adaptive Web-Based

Systems (AH 2002), Málaga, Spain, 29-31 May 2002, pp. 381–384.

[33] P. Vrieze, P. Bommel, and T. Weide, “A Generic Adaptivity Model in Adaptive

Hypermedia,” in Adaptive Hypermedia and Adaptive Web-Based Systems, P.

De Bra and W. Nejdl, Eds. Springer Berlin Heidelberg, 2004, pp. 344–347.

[34] N. Koch and M. Wirsing, “The Munich reference model for adaptive

hypermedia applications,” in Second International Conference on Adaptive

Hypermedia and Adaptive Web-Based Systems (AH 2002), Málaga, Spain,

29-31 May 2002, pp. 213–222.

[35] A. I. Cristea and A. De Mooij, “LAOS: Layered WWW AHS Authoring Model

and their corresponding Algebraic Operators,” in The Twelfth International

328

World Wide Web Conference (WWW’03), Budapest, Hungary, 20–24 May

2003.

[36] A. Cristea and K. Kinshuk, “Considerations on LAOS, LAG and their

Integration in MOT,” in Proceedings of World Conference on Educational

Multimedia, Hypermedia and Telecommunications (EdMedia), Honolulu,

Hawaii, 23–28 Jun 2003, pp. 511–518.

[37] M. Hendrix, P. De Bra, M. Pechenizkiy, D. Smits, and A. Cristea, “Defining

Adaptation in a Generic Multi Layer Model: CAM: The GRAPPLE Conceptual

Adaptation Model,” Times of Convergence Technologies Across Learning

Contexts, vol. 5192, pp. 132–143, 2008.

[38] GRAPPLE, “Welcome to the GRAPPLE project Website,” 2012. [Online].

Available: http://www.grapple-project.org/. [Accessed: 23-Sep-2012].

[39] Microsoft, “Microsoft Word 2010 - Get started with Word 2010,” 2012.

[Online]. Available: http://office.microsoft.com/en-gb/word. [Accessed: 22-

Sep-2012].

[40] P. De Bra, N. Stash, and B. De Lange, “AHA! Adding adaptive behavior to

websites,” in Proceedings of the NLUUG Conference, Ede, The Netherlands,

22 May 2003.

[41] P. De Bra and N. Stash, “Multimedia adaptation using AHA!,” in Proceedings

of World Conference on Educational Multimedia, Hypermedia and

Telecommunications (EdMedia), Lugano, Switzerland, 21-26 Jun 2004, pp.

563–570.

329

[42] P. De Bra, D. Smits, K. Van Der Sluijs, A. I. Cristea, and M. Hendrix, “GRAPPLE:

Personalization and Adaptation in Learning Management Systems,” in

Proceedings of World Conference on Educational Multimedia, Hypermedia

and Telecommunications (EdMedia), Toronto, Canada, 28 Jun-2 Jul 2010, pp.

3029–3038.

[43] M. Hendrix, A. I. Cristea, and C. Stewart, “Adaptation languages for learning:

the CAM meta-model,” in Ninth IEEE International Conference on Advanced

Learning Technologies (ICALT 2009), Riga, Latvia, 15-17 Jul 2009, pp. 104–

106.

[44] A. Mazzetti, K. van der Sluijs, and M. Dicerto, “Data models and related

documentation-final version,” 2010. [Online]. Available:

http://wwwis.win.tue.nl/grapple/public-files/deliverables/GRAPPLE-D7.2c-

Data models-v1.0.pdf. [Accessed: 23-Sep-2012].

[45] D. Albert, A. Nussbaumer, C. M. Steiner, M. Hendrix, and A. I. Cristea,

“Design and development of an authoring tool for pedagogical relationship

types between concepts,” in Proceedings of the 17th International

Conference on Computers in Education (ICCE 2009), Hong Kong, 30 Nov-4

Dec 2009.

[46] M. Hendrix, “Supporting Authoring of Adaptive Hypermedia,” PhD Thesis,

Department of Computer Science, University of Warwick, 2010.

330

[47] A. I. Cristea and A. de Mooij, “Adaptive course authoring: My Online

Teacher,” in 10th International Conference on Telecommunications (ICT-

2003), Papeete, French Polynesia, 23-28 Feb 2003, pp. 1762–1769.

[48] N. Stash and P. De Bra, “Building Adaptive Presentations with AHA! 2.0,” in

Proceedings of the PEG Conference, Saint Petersburg, Russia, 28 Jun-1 Jul

2003.

[49] A. Cristea, “Adaptive Course Creation for All,” in International Conference on

Information Technology: Coding and Computing (ITCC’04), Las Vegas,

Nevada, 5-7 Apr 2004, pp. 718–722.

[50] J. Scotton and A. I. Cristea, “Reusing Adaptation Strategies in Adaptive

Educational Hypermedia Systems,” in 10th IEEE International Conference on

Advanced Learning Technologies (ICALT 2010), Sousse, Tunisia, 5-7 Jul 2010,

pp. 528–532.

[51] O. Conlan, V. Wade, C. Bruen, and M. Gargan, “Multi-model, metadata

driven approach to adaptive hypermedia services for personalized

elearning,” in Second International Conference on Adaptive Hypermedia and

Adaptive Web-Based Systems (AH’02), Málaga, Spain, 29-31 May 2002, pp.

100–111.

[52] J. A. Muzio, T. Heins, and R. Mundell, “Experiences with reusable E-learning

objects,” The Internet and Higher Education, vol. 5, no. 1, pp. 21–34, Jan

2002.

331

[53] A. I. Cristea, D. Smits, J. Bevan, and M. Hendrix, “LAG 2.0: Refining a reusable

Adaptation Language and Improving on its Authoring,” in 4th European

Conference on Technology Enhanced Learning (ECTEL’09), Nice, France, 29

Sep-2 Oct 2009, pp. 7–21.

[54] A. Cristea, C. Stewart, T. Brailsford, and P. Cristea, “Evaluation of

Interoperability of Adaptive Hypermedia Systems: testing the MOT to

WHURLE conversion in a classroom setting,” in International Workshop on

Authoring of Adaptive Adaptable Educational Hypermedia (A3EH 2005),

Amsterdam, The Netherlands, 19 Jul 2005.

[55] C. Stewart, A. I. Cristea, T. Brailsford, and H. Ashman, “‘Authoring Once,

Delivering Many’: Creating Reusable Adaptive Courseware,” in 4th IASTED

International Conference on WebBased Education, Grindelwald,

Switzerland, 21-23 Feb 2005, pp. 21–23.

[56] A. I. Cristea, D. Smits, and P. De Bra, “Writing MOT, Reading AHA! -

converting between an authoring and a delivery system for adaptive

educational hypermedia,” in International Workshop on Authoring of

Adaptive Adaptable Educational Hypermedia (A3EH 2005), Amsterdam, The

Netherlands, 19 Jul 2005, pp. 36–45.

[57] F. Ghali, A. Cristea, and C. Stewart, “My Online Teacher 2.0,” in 3rd

European Conference on Technology Enhanced Learning (EC-TEL 2008),

IGACLE workshop, Maastricht, The Netherlands, 16 Sep 2008.

332

[58] F. Ghali, “Social Personalized E-Learning Framework,” PhD Thesis,

Department of Computer Science, University of Warwick, 2010.

[59] F. Ghali and A. I. Cristea, “Social Reference Model for Adaptive Web

Learning,” in Advances in Web Based Learning (ICWL), Aachen, Germany, 19-

21 Aug 2009, pp. 162–171.

[60] F. Ghali and A. I. Cristea, “Evaluation of Interoperability between MOT and

Regular Learning Management Systems,” in Third European Conference on

Technology Enhanced Learning (EC-TEL 2008), Maastricht, The Netherlands,

16-19 Sep 2008, pp. 104–109.

[61] A. Cristea and M. Verschoor, “The LAG grammar for authoring the adaptive

web,” in International Conference on Information Technology: Coding and

Computing (ITCC’04), Las Vegas, Nevada, Apr 2004, vol. 1, pp. 382–386.

[62] A. I. Cristea and M. Hendrix, “LAG Strategies,” 2010. [Online]. Available:

http://prolearn.dcs.warwick.ac.uk/strategies.html. [Accessed: 20-Sep-2012].

[63] J. Scotton, S. Moebs, J. McManis, and A. Cristea, “Merging strategies for

authoring QoE-based adaptive hypermedia,” Journal of Universal Computer

Science, vol. 16, no. 19, pp. 2576–2779, 2010.

[64] M. Larranaga, I. Niebla, U. Rueda, A. Arruarte, and J. A. Elorriaga, “Towards

Collaborative Domain Module Authoring,” in Seventh IEEE International

Conference on Advanced Learning Technologies (ICALT 2007), Niigata,

Japan, 18-20 Jul 2007, pp. 814–818.

333

[65] M. Dougiamas and P. Taylor, “Moodle: Using Learning Communities to

Create an Open Source Course Management System,” in Proceedings of

World Conference on Educational Multimedia, Hypermedia and

Telecommunications (ED-MEDIA), Honolulu, Hawaii, 23-28 Jun 2003, pp.

171–178.

[66] J. Farmer and I. Dolphin, “Sakai: eLearning and more,” EUNIS: Leadership

and Strategy in a Cyber-Infrastructure World, 2005. [Online]. Available:

http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/IMM/S050622F.pdf

. [Accessed: 04-Mar-2013].

[67] T. Lewin, “Universities reshaping education on the web,” The New York

Times. Retrieved from, 2012. [Online]. Available:

http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/GENPRESS/N12071

7L.pdf. [Accessed: 26-Sep-2012].

[68] M. Freire and P. Rodriguez, “Comparing graphs and trees for adaptive

hypermedia authoring,” in Third International Workshop on Authoring of

Adaptive and Adaptable Educational Hypermedia (A3EH) at the 12th

International Conference on Artificial Intelligence in Education (AIED),

Amsterdam, The Netherlands, 18 Jul 2005.

[69] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K.

Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai,

“Scratch: programming for all,” Communications of the ACM, vol. 52, no. 11,

pp. 60–67, Nov 2009.

334

[70] D. Wolber, “App inventor and real-world motivation,” in Proceedings of the

42nd ACM Technical Symposium on Computer Science Education (SIGCSE),

Dallas, TX, USA, 9-11 Mar 2011, pp. 601–606.

[71] Microsoft, “on{X} - automate your life,” 2012. [Online]. Available:

http://www.onx.ms. [Accessed: 25-Sep-2012].

[72] H. Ossher and P. Tarr, “Multi-Dimensional Separation of Concerns and the

Hyperspace Approach,” in Software Architectures and Component

Technology, M. Akşit, Ed. Springer US, 2002, pp. 293–323.

[73] M. Pohja, M. Honkala, and P. Vuorimaa, “An XHTML 2.0 Implementation,”

Web Engineering, vol. 3140, pp. 402–415, 2004.

[74] P. De Bra and L. Calvi, “AHA! a generic Adaptive Hypermedia System,” in

Proceedings of the 2nd Workshop on Adaptive Hypertext and Hypermedia at

Hypertext’98, Pittsburgh, PA, USA, 20 Jun 1998, pp. 5–12.

[75] A. I. Cristea, F. Ghali, and M. Joy, “Social, personalized lifelong learning,” in

E-Infrastructures and Technologies for Lifelong Learning: Next Generation

Environments, G. Magoulas, Ed. Hershey, PA: IGI Global, 2011, pp. 90–125.

[76] N. Baloian, J. Pino, and O. Motelet, “Collaborative Authoring, Use, and Reuse

of Learning Material in a Computer-Integrated Classroom,” in Groupware:

Design, Implementation, and Use, vol. 2806, J. Favela and D. Decouchant,

Eds. Springer Berlin Heidelberg, 2003, pp. 199–207.

335

[77] J. Nielsen, “The usability engineering life cycle,” Computer, vol. 25, no. 3, pp.

12–22, Mar 1992.

[78] M. Hendrix and A. I. Cristea, “A Qualitative and Quantitative Evaluation of

Adaptive Authoring of Adaptive Hypermedia,” in Second European

Conference on Technology Enhanced Learning (EC-TEL 2007), Crete, Greece,

17-20 Sep 2007, pp. 71–85.

[79] M. Soegaard, “Affordances,” 2010. [Online]. Available:

http://www.interaction-design.org/encyclopedia/affordances.html.

[Accessed: 04-Mar-2013].

[80] M. Hendrix, A. Cristea, and W. Nejdl, “Authoring adaptive educational

hypermedia on the semantic desktop,” International Journal of Learning

Technology, Special Issue on Authoring of Adaptive and Adaptable

Hypermedia, vol. 3, no. 3, p. 230, 2007.

[81] J. S. Zepeda and S. V Chapa, “From Desktop Applications Towards Ajax Web

Applications,” in 4th International Conference on Electrical and Electronics

Engineering. (ICEEE 2007), Mexico City, Mexico, 5–7 Sep 2007, pp. 7–10.

[82] J. J. Garret, “Ajax: A New Approach to Web Applications,” 2005. [Online].

Available: http://www.adaptivepath.com/ideas/ajax-new-approach-web-

applications. [Accessed: 04-Mar-2013].

[83] B.-M. Yu and S.-Z. Roh, “The effects of menu design on information-seeking

performance and user’s attitude on the World Wide Web,” Journal of the

336

American Society for Information Science and Technology, vol. 53, no. 11,

pp. 923–933, 2002.

[84] S.-M. Huang, K.-K. Shieh, and C.-F. Chi, “Factors affecting the design of

computer icons,” International Journal of Industrial Ergonomics, vol. 29, no.

4, pp. 211–218, Apr 2002.

[85] F. Ghali and A. I. Cristea, “MOT 2.0: A Case Study on the Usefuleness of

Social Modeling for Personalized E- Learning Systems,” in 14th International

Conference on Artificial Intelligence in Education (AIED 2009), Brighton, UK,

6-10 Jul 2008, vol. 200, pp. 333–340.

[86] T. Berners-Lee, R. Fielding, and H. Frystyk, “HyperText Transfer Protocol,”

1996. [Online]. Available: http://www.w3.org/History/19921103-

hypertext/hypertext/WWW/Protocols/HTTP.html. [Accessed: 22-Sep-2012].

[87] F. Ghali and A. I. Cristea, “Interoperability between MOT and learning

management systems: converting CAF to IMS QTI and IMS CP,” in Fifth

International Conference on Adaptive Hypermedia and Adaptive Web-Based

Systems (AH’08), Hannover, Germany, 29 Jul-1 Aug 2008, pp. 296–299.

[88] J. Brooke, “SUS-A quick and dirty usability scale,” in Usability evaluation in

industry, P. W. Jordan, B. Thomas, I. L. McClelland, and B. Weerdmeester,

Eds. Taylor & Francis, 1996, pp. 189–194.

[89] M. Hendrix and A. I. Cristea, “A spiral model for adding automatic, adaptive

authoring to adaptive hypermedia,” Journal Of Universal Computer Science,

337

Special Issue on Authoring of Adaptive and Adaptable Hypermedia, vol. 14,

no. 17, pp. 2799–2818, 2008.

[90] P.-A. Chirita, S. Costache, W. Nejdl, and R. Paiu, “Beagle++ : Semantically

Enhanced Searching and Ranking on the Desktop,” in 3rd European Semantic

Web Conference (ESWC), Budva, Montenegro, 11-14 Jun 2006, pp. 348–362.

[91] W3C, “W3C RDF/XML Syntax Specification (Revised),” 2004. [Online].

Available: http://www.w3.org/TR/REC-rdf-syntax. [Accessed: 26-Sep-2012].

[92] “Microsoft PowerPoint 2010 - Buy, try and explore.” [Online]. Available:

http://office.microsoft.com/en-gb/powerpoint/. [Accessed: 22-Sep-2012].

[93] “Apache OpenOffice - The Free and Open Productivity Suite.” [Online].

Available: http://www.openoffice.org/. [Accessed: 22-Sep-2012].

[94] “LaTeX – A document preparation system.” [Online]. Available: http://latex-

project.org/. [Accessed: 22-Sep-2012].

[95] “Wikipedia.” [Online]. Available: http://www.wikipedia.org/. [Accessed: 22-

Sep-2012].

[96] “MediaWiki.” [Online]. Available:

http://www.mediawiki.org/wiki/MediaWiki. [Accessed: 22-Sep-2012].

[97] “Extension:WikiEditor - MediaWiki.” [Online]. Available:

http://www.mediawiki.org/wiki/Extension:WikiEditor. [Accessed: 22-Sep-

2012].

338

[98] D. Raggett, A. Le Hors, I. Jacobs, and others, “HTML 4.01 Specification,” W3C

Recommendation, 24 Dec 1999. [Online]. Available:

http://www.w3.org/TR/html4/. [Accessed: 06-Mar-2013].

[99] Adobe, “PDF Reference and Adobe Extensions to the PDF Specification.”

[Online]. Available: http://www.adobe.com/devnet/pdf/pdf_reference.html.

[Accessed: 06-Mar-2013].

[100] E. Ramp, P. De Bra, and P. Brusilovsky, “Authoring and Delivery of Adaptive

Electronic Textbooks made Easy,” in Proceedings of World Conference on E-

Learning in Corporate, Government, Healthcare, and Higher Education (E-

Learn), Vancouver, British Columbia, Canada, 24-28 Oct 2005, pp. 142–149.

[101] E. Brown, A. Cristea, C. Stewart, and T. Brailsford, “Patterns in authoring of

adaptive educational hypermedia: a taxonomy of learning styles,”

Educational Technology & Society, vol. 8, no. 3, pp. 77–90, 2005.

[102] “OWL - Semantic Web Standards,” 2012. [Online]. Available:

http://www.w3.org/2001/sw/wiki/OWL. [Accessed: 22-Sep-2012].

[103] P. Winston and B. Horn, Lisp. Reading, MA: Addison Wesley, 1986.

[104] G. Rößling and A. Kothe, “Extending moodle to better support computing

education,” in Proceedings of the 14th annual ACM SIGCSE conference on

Innovation and technology in computer science education (ITiCSE’09), New

York, New York, USA, 6 Jul 2009, vol. 41, no. 3, pp. 146–150.

339

[105] M. Grabe and K. Christopherson, “Optional student use of online lecture

resources: resource preferences, performance and lecture attendance,”

Journal of Computer Assisted Learning, vol. 24, no. 1, pp. 1–10, Feb 2007.

[106] Wikipedia, “PHP,” 2012. [Online]. Available:

http://en.wikipedia.org/wiki/PHP. [Accessed: 24-Sep-2012].

[107] B. Luyt, T. C. H. Aaron, L. H. Thian, and C. K. Hong, “Improving Wikipedia’s

accuracy: Is edit age a solution?,” Journal of the American Society for

Information Science and Technology, vol. 59, no. 2, pp. 318–330, Jan 2008.

[108] J. Giles, “Internet encyclopaedias go head to head,” Nature, vol. 438, no.

7070, pp. 900–1, Dec 2005.

[109] MediaWiki, “API:Main page.” [Online]. Available:

http://www.mediawiki.org/wiki/API. [Accessed: 22-Sep-2012].

[110] Wikipedia, “Help:Category,” 2012. [Online]. Available:

http://en.wikipedia.org/wiki/Help:Category. [Accessed: 22-Sep-2012].

[111] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation

Ranking: Bringing Order to the Web.,” Stanford InfoLab, 1999.

[112] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’

networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[113] S. Dolan, “Six degrees of Wikipedia,” 2008. [Online]. Available:

http://mu.netsoc.ie/wiki/. [Accessed: 22-Sep-2012].

340

[114] Moodle, “Import PowerPoint - MoodleDocs,” 2012. [Online]. Available:

http://docs.moodle.org/22/en/Import_PowerPoint. [Accessed: 22-Sep-

2012].

[115] K. van Deemter and R. Power, “Authoring multimedia documents using

WYSIWYM editing,” in Proceedings of the 18th Conference on

Computational Linguistics (COLING’00), Morristown, NJ, USA, 31 Jul-4 Aug

2000, vol. 1, pp. 222–228.

[116] TeX Users Group, “TeX4ht,” 2012. [Online]. Available:

http://tug.org/tex4ht/. [Accessed: 22-Sep-2012].

[117] T. Mikkonen and A. Taivalsaari, “Web Applications: Spaghetti code for the

21st century,” in Sixth International Conference on Software Engineering

Research, Management and Applications (SERA’08), Prague, Czech Republic,

20-22 Aug 2008, pp. 319–328.

[118] M. Kruk, “PDFTOHTML conversion program,” 2011. [Online]. Available:

http://pdftohtml.sourceforge.net/. [Accessed: 22-Sep-2012].

[119] A. Cristea and L. Calvi, “The Three Layers of Adaptation Granularity,” in 9th

International Conference on User Modeling (UM’03), Johnstown, PA, USA,

22-26 Jun 2003, pp. 4–14.

[120] G. D. Ruxton, “The unequal variance t-test is an underused alternative to

Student’s t-test and the Mann-Whitney U test,” Behavioral Ecology, vol. 17,

no. 4, pp. 688–690, Apr 2006.

341

[121] J. Cohen, “A power primer,” Psychological bulletin, vol. 112, no. 1, pp. 155–

159, 1992.

[122] R. M. Felder and B. A. Solomon, “Index of learning styles,” 2010. [Online].

Available:

http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSpage.html.

[Accessed: 22-Sep-2012].

[123] YouTube, “YouTube On Your Site,” 2012. [Online]. Available:

http://www.youtube.com/youtubeonyoursite. [Accessed: 20-Sep-2012].

[124] A. Mesbah and A. Van Deursen, “Invariant-Based Automatic Testing of AJAX

User Interfaces,” in Proceedings of the 31st International Conference on

Software Engineering (ICSE’09), Vancouver, BC, Canada, 16-24 May 2009,

pp. 210–220.

[125] E. Folmer, M. van Welie, and J. Bosch, “Bridging patterns: An approach to

bridge gaps between SE and HCI,” Information and Software Technology,

vol. 48, no. 2, pp. 69–89, 2006.

[126] J. Tennison, “Hash URIs,” W3C Blog, 12 May 2011. [Online]. Available:

http://www.w3.org/QA/2011/05/hash_uris.html. [Accessed: 22-Sep-2012].

[127] A. Aizawa, “An information-theoretic perspective of tf–idf measures,”

Information Processing & Management, vol. 39, no. 1, pp. 45–65, 2003.

[128] I. Nassi and B. Shneiderman, “Flowchart techniques for structured

programming,” ACM SIGPLAN Notices, vol. 8, no. 8, pp. 12–26, Aug 1973.

342

[129] GRAPPLE, “Summary,” 2011. [Online]. Available: http://www.grapple-

project.org/summary. [Accessed: 23-Sep-2012].

[130] E. L. M. Ploum, “Authoring of Adaptation in the GRAPPLE Project,”

Technische Universiteit Eindhoven, 2009.

[131] GRAPPLE, “GRAPPLE Tutorial.” [Online]. Available:

http://gale.win.tue.nl:10080/gale/concept/gale://gale.tue.nl/course/grappl

e/GALE. [Accessed: 23-Sep-2012].

[132] A. Nussbaumer, “Final Implementation of the Concept Relationship Type

Tool,” 30 Dec 2010. [Online]. Available:

http://wwwis.win.tue.nl/grapple/public-files/deliverables/D3.2c-WP3-

CRTToolFinal-v1.0.pdf. [Accessed: 23-Sep-2012].

[133] F. Abel, D. Heckmann, E. Herder, and D. H. Fabian Abel, “Mashing up user

data in the Grapple User Modeling Framework,” in Workshop on Adaptivity

and User Modeling in Interactive Systems (ABIS’09), 21-23 Aug 2009, pp. 1–

2.

[134] Microsoft, “Access Database Software and Applications,” 2012. [Online].

Available: http://office.microsoft.com/en-gb/access/. [Accessed: 24-Sep-

2012].

[135] G. J. Wills, “Selection: 524,288 ways to say ‘this is interesting’,” in

Proceedings IEEE Symposium on Information Visualization (INFOVIS’96), San

Francisco, CA, USA, 28 Oct 1996, pp. 54–60, 120.

343

[136] M. Pazzani and D. Billsus, “Content-Based Recommendation Systems,” in

The Adaptive Web, P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds. Springer

Berlin Heidelberg, 2007, pp. 325–341.

[137] L. Oneto, F. Abel, E. Herder, and D. Smits, “Making today’s Learning

Management Systems adaptive,” in Learning Management Systems meet

Adaptive Learning Environments, Workshop at European Conference on

Technology Enhanced Learning (EC-TEL), Nice, France, 29 Sep-2 Oct 2009.

[138] J. Khan, A. Cristea, and C. Stewart, “Adaptive Authoring of Adaptive

Hypermedia Towards, Role-based, Adaptive Authoring,” in Computers and

Advanced Technology in Education (CATE), Cambridge, UK, 11-13 Jul 2011.

[139] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-directed

placement,” Software: Practice and Experience, vol. 21, no. 11, pp. 1129–

1164, 1991.

[140] F. Ghali, M. Sharp, and A. Cristea, “Folksonomies and Ontologies in

Authoring of Adaptive Hypermedia,” in 6th International Workshop on

Authoring of Adaptive and Adaptable Hypermedia Workshop (A3H) at 5th

Int. Conf. on Adaptive Hypermedia and Adaptive Web-Based Systems

(AH’08), Hannover, Germany, 29 Jul-1 Aug 2008.

[141] J. Sauro, “Measuring Usability with the System Usability Scale (SUS),”

Measuring Usability, 2 Feb 2011. [Online]. Available:

https://www.measuringusability.com/sus.php. [Accessed: 25-Sep-2012].

344

[142] Sören Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,

“DBpedia: A Nucleus for a Web of Open Data,” in 6th International Semantic

Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC

2007, Busan, Korea, 11-15 Nov 2007, vol. 4825, pp. 722–735.

[143] Coursera, “Coursera,” 2013. [Online]. Available: https://www.coursera.org/.

[Accessed: 16-Feb-2013].

[144] M. Parry, “Leading British Universities Join New MOOC Venture - Wired

Campus - The Chronicle of Higher Education,” 13 Dec 2012. [Online].

Available: http://chronicle.com/blogs/wiredcampus/leading-british-

universities-join-new-mooc-venture/41211. [Accessed: 16-Feb-2013].

[145] J. Mackness, S. Mak, and R. Williams, “The ideals and reality of participating

in a MOOC,” in Proceedings of the Seventh International Networked

Learning Conference, Aalborg, Denmark, 3–4 May 2010.

	covercristea.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

