Quantum Computer Control using Novel, Hybrid Semiconductor-Superconductor Electronics
Abstract
Inspired by recent interest in quantum computing and recent studies of cryo CMOS for control electronics, this paper presents a hybrid semiconductor-superconductor approach for engineering scalable computing systems that operate across the gradient between room temperature and the temperature of a cryogenic payload. Such a hybrid computer architecture would have unique suitability to quantum computers, scalable sensors, and the quantum internet. The approach is enabled by Cryogenic Adiabatic Transistor Circuits (CATCs), a novel way of using adiabatic circuits to substantially reduce cooling requirements. In a hybrid chip of CATCs and a second technology, such as Josephson junctions (JJs) or cryo CMOS, the CATCs complement the speed, power, and density of the second technology as well as becoming a longsought cryogenic memory. This paper describes higher-level design principles for CATC hybrids with a quantum computer control system that includes CATC memory, an FPGA-like logic module that uses CATC for dense configuration logic and JJs for fast configured logic, and I/O subsystems including microwave modulators and low frequency control signals.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2019
- DOI:
- arXiv:
- arXiv:1912.11532
- Bibcode:
- 2019arXiv191211532D
- Keywords:
-
- Quantum Physics;
- Computer Science - Emerging Technologies