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Preface

These notes cover the material for the graduate courselatbeime title that | taught at the Univer-
sity of Texas at Austin during the Spring 2005 semester. Thaw heavily onThe Distribution of
Prime Number®y M. Huxley andMultiplicative Number Theorppy H. Davenport (as revised by

H. L. Montgomery). | also acknowledge the use of notes lfiy\Jaler and numerous discussions
with him that helped improve the exposition.



Notation

For functionsf andg with g > 0, we write f(x) = O(g(x)) or f(X) <« g(x) when there is a constant

csuch thatf(x)| < cg(x); whenf andg are both non-negative, we may also write> g instead of

g < f. Wewritef(x) ~ g(x) when limf(x)/g(x) = 1 asxtends to some limitto be specified at each
occurrence. We usg C, C, Cy, . . . to denote implicit constants; these and the constants &t ply

O- and<-symbols are presumed absolute, unless stated otherwiseughout these notes (and
much of number theory outside them) the legemwith or without subscripts or superscripts, is
reserved for prime numbers. We also gse o + it to denote a complex variable.

For the most part, we use the standard notations for commmibartheoretic functions. These
are usually defined at their first appearance, but for coevesi we also list them here:
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&2
Logz
d(n)
¢(n)
u(n)
A(N)
n(X)
n(x g, a)
6(x)
w(X)
w(X; g, a)
(X x)
7(x, a)
N(o, T)

the distance from the real numbgto the nearest integer;

the integral part of the real number

the fractional part of the real number

eeriz;

the principal branch of the complex logarithm (Log In x whenx > 0);
the number of positive divisors of

Euler’s totient function: the number of reduced residsssés modulo;
the Mobius function (see (1.1));

von Mangoldt’s function (see (1.3));

the number of primep < X;

the number of primep < x, with p = a (modq);

Chebyshev’s function (see (1.4));

the sum of the values a@f(n) overn < x;

the sum of the values @f(n) overn < x, with n = a (modq);

the sum of the values & (n)y(n) overn < x (see (3.50));

the Gaussian sum (see (3.7));

the number of zerogs =B+ iy of Z(s)with o < <1 andly| < T;
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Chapter O

Historical background

0.1 Early history

The first result on the distribution of primes is Euclid’s¢ihem irca 300 B.C.) on the infinitude
of the primes. In 1737 Euler went a step further and provetlitnéact, the series of the reciprocals
of the primes diverges. In the opposite direction, Euleleobsd that the rate of divergence of this
series is much slower than the rate of divergence of the haimseries:
“The sum of the series of the reciprocals of the prime numbers
1 1 L 1 1 1 N 1 N 1
7 3 5 7 11 13 ’
is infinitely large, but it is infinitely many times less thdre tsum of the harmonic

series,
1+1+1+1+1+
2 3 4 5
Furthemore, the sum of the former series is like the logaritf the sum of the latter
series.”

This statement appears to be the earliest attempt to guéamtifrequency of the primes among the
positive integers.
Consider the prime counting function

() =) 1
p<x
In 1798 Legendre conjectured thg) satisfies the asymptotic relation
m(X)
x—o0 X/(log X)

this is theprime number theorerfPNT). Years later, Gauss wrote that back in his adolesczarsy
he had observed that the logarithmic integral

=1; 0.1)

X dt

Li x = —
, logt
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seemed to provide a very good approximatiom(). This, of course, is consistent with (0.1), as
can be seen from the formula

| |
Lix= > Ux o _Kx +o(7x ) 0.2)

“logx 092 T (logx)< (I0g X)<2

The first theoretical evidence in support of the PNT was glwe&hebyshev in the 1850s. He
proved that:

e (0.1) predicts correctly the order of magnituder@x%), that is, there exist absolute constants
C, > ¢; > 0 such that

OX ) < 2

log x log x
Chebyshev showed that forfligiently largex one may takes; = 0.9212 andc, = 1.1056.
In his honor, bounds for(x) of this type are now known a&hebyshev’s estimates

(0.3)

e If the limit on the left side of (0.1) exists, then it must beuagto 1.

Chebyshev used the methods that he developed for the pr¢0f3)fto establisiBertrand’s pos-
tulate: the interval , 2n] contains a prime number for all integers> 1. Furthermore, in 1874
Mertens used Chebyshev’s estimates (0.3) to show that

Z 1_ loglogx + B+ O((logx) ™), (0.4)

p<x

B being an absolute constant. This provided the first rigoppasf of Euler’s observation that “the
sum of the [series of the reciprocals of the primes] is lileeltgarithm of the sum of the [harmonic
series].” We sketch the proofs of (0.3), (0.4), and somdedleesults ir§1.2.

0.2 The RiemannZ-function and the prime number theorem

TheRiemann zeta-functios defined in the half-plane Rg(> 1 as

(9= ne=J[1-p9". (0.5)
n=1

p

The identity between the infinite series and the infinite poddn the right (which runs over all
primes) is an analytic expression of the fundamental trearearithmetic and was discovered by
Euler in 1737 (in the same paper as his proof of the infinitudd® primes), at least in the case
whensi s real. The first to considef(s) as a function of a complex variable was Riemann. In
1859 he published his seminal paper [47] (his only paper onlbau theory), in which he observed
that/(s) is holomorphic in the half-plane R&(> 1 and that it can be continued analytically to a
meromorphic function, whose only singularity is a simpléepat s = 1. Riemann was interested
in £(s), because Euler’s identity (0.5) provides a connectiowbenh the analytic properties &fs)
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and the PNT. It is not diicult to deduce from (0.5) thaf(s) does not vanish in the half-plane
Re(s) > 1. Riemann proved th&(s) satisfies théunctional equation

75T (;) £(s) = 7S Vr (%S) [1-s),

from which it is easy to deduce that the only zerog'(d) in the half-plane Ref) < 0 are the
negative even integers; these aretthaal zerosof /(s). Besides the trivial zerog(s) has infinitely
many zeros in the strip & Re(s) < 1: thenon-trivial zerosof (s). Riemann proposed several
conjectures about the non-trivial zeros(¢$):

Cl. If
N(T)=#{peC:{(p)=0, 0<Rep) <1 0<Im(p) < T},
then
N(T) = % log <%> + O(logT).

C2. The entire function 1 S
— Tofa_ 1\S2r (2
&(9) = Zs(s— D1 (5) <9

has a product representation

&9 = o] (1 - f) &,

- Y
the product being over all non-trivial zeros{).

C3. If x> 1, there is an explicit formula that represemn{s) as a series over the non-trivial zeros
of £(9).

C4. Riemann Hypothesis (RH).All zeros of£(s) with 0 < Re(s) < 1 lie on the line Reg) = %

By the end of the 19th century, conjectures C1-C3 were pro€&dand C3 were established
by von Mangoldt, and C2 is a consequence of the general thafoentire functions of finite
order developed by Hadamard. In particular, the Riemanmgdiat explicit formula form(x)
demonstrated that the PNT follows from the nonvanishing(sf on the line Re$) = 1. Thus,
when in 1896 Hadamard and de la Vallée Poussin proved (evakmtly) that' (1 + it) # O for all
realt, the PNT was finally proved. In contrast, the Riemann Hypsithes still an open problem
that has been selected by the Clay Mathematics Institute@efdhe seven Millennium Problems.
We remark that under RH, the Riemann—Mangoldt formula iegalhe asymptotic formula

m(X) = Li x+ O(x"?logx), (0.6)

which is essentially best possible.



The last observation has motivated the investigationsegtinor term in the PNT. In 1899 de
la Vallee Poussin refined the original proof tlfét + it) # 0 and showed that, in fact(o + it)

does not vanish in the region c

>1-—

7= 27 log(t| + 10)

for some absolute constant> 0. This sufices to establish the following quantitative version of
the PNT, which will be the main subject of Chapter 2 of thesie$.0

(0.7)

Theorem 1. There exists an absolute constant © such that
m(X) = Li x+ O(xexp( - cvIogXx)).

Further improvements on the error term in the PNT have bega kjuited. In 1922 Littlewood
proved that
m(X) — Li x < xexp( — cylogxloglogx), (0.8)

while the best result to date was obtained by Korobov [38]lail Vinogradov [58] in 1958:
m(X) — Li x < xexp( — c(logx)**>(log logx) ). (0.9)

Both (0.8) and (0.9) are consequences of repsective imprents on the estimate of the zerofree
region (0.7). Unfortunately, it is known that the approaoipyed in these works can never yield
a bound of the formr(x) — Li x < ¥, with a fixed6 < 1.

0.3 Primes in arithmetic progressions

In a couple of memoirs published in 1837 and 1840, Dirichtevpd that ifa andq are natural
numbers with  q) = 1, then the arithmetic progressiana + g,a + 2q,... contains infinitely
many primes. By refining Dirichlet’s argument, Mertens bithed the asymptotic formula

Z 5 ~ m Z asx — oo, (0.10)

p<x p<x
p=a (modq)
where ¢(q) is Euler’s totient function. Fixq and consider the various reduced residue classes
modulog. Since all but finitely many primes lie in residue clasaenod q with (a, ) = 1, (0.10)
suggests that the primes are uniformly distributed amoegeékuced residue classes to a given
modulusg. Thus, one may expect that &,Qq) = 1, then

Li x
n(x;qg,a) = 1~— asx — oo, (0.11)
pz ¢(a)
p=a (modaq)

This is theprime number theorem for arithmetic progressionde may approach this statement
in two different ways. First, we may fia and g and ask whether (0.11) holds (allowing the
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convergence to depend granda). Posed in this form, the problem is a minor generalizatibn o
the PNT. In fact, shortly after proving Theorem 1, de la ®alPoussin showed that

n(x g,a) = m +O(xexp( - c+logx)),

wherec = ¢(q, @) > 0 and theD-implied constant depends granda. The problem becomes much
more dificult if we want an estimate that is explicit and uniform ina. The first result of this
kind was obtained by Page [43], who proved that there exi@mall) positive numbef such that

n(x; q,a) = m +O(xexp( - (logx)’)),

whenever 1< q < (logx)>° and @, g) = 1. In 1935 Siegel [49] proved the following result, which
we will establish in Chapter 3.

Theorem 2. For any fixed A> 0, there exists a constantcc(A) > 0 such that

Li x
—— + O(xexp( —cvlogx)),
(@ (xexp( gx))
whenevell < q < (logx)* and(a,g) = 1

n(x;q,a) =

Remark. While this result is clearly sharper than Page’s, it doe®lmne significant drawback: it
is ineffective, that is, given a particular value Af the proof does not allow the constaiif\) or
the O-implied constant to be computed.

The proofs of the above results rely on the analytic propemif a class of generalizations of
the Riemann zeta-function known Bérichlet L-functions For each positive integeythere are
#(q) functionsy : Z — C calledDirichlet characters modulo gwe will define these in Chapter 3).
Given a charactey modulog, we define the respective Dirichletfunction by

Lsx) =D _x(mMn>  (Re© >1).
n=1

Similarly to Z(s), L(s, x) is holomorphic in the half-plane Rg(> 1 and can be continued analyt-
ically to a meromorphic function that has at most one poleclviif present) must be a simple
pole ats = 1. Furthermore, just ags), the continued.(s, y) has infinitely many zeros in the strip
0 < Re(s) < 1, and the horizontal distribution of those zeros has ingyarimplications on the
distribution of primes in arithmetic progressions. Forragde, the results of de la Vallée Poussin,
Page, and Siegel mentioned above were proved by showingdtatunction has zeros “close” to
the line Ref) = 1. We also have the following generalization of the Riemagpdthesis:

Generalized Riemann Hypothesis (GRH).Let L(s, y) be a DirichletL-function.
Then all zeros of(s, y) with 0 < Re(s) < 1 lie on the line Reg) = 3



Assuming GRH, we can deduce easily that

n(x;q,a) = ﬂ +O(x"?logx), (0.12)

whenever 4, q) = 1. This estimate establishes (0.11) for 3y < ¥, 6 < 1.

In many applications one only needs approximations likéZDin some average sense over
the modulig. During the 1950s and 1960s several authors obtained sschgeln particular, the
following quantity was studied extensively:

Li
7y @) — > .

E(x, Q) = max max )

qSQ(a)ly<><

The trivial bound for this sum IE(x, Q) < X, whereas (0.12) implies

E(x, Q) < Qx"2logx. (0.13)
In 1965 Bombieri [5] and A. I. Vinogradov [55] proved (indeqkently) the following result.
Theorem 3. For any fixed A> 0, there exists a constantB B(A) > 0 such that

E(x, Q) < x(logx)™,
whenever Q< x*2(log x)B.

We observe that this result provides a nontrivial estimateH(x, Q) under essentially the
same restrictions 0@ as GRH. Because of this fact, the Bombieri—Vinogradov theohas seen
numerous applications in which it has been used @e factoreplacement for GRH. In Chapter 5
we will give a proof of Theorem 3 witlB = A + 4.

It should be noted that unlike the error term in (0.6), thereterm in (0.12) is not necessarily
best possible. In fact, there is some evidence in supponeabodld conjecture that

. _ 1/2+€
n(x; 0, ) = ¢( ) ~ +0.((x/6)V>*)

for any fixede > 0. In Chapter 5 we will establish the so-callBdrban—Davenport—Halberstam
theorem which asserts that this bound holds in the mean-squareativarithmetic progressions
with differences) < x-¢. We should also mention that during the mid 1980s Bombiei&dfan-
der, and Iwaniec [6, 7, 8] obtained several variants of theBieri—Vinogradov theorem, in which
the value ofQ can exceed’?. However, since their methods go beyond the reach of thess,no
we will only state one of their results (see [7]).

Theorem 4. Leta# 0and x>y > 3. Then

2.

a< VXY
(@a)=1

(X, g, a) ;Eq); < (L X><'o§y) (log logX)°.

Here c is an absolute constant and tkeimplied constant depends only on a.
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0.4 Primes in short intervals

It is an old problem in the theory of prime numbers to prove tbaany integein > 1, the interval

(r?, (n+ 1)?] contains a prime number. This problem leads quickly to tioeengeneral question of
estimating the dferences between consecutive primes. Cramér was the fgtdy this question
systematically. Lep, denote theath prime number. In 1920 Cramér [12] proved that under RH

pn+1 - pn < p%/z lOg pn-

Cramér also proposed a probabilistic model of the primelmemnthat leads to very precise (and
very bold) predictions of the asymptotic properties of thengs. In particular, he conjectured [13]
that

- Pn+1 — Pn

Ilrliup (10g po)? 1 (0.14)

Nontrivial upper bounds fop,,; — p, can be derived from the quantitative versions of the PNT

stated above, but the ensuing results are rather poor, $etlae known bounds for the error term
in the PNT are barely smaller than the main term. However,9B01Hoheisel [26] obtained a
much sharper result. He proved (unconditionaly) the asgtigofiormula

a(x+ X)) —n(X) ~ ¥(logx)™  asx— oo, (0.15)

with # = 1-(33000)*. Subsequently several authors made further contributiatproduced the
following improvements on Hoheisel’s result:

Heilbronn [25] (1933) 0 = 0.996
Chudakov [11] (1936) 0> 3/4 =0.750
Ingham [30] (1937) 0>5/8 =0.625
Montgomery [41] (1971) 6> 3/5 = 0.600
Huxley [27] (1972) 6>7/12=0.583...

Heath-Brown [23] (1988) 6 =7/12=0.583...

We will see the proof of Huxley’s result in Chapter 5 of thes#es. Furthermore, since the
late 1970s, several mathematicians have shown that evetesihdervals must contain primes
(without establishing an asymptotic formula for the numbgprimes in such intervals). Such
results usually take the form

a(x+ X)) —n(x) > ¥(logx)™  for x > xo(6). (0.16)

The following list displays the progress in that directiareothe last 30 years:

lwaniec and Jutila [34] (1979) 0 =13/23=0.565...
Heath-Brown and Iwaniec [24] (1979) 6 > 11/20= 0.550
Iwaniec and Pintz [35] (1984) 0 =23/42=0.547...
Lou and Yao [40] (1992) 0=6/11 =0.545...
Baker and Harman [1] (1996) 6 = 0.535

Baker, Harman, and Pintz [2] (2001) 6 = 0.525
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Selberg [48] considered the distribution of primes in “asinall short intervals.” Leh(x) be an
increasing function ok. We say thaalmost allintervals &, x+h(x)] contain primes if the measure
of the set ofx € (1, X] for which the interval §, x+h(x)] contains no prime is(X). Selberg proved
that if h(X) grows faster than (log)? asx — oo, the Riemann Hypothesis implies that almost all
intervals &, x+h(x)] contain a prime number (and also that the asymptotic féartu15) holds for
each inexceptional interval). Further, Selberg showednditionally that if¢ > 1/4, then almost
all intervals &, x+x%] contain a prime number. The latter result has been the sutifa long series
of successive improvements, similar to the improvementdameisel’s result described above. In
particular, the best result to date obtained in 1996 by Bh¢3tends the range férin Selberg’s
result tog > 1/20.

In the opposite direction, Erdos [16] showed in 1935 that

Pns1 — Pn 2 clog pa log log pa(log log logpa) ™ (0.17)
infinitely often. In 1938 Rankin [46] showed that one can agplthe right side of (0.17) by

(1/3 + o(1)) log p, log log p, log log log logp.(log log logp,) 2,

but subsequent attempts at further improvements have ot ery successful: the best result
to date (see Pintz [44]) replaces the constgi® ih Rankin’s bound by &, wherey is Euler's
constant. In fact, the problem appears to be so notoriougigult that Erdos—who was known
for offerring monetary prizes for solutions of problems he wasgogd by—announced that he
would pay $10,000 to anyone who proved that the constaiirl Rankin’s result can be taken
arbitrarily large!



Chapter 1

Introduction: basic estimates

The purpose of this chapter is to introduce some of the baslmiques and functions appearing
in the later chapters. The results are mostly elementaryrenceader may be familiar with some
(and possibly all) of them.

1.1 Multiplicative functions
A function f : N — C is said to bamultiplicativeif it is not identically zero and
f(mn) = f(m)f(n) whenever gcdf,n) = 1.

If f satisfies the stronger condition thigimn) = f(m)f(n) for all pairsm, n, it is said to becom-
pletely (or totally) multiplicative

Some functions, such &gn) = n® (s € C), are obviously multiplicative. Others are defined so
that they are. One such function is th&bius function

1 ifn=1,
u(n) = ¢ (1) if nis the product of distinct primes (1.2)
0 if nis divisible by the square of a prime

The following lemma provides an easy way to deduce the migiéfivity of a large class of arith-
metic functions. We leave its proof as an exercise.

Lemma 1.1. Suppose that f and g are multiplicative functions. Then titarmaetic function f« g,
defined by

(f=g)(n) =) _ f(d)gn/d).

din
is also multiplicative.

The next lemma contains the most important property of tiodiMs function.



1 ifn=1
Lemma 1.2.) "u(d) = { N
an 0 otherwise

Proof. It suffices to consider the case wheis squarefree. Suppose that pip;--- pr, where
P1, P2, . - ., pr are distinct primes, and writ@ = pyp,--- pr_1. Then

doud) =) ud)+ D pdp) =D pd)+ (~u(d) = 0.
din dm dm dm dm
where the second to last step uses the multiplicativify. of ]

Corollary 1.3. (Mobius inversion formula) Suppose that K — C is an arithmetic function and
define

F)=>_ f(d).

din
Then f=F x y, that s,
f(n) =) _ Fdu/d).

din
In particular, if F is multiplicative, so is f.

Proof. We have

ST F@uvd) = >3 fun/d) = 30" FRuvd) = > S fRutn/km.

din dn kd kin din kin- mi(n/k)
kid

By Lemma 1.2, the sum ovenvanishes unleds= n, so the first claim follows. The second claim
is a consequence of the first, Lemma 1.1, and the multiphitaof w. ]

1.2 Partial summation

We now discuss a simple trick that is put to a great use in #nalymber theory.

Lemma 1.4 (Abel). Suppose thatgare complex numbers andX) is continuously dferentiable
on[a,B]. Then

B
> 2t = AR - [ AP X)X

a<n<sp

where AX) = ), <x an.

Proof. Using Stieltjes integration by parts, we have

B B
> et = [ 109dAR = F09A0[L - | AT,

+
a<n<p @

and the desired result follows. ]
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Corollary 1.5. There is a constant;csuch that

Z% = logx+ €1 + O(x).

n<x

Corollary 1.6. » logn = xlogx — x + O(log X).
n<x
Remark. The constant, is known astuler’s constantind usually is denoted by

y = lim (Z % ~log x) ~05772.... (1.2)

X—00
n<x

Next, we define three arithmetic functions that play an ingoarrole in prime number theory.
These areon Mangoldt’s function

A() = logp ifnis a. power of a primep, (1.3)
0 otherwise
and the functions
6= logp and y(x)=> A(n), (1.4)

p<x n<x

which were introduced first by Chebyshev. Our first resultuditboese functions is a Chebyshev-
type bound fory(Xx).

Theorem 1.7. Suppose thad < ¢, < log2and g > log 4. Then for sgficiently large X,
CoX < Y(X) < C3X.

Proof. Define

T(x) =) _logn.

n<x

Taking logarithms in the prime factorization nfwe see that
logn=">"A(d).
din
SO we can rewritd (xX) as

T =33 A0 =S A > 1= A@) [3} .

n<x dn d<x n<x d<x
din

Thus,
T -2T(x/2) = 3 A(d) ({g} ) [2—’;]) .

d<x

11



el

[g]_z[z—);]:l forx/2<d< x

and

Hence,
Y(X) — y(x/2) < T(X) = 2T (x/2) < ¥(X).
On the other hand, by Corollary 1.6,

T(X) — 2T(x/2) = xlog 2+ O(log x).
We deduce that
Y(X) > xlog 2+ O(log x)
and
Y(X) < yw(x/2) + xlog 2+ O(log x)

<y(x/4)+ (1+ 3) xlog 2+ O(log X)
<y(x/8)+ (1+ 3 + ) xlog 2+ O(log X)

<yY(x/2)+ (1+3+7+---)xlog2+ O(r logx)
< xlog 4+ O((log x)?),

on choosing so that 2 < x < 2+,

Lemma 1.8. Z logp

p<x

= logx+ O(1).

Theorem 1.9 (Mertens). There is an absolute constant B such that
1
Y = =loglogx+ B+ O((logx)™).
p<x P

Proof. Define the function
I
R =Y &pp—logx

2<p<x

and the sequence

_J(logn)/n if nis a prime number,
~]o otherwise.

12
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Then, by Lemma 1.4,

15 & 1
;p_zéxlognJrz

1 logp /x ( log p) dy 1
= + + _
log x 2 p 2 2 p /y(ogy? 2

2<n<x 2<n<y
1 *logy + R(y) 1
= —Iogx( logx + R(X)) + /2 “yogy? dy+ >
R(Y) R(X)
y(logy)? dy+ log x’

3 X
= loglogx + 5" loglog 2+ /
2

Using Lemma 1.8 to bounB(y), we obtain

* R(y) RX [ RY) L
/2 y(logy)? dy+ log x _/2 y(logy)? dy+O((logx)™),

and the desired conclusion follows with

R(y)
y(logy)2

B:§—IoglogZ+/
2 2
]

The final result of this section quantifies the relation betmvéhe error term in the PNT and the
differenceay(x) — x.

Theorem 1.10.Suppose that f is an integrable function such thiat x f(X) < x and

/X@ dt < f(X)logx.
, t
Then
U(X) - X< f(X) =3 n(X) — Li x < f(x)(logx)~2.

Proof. Theorem 1.7 implies that
0(X) = y(x) + O(x"?),

whence
O(X) = X+ O(f(x)).

Let a, be the sequence

_ Jlogn if nis a prime number,
~lo otherwise.
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As in the proof of Theorem 1.9,

a,
7T(X) = ie;—}%'+
2<n<x 9

_ (¥ * 0(y) dy
= logx * /2 yogyy * O

_ XYy fx RRILY
N Iogx+/2 (logy)? +O(Iog><> +O(/2 y(logy)2>
= Li x+ O(f(x)(logx)?),

by (0.2) and the properties df. This proves the direct implication, the converse is lefaas
exercise. ]

1.3 Dirichlet series

A Dirichlet seriesis an infinite series of the form
> an, (1.6)
n=1

wherea, are complex numbers argd= o + it is a complex variable. The following lemma shows
that if a Dirichlet series converges at any finite complex hans, = o + itg, then it converges to
a holomorphic function in the half-plane 6 0.

Lemma 1.11. Suppose thatys= o + ity and the series

> an
n=1

converges. Then the Dirichlet serigs6) converges uniformly on the compact subsets of the half-
planeRe(s) > oo and the sum-function

f(s) = Z apn~®
n=1
is holomorphic in that half-plane.
Proof. It suffices to show that (1.6) converges uniformly in the regions
{seC : Re@)>0o+4, |Im(s) —to| < T}
wheres, T > 0. By Lemma 1.4 witha,, = a,n"% and f(n) = n= (%),

> am

a<nzx

D @ <7 max , (1.7)
<X

a<n<p

so the uniform convergence of (1.6) follows from the coneeae of)_ a,n™® and Cauchy’s
criterion. ]

14



The number
inf { Re(®) : (1.6) convergep

is called theabscissa of convergencd the Dirichlet series (1.6). Here, of course, we allow the
possibility that the infimum could bec. The abscissa of convergence of the Dirichlet series
> nlain~sis called theabscissa of absolute convergerufg1.6). The two abscissas are related by
the following inequality.

Lemma 1.12. Suppose that. ando, are the abscissa of convergence and the abscissa of absolute
convergence of the Dirichlet seri€k.6). Theno < 03 < o¢+ 1.

Dirichlet series are an important class of generating fonstin number theory. In the re-
mainder of this section, we discuss their properties rdleigheir use in number theory. We first
consider the relation between the sum-function of a Digthkeéries,

f(9=> an,
n=1
and the running sums of its ciieient sequence,

A(X) = Z an.

n<x

The passage frorA(x) to f(s) is easy (at least, when R (s suficiently large):

f(s) = f:an/oo sxStdx= /100 (Zan) sxStdx= /Oo A(X)sxStdx
n=1 n

n<x 1
The inverse relation requires a little bit more work.

Lemma 1.13 (Perron’s formula). Suppose that > 0. Then

1+ O (u*(Tllogu)™) ifu>1,

1 a+iT us
—./ Yas= {140 fu=1
2n J,.it S .
O (u*(T|logul)™) ifO<u<1
Proof. This is an exercise in contour integration. [

Corollary 1.14. Let f(s) be the sum-function of the Dirichlet seri@s6). Suppose that & Z and
a > 04, Whereo, is the abscissa of absolute convergencélo6). Then

_ 1 a+iT <1 X *® |an|n—a
Za”_ﬁ/ f(9)x°s ds+0(?zm).

n<x a-iT n=1

15



Corollary 1.15. Suppose thataay, az,... and b, by, bs, ... are sequences of complex numbers
and the holomorphic functiong$) and d's) are defined in the half-plange(s) > o by

f(9=> an® and g =) b
n=1 n=1

If f(s) = g(s) wheneveRe(s) > o, theng =b,foralln=1,2,3,....

Proof. We apply Corollary 1.14 witlkx ¢ Z, a = o + 2 (this ensures the absolute convergence of
the series on the line Rg(= a), andT = c0. We get

1 a+ico L 1 a+ico L
= f S = — Sg” = .
;aﬂ o /a_ioo (9x°s™tds= /a_ioo g(9)x°stds ;bﬂ

Since this holds for all non-integer> 1, it follows thata, = b, foralln=1,2,3,.... ]

The next two lemmas and their corollaries illustrate whyidilet series are convenient gener-
ating functions in multiplicative number theory.

Lemma 1.16. Suppose that(h) is a multiplicative function. Then the identity

S fmn=T] 1+ f(pp =+ f(P)p>+---)
n=1

p

holds whenever the series on the left converges absolutely.

Proof. The absolute convergence of the seliés f (n)n~° implies the absolute convergence of the
seriesy_,, f(p™p "*for all primesp. Letx > 2 andr = z(x). Then

h=

[T+ fmps+fE)p>+--)

p<x

F(p™) -+ F(pM)(py" -+ pr)~°

3

[7:
M= 10

f(p - )P p) S

3
o
E
I

h=

= i f(n)n~s,

n=1
pln=p<x

where we have used the multiplicativity 6f Noting that the last sum contains, in particular, all
the terms witm < x, we conclude that

St 1+ f(pp s+ f(PAp>=+---)

n<x p<x

<> I,

n>Xx

which establishes the desired identity. ]
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Corollary 1.17. Suppose that(h) is a completely multiplicative function. Then the identity

ST tmnc=]] (- f(ppe)"
n=1

p

holds whenever the series on the left converges absolutely.

Lemma 1.18.Suppose thataa,, az,... and by, by, bs, ... are sequences of complex numbers such
that the Dirichlet series

f(9=> an® and g9 =) bn*
n=1 n=1

converge absolutely in the half-plaRe&(s) > 0. Then the Dirichlet series

he=> cn™  c=) ab,
n=1

uv=n
is also absolutely convergent Re(s) > o and H(s) = f(s)g(s).
Proof. Suppose first that > 0. Then

D16 =3

n<x n<x

<> <Z |aubv|) =) ladbd(uy) ™

n<x uv=n uv<x

< (Z |au|u‘°') (Z |bv|V‘“)

< (ui:; IaUIU“’) (:2;; IbVIV“’),

which proves the absolute convergencé gfc,n° for Re(s) = o-. In particular, we have that

Z (Z |aubv|) n—0 asx — oo,

n>Xx uv=n

n—O’

> alby

uv=n

so the second part of the lemma follows from the inequality

S s (Z auu‘s) (Z bvv‘s) <3 (Z |aubvl) . (L.8)

n<x us<x V<X n>x uv=n

In the next series of corollariegs) is the Riemann zeta-function.
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Corollary 1.19. Suppose thaRe(s) > 1. Then

.
2 KON = 7

Proof. By Lemmas 1.2 and 1.18,

< nz:o;u(n)n‘s) ( nzo:; n‘s) =1

Corollary 1.20. Suppose thaRe(s) > 1. Then

s_ L
Z A(n)n 9"

1.4 Divisor functions

In this section we collect several standard estimates gontimber of divisors functiod(n) and its
averages. First of all, we note thé(n) is multiplicative (by Lemma 1.1) and satisfig&*) = k+1.

These two observations lead (after some work) to the folgwipper bound fod(n).

Lemma 1.21.For anye > 0, d(n) <. n.

The bound in Lemma 1.21 is not tight, but it is also not too fanf the best possible general
bound (see Exercise 21). On the other hand, the next lemmesshat for most values af, d(n)

is significantly smaller: its average value is lng
Theorem 1.22 (Dirichlet). Suppose that x 2. Then
> " d(n) = xlogx+ (2y - 1)x+ O(x*?),

n<x
wherey is Euler’s constant.
Proof. Let D(X) denote the left side of (1.9). We have
DO =) > 1=> 1= 1+> 1- > 1=Dy(x) +Dy(x) - Ds(x),
N<X uv=n uv<x uv<x uv<x UV< VX
U< yx V<X
Thus, (1.9) follows from the estimates
_ _ X7 _ X 1/2
Di(®) = Do) = [G] =3 Z+0(x?)
u< X us< vx
= xlog VX + yx+ O(x"?) (by Corollary 1.5);

Ds(X) = [VX]° = x+ O(x?).

18
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Remark. The estimation of the error term in (1.9) is a famous problemnalytic number theory.
It is not too dificult to show that

A() = d(n) - xlogx - (2y - 1)x < x"*logx.
n<x

Attempts to improve further on this and other similar bouhdse stimulated the development of
the theory of exponential sums (see Graham and Kolesnikddd]Huxley [28]). The best result
to date was obtained recently by Huxley [29]:

A(X) <, X131,/4l6+5’

where 131416= 0.3149.... Itis conjectured that

A(X) < XY,

which if proven would be essentially best possible, as itnioll result of Hardy [20] that the
boundA(x) < x*# does not hold for alk.

Often one needs upper bounds for higher moment{mf The following theorem provides
such an estimate.

Theorem 1.23.Suppose that ¥ 1 and ke N. Then

> (d(n)* < x(log)*~t + 1. (1.10)

n<x

Proof. By induction onk. The cas& = 1 follows from Theorem 1.22. Now suppose that (1.10)
holds for somé > 1. Then

D @)t = (du)k <D (du)dv),

n<x uv<x uv<x

where the last step uses tliginn) < d(m)d(n). Hence, by the inductive hypothesis,

> @Wd)* < (dw)F Y (dv)

uv<x usx v<x/u
d(u))X .
< X(log x)?-1 Z % + z:(d(u))k < X(log x)?“ 1,
usx u<x
on using the bound
k
5 CGUF o Gogw?.
usx u
which follows from the inductive hypothesis by partial suatmn. [
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Exercises

10.

11.

12.

13.

14.

15.

16.

17.

18.

Prove (0.2).
Prove that Euler’s functiog(n) is multiplicative.

Prove Lemma 1.1.

. Prove Corollary 1.5[Hvt: The value ofcy is 1— [ {x}x 2 dx |

Prove Corollary 1.6.

. Prove Lemma 1.8{.HINT: First show that the given sum equai$ T(x)+O(1), whereT (x) is the sum appearing

in the proof of Theorem 1.7.
Prove that L c L
(2 5) = ogn (0 (ige) )
bix p 0g X 0g X
whereC is an absolute constant. (It can be shown that, in fact,e”, wherey is Euler’s constant.)

LetB be the constant appearing in Theorem 1.9 @rk the constant appearing in the last problem. Prove that
B+logC=>_ (E +log <1— E)) .
o \P p

Prove that under the hypotheses of Theorem 1.10,

*fy)dy  f(x)
/2 y(ogy)? < logx’

Prove the converse part of Theorem 1.10.
Modify the proof of Theorem 1.10 to show that the PNT isiegjent to the statement thafx) ~ x asx — oo.
Verify (1.7).

Suppose that in Lemma 1.11 the assumption that the Sefj@sn~% converges is weakened to the assertion
that the partial sums

danm®  (N=123,..))

n<N

are bounded. Prove that the conclusion of the lemma stags tru
Prove Lemma 1.12.

Prove Lemma 1.13.

Prove (1.8).

Prove Corollary 1.20.

Prove the following identities:
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(a) i d(n)n~S = 7%(s) whenever Reg) > 1;

n=1
(b) i lu(mIn~S = £(9)/£(2s) whenever Red) > 1;
n=1

(c) i o(nNn~° = 7(s— 1)/£(s) whenever Res) > 2.

n=1

19. Define a multiplicative functiofi : N — C by
k-1/2 -1/2
Ky _ (1)

where the generalized binomial dbeient (E) s € C, is the coéficient of Z in the Maclaurin expansion of

a+2s
s\  S(s-1)---(s—-k+1)
(k) B k! '

(a) Prove that the Dirichlet seridg(s) = ) f(n)n~° converges absolutely and uniformly on the compact
subsets of the half-plane Rg( 1.

(b) Prove thaF(s)? = £(s) whenever Ref) > 1.
20. Prove thati(n) < V3nforallne N.
21. (a) Prove that there exists an absolute constantO such that

cilogn
loglogn )/ *

d(n) < exp(

(b) Letn = pipz2--- pk, Wherep denotes th&th prime. Prove that there exists an absolute constantO
such that

czlogn>

d(n) > eXp(Iog logn
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Chapter 2

The prime number theorem

In this chapter we develop the basic theory of the Riemaraxfzeiction to the level needed for the
proof of the PNT in the form of Theorem 1. However, for teclahi®@asons, instead of Theorem 1
we will establish the following result, which is equivaleatit (by Theorem 1.10).

Theorem 2.1. There exists an absolute constant © such that for x> 2

¥(x) = x+ O(xexp(-cyIogX) ).

2.1 Definition of Z(s). The functional equation

We start by providing a rigorous definition of the zeta-fumet As we said in the Introduction, we
initially defineZ(s) for Re(s) > 1 by

{(9=) = (2.1)
n=1

Since the series converges uniformly on compact subsdts bfif-plane Reg) > 1, it follows that
Z(s) is holomorphic in this half-plane. Moreover, since thexangence is absolute, Corollary 1.17
applies taZ(s). In this way, we get the Euler product representatiofi(sf:

-1
(9 =1] (1 - pi) . (2.2)

p

In particular, we deduce from (2.2) thts) is does not vanish in the half-plane Rt 1.

Our next goal is to extend the definition &fs) to the whole complex plan€. There are nu-
merous ways to do this. We will follow the original approadnRiemann, which yields one of
the most elegant and illuminating treatments of the amalydntinuation o (s) even today. Al-
ternative proofs can be found in most monographs on theyhadhe zeta-function (for example,
Titchmarsh [50] gives seven such proofs). However, bef@asg in position to present Riemann’s
argument, we need to build up our knowledge about two clakgiactions.
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2.1.1 The theta-series
If Re(2) > 0 anda € C, we define the theta-functiai(z, @) by

Nz @) = i exp(-nz(n + @)?) . (2.3)

N=—co0
The property of¥(z «) that we are interested in is the following transformatiorniula.
Lemma 2.2. Let x> 0andO < @ < 1 be real. Then

(X @) = X V2 exp( - na?X)9 (X —iax). (2.4)

Proof. Suppressing the dependencexpmwe write f () = ¥(X; @). Since the series

f: eXp(—JrX(n + a/)2) and f: nexp(_ﬂx(n + a/)Z)

N=—0oc0 N=—oco

converge uniformly iny, f(a) is continuously dterentiable. Itis also clear th&{a) is 1-periodic.
Hence,f(a) equals its Fourier series:

f(@) =) fae(na).

N=—oo

Here f, is thenth Fourier coéficient of f (a),

1
f, = / f (t)e(—nt) dt.
0
Thus, it suifices to show that
1
/ f(t)e(—nt) dt = x Y2 exp(-nn*x?).
0

By the absolute convergence of the theta-series, we cagratéeit term-by-term, whence

/ 1 f(te(-nt)dt="> / 1exp(—7rx(m +1)?) e(-nt) dt
0 mez 0

m+1
- Z/ exp(—nxt®) e(-n(t — m)) dt

mez YM

m+1
- Z/ exp (-nxt®) e(—nt) dt

mez M
:/exp(—nxtz) e(—nt) dt
R
- x‘l/Z/exp(—nuz) e( — nx*?u) du
R

= x "2 exp(-anPxt),

where the last step uses that the function expf) equals its Fourier transform. ]
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While the above proof can be generalized to all compleandz with Re) > 0, it is easier
to extend Lemma 2.2 to those cases by means of the identayetimefor analytic functions. This
yields the following result.

Corollary 2.3. LetRe@) > Oanda € C. Then
Nz a) = 27 exp( - na’2)¥(z " —iaz). (2.5)

Here z/2 = exp( — 5 Logz) denotes the principal branch of the functior/.

2.1.2 The gamma-function

The other special function that will figure prominently inr@nalysis isEuler's gamma-function
I'(s). We defind’(s) by

(9]

1 s S\ sn
@:séf H<1+ﬁ)e/, (2.6)

n=1
wherey is Euler’'s constant (recall (1.2)). As the infinite produsuniformly convergent on the
compact subsets @ — {0,-1,-2,...}, (2.6) defined’(s) as a meromorphic function o with
simple poles at 0 and at the negative integers and with nsz&ke now state several important
properties of’(s) that will be needed later.

Lemma 2.4. Suppose that ¢ 0,-1,-2,.... Then
I'(s+ 1) =d(9). (2.7)

Proof. Define
1
a(x) = ZE —logx—7, (2.8)
k<x

so thats(x) — 0 asx — oo (in fact,&(x) = O(x1)). By (2.6),

I'(s+1) s@s i f[ (1+ S/k)e—s/k
(s  (s+ 16t nse L (1+ (s+ 1)/K) e Dk

(s+1)(s+2)---(s+n) exp<1+}+...+})

- e(s+ 1) (S+2)(s+3)---(s+n+1) 2 n
(n)
_ e lim expllogn + vy + &(n)} _ slim ne _q
N—eo n+s+1 nseo N+ S+ 1

Similar arguments can be used to establish other relatietvgden the function values b{s).
In particular, we have the following two formulas:

NONEDE L(9T(s+ 1/2) = #221251(29). (2.9)

sinzs’
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Lemma 2.5 (Euler’s integral formula). Suppose thaRe(s) > 0. Then
I'(s) = / e 't dt. (2.10)
0
Proof. We first show that

nl-n®
M =1lM 7 DE+2) G0

By (2.6),

I(s) = s7e7* lim H <1+ ) les/"

=ste”%lim 12 - ex <s+§+---+—s>
B o (5+ 1)(s + 2) (s+ n OPLST3 n
i nlexp{s(logn+&(n))} . n!-n®

T ST D) (s+m) A s )E+2) (54T
whereg(X) is the function defined in (2.8). We now observe that

/0 (1_ %)ntﬂdt: s(s+ 1)(sni.2r)ls---(s+ n’

Indeed, whers > 0 the above integral converges and we have
n t n 1
/ <1— —) ttdt = ns/ (1-u)"u>tdu
0 n 0
n 1
= ns—/ (1-u"usdu

n(n 1)/( )n2 s+1du

s(s+1)
—ns n(n-1)---1 ! s+n-1
S+l (sen-1)fy O M
n! - n®

T s+ 1)(5+2)--(s+Nn)
Thus, it sufices to prove that

o £y n e
I|m/ (1——) ts‘ldt:/ etts1dt.
n—o Jo n 0

To this end, we consider the functions

) = {(1—t/n)ﬂtH ifo<t<n,

if t > n.
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Each of these functions is Iin'[0, o) and satisfies the inequality
|fn(t)| S e_tta'_l,

whereo = Re(s). The last inequality is easily verified by taking logarithiand noting that

Furthermore, ‘o
lim f.(t) =t lim (1— —) —e'ts
N—sco n

n—oo

Since the functior 't~ is in L![0, =), the dominated convergence theorem yields

Iim/ fn(t)dt:/ lim fn(t)dt:/ e'tstdt,
Nn—oo 0 0 n—oo 0

which completes the proof of the lemma. [

We conclude our discussion ©s) with Stirling’s formula, which provides an asymptotic
expansion for lo@'(s) when|s — oo.

Lemma 2.6 (Stirling’s formula). Suppose thatargs < 7. Then
logT'(s) = (s— 1/2)logs— s+ log V2r +/ —;I’J(ru)sdu.
0

Herelog s denotes the principal branch of the logarithm a#gu) = {u} — 1/2.

Corollary 2.7. Suppose thad < § < rand|argg < 7 — 6. Then
logI'(s) = (s-1/2)logs - s+ log V2r + O(|s™*)

and
I'(s)
I'(s)
the implied constants depending at moston

=logs+O(ls ™),
Corollary 2.8. Suppose that < o < gand|t| > 1. Then

ID(o +it) = V2ritl” Y2 expnitl/2){1 + Ot ™) },

the implied constant depending at mostaandp.
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2.1.3 The functional equation
We are now in position to obtain the analytic continuatiod ().

Proposition 2.9. Suppose thaRe(s) > 1. Then
1
5 (2) 269 =

S(s—-1)
whered(x; 0) is defined by2.3).

N %/ (Xs/z_l + X—s/2—1/2) (9(x; 0) — 1)dx, (2.11)
1

Proof. From (2.10), we have

r (;) = /w eVy¥* tdy= Jrs/zns/oo e ™" 2L dx
0 0

Summing this identity ovem, we get

_5/21—~ {(S) — Z/ 7rxn2 S/2 1 dx

After interchanging the order of summation and integratiba right side becomes

I Z e tdx= [ (0060) - D
0

Next we write .
/ (9(x; 0) - 1)x¥*tdx = / (9t 0) - 1)t 9> dt
0 1
and use (2.4) witle = 0 to put the last integral in the form

/1 (tl/zﬂ(t; 0)— 1)t—s/2—1 dt = /1 (9(t; 0) — L9212 dt + S5-1)

Clearly this completes the proof of (2.11). [ ]

Theorem 2.10. The functiory(s) can be continued to a meromorphic function@nwhose only
singularity is a simple pole at s 1 with residuel. Furthermore, the'(s) satisfies the functional
equation

7921 ( ) 2(9) = 2 V2r ( ) 1-9). (2.12)
Proof. Proposition 2.9 was obtained under the assumptios)Re(, but since fox > 1
Hx0)- 1< e™,

the integral on the right side of (2.11) is an entire functidherefore, the function

&(s) = S(SZ_ ) /w(ﬂ(x; 0) - 1)(x¥% 1 + X192 1) dx+ 1 (2.13)
1
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is entire. Thus, the right side of the equation

ﬂs/z

S(s-1)

(which is equivalent to (2.11) when Rg(> 1) is a meromorphic function whose only singularity
is a simple pole a$ = 1 with residue

{9 = r(3) e (2.14)

2

(1) _
r(3)
This establishes the first part of the theorem.

The functional equation (2.12) follows from (2.14) and theariance of(s) under the trans-
formations— 1-s. ]

2.2 The zeros of/(s)

Since we want to work with the logarithmic derivatig€s)/Z(s), we need to understand the zeros
and the poles of the zeta-function. Theorem 2.10 provides#tessary information about the
single pole ofZ(s). In this section, we concentrate on the zeros. So far we khaivthere are
no zeros in the half-plane R®(> 1. Since II'(s) is entire with simple zeros at the nonpositive
integers, it follows from the functional equation (2.12atkhe only zeros of(s) in the half-plane
Re(s) < 0 are simple zeros at the negative even integers and(®p# 0. The remaining part of
the complex plane—the vertical strip<ORe(s) < 1— is a twilight zone which may, and indeed
does, contain more zeros of the zeta-function. These coome fihe factoré(s) on the right of
(2.14). In this section we study(s) as an entire function of order 1.

In general, an entire functiohwith f(0) # 0 is said to be ofinite orderif there is a number
n > 0 such that
M¢(r) = max{|f(2)| : 12 < r} <1, expt”).

When it is finite, the infimum of all such > 0 is called theorder of f. Entire functions of finite
order enter our discussion because of the following result.

Lemma 2.11. The functioré(s) is an entire function of ordet. Furthermore,

lim suploglg(s)| 1 (2.15)

Proof. Sinceé(s) = £(1-9), it suffices to boundk(s)| in the half-plane Reg) > 1/2. There, we can
estimate£(s) by means of (2.14), Stirling’s formula, and elementaryemdpounds fot(s). When
Re(s) > 1, a variant of Corollary 1.5 yields

_ i _ . —-s-1
l(s) = 1 s/1 {(X}x > dx, (2.16)
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where{x} denotes the fractional part &f However, since the last integral represents a holomorphic
function in Reg) > 0, the identity holds in this larger domain. In particulag have

(s—1)(s) < |s®>  whenever Red) > 1/2.
Moreover, since log(s)| < |logI'(s)], Stirling’s formula yields
log|T'(s) < |sllogl|s + O(]s) whenever Reg) > 1/2.
Combining the last two estimates and (2.14), we obtain
loglé(s)l < 5l9/loglsl+ O(ls)) ~ whenever Ref) > 1/2,
which establishes the first claim of the lemma. For the sectaith, we note that

log|I’(|s))l = logI'(|s]) = Isllog|s| + O(|s)),

whence
log&(sl) = 3ls logls + O(|s) as|g — oo.

We now take a short detour into the theory of entire functiofifaite order.

Lemma 2.12. Suppose that (&) is holomorphic in the closed disf < R. Let0O < r < R and let
a, ..., a, be the zeros of () lying inside the diskg < r (listed according to multiplicities). Then

f
_TOIR" < maxlf(s)l.
|18z« -~ @ Is=

Proof. Consider the function

F(s) = f(s)H

R(s ak)'
This function is holomorphic ing < R anle(s)| = |f(s)| on the circle]§ = R Thus, by the
maximum modulus principle,
[ f(O)R"
———— = |F(0 <maxF S maxf S
2] ~IFO IF(9)| = max|f(s)!

Lemma 2.13. Suppose that(k) is an entire function of ordeyf, and let NR) denote the number of
zeros of {s) inside the disks < R, counted according to their multiplicities. Then for angR
ande > 0,

N(R) <, R™.
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Proof. Without loss of generality, we may assume th@) = 1. Leta,, ..., a, be the zeros of (9)
inside the disks < R, listed according to multiplicities, and chooseras 0 so that

max{lag:1<k<n} <r<R

We apply Lemma 2.12 withand R and obtain

2R
ONR) < (—) < max|f(s)| <. exp((R)").
|a1k|_<[R | |S|=2R| (9 <t.c exp((R)")

The desired conclusion now follows by taking logarithms. ]

Lemma 2.14. Let R> 0 and suppose that(§) is holomorphic in the dislg < R. Then
|1™(0) < 2n!R™" rlgjaRxRe(f(s) - £(0)).

Proof. It suffices to consider the cas¢0) = 0. We write

f0(0)

= rne’n, s=Ré&’.

Then .
Ref(Ré’) = ) "riR"cosd + ¢y).

n=1
Since the last series is absolutely convergent, we canratteg term-by-term to obtain the identity

2n
/ (1+ cos(¥ + ¢n)) Ref(Re”) do = nr,R".
0
Hence,
2
R <M / (1+ cos + ¢n)) do = 2M,
0

whereM = maxXRef(s): |9 = R}. [

Corollary 2.15. Suppose that (k) is an entire function such th&ef(s) = o(|9") as|g — .
Then f(s) is a polynomial of degree at mostnl.

Theorem 2.16.Suppose that(k) is an entire function of ordet with f(0) # 0, and leta, a,, as, . . .
denote the zeros of($) listed according to their multiplicities and arranged sath

O<lyl<lag € <lag| <---.

Then f(s) can be written as

f(9 = e (1 - %) e,

n=1
where A and B are constants.
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Proof. From Lemma 2.13 we deduce by partial summation ¥hgta,|-> converges. Hence, the

product
= S
P(s) = 1-—|e’™
@-11(-3)

n=1
converges uniformly on compact sets. ThB§s) is an entire function having the same zeros as
f(s) andF(s) = f(s)/P(9s) is an entire function with no zeros. TherefoFgs) has a holomorphic
logarithm, that is, there is an entire functigfs) such thafF(s) = e¥®. We now prove that

o(s) = A+Bs (2.17)

for some constanta, B.

In view of Corollary 1.14, (2.17) follows from the estimates) = o(/s?) as|s — . Since
Reg(s) is a harmonic function, it gtices to establish this on a sequence of cirgdes R with
R — co. We choose the radii so that

IR—lanl| > R (2.18)
for all zerosa, of f(s); this is possible because of Lemma 2.13. With such a chdi& we have

Ra,t +logR if |a,| < 2R,
Reja|~2 if |an| > 2R,

whenevels = R. Hence, by Lemma 2.13 and partial summation (see Exercjse 6)

—log|P(s)l < logR >~ 1+R > Jal "+ R ) lanl? < R*

lan|<2R lanl<2R [an|>2R

—log|(1 - s/a)e”™| <« {

forany O< € < 1. Therefore,
Reg(s) = log|e”®| = log|f(s)| - log|P(s)| <. R***

whenevells = RandR is chosen so that (2.18) holds. This establishes (2.17) amgpletes the
proof of the theorem. [

Theorem 2.17.The functioré(s) has infinitely many zeros in the stip< Re(s) < 1 and no zeros
outside that strip. It can be written as

&9 =] (1 - S) e, (2.19)

P

wherep runs through the zeros @fs) counted according to their multiplicities and B is a congtan

Proof. Because of Lemma 2.11, we can apply Theorem 2.1<p Upon noting that(0) = 1
(recall (2.13)), this proves (2.19). The infinitude of thea=eof £(s) is also a consequence of
Lemma 2.11. Indeed, #(s) had only a finite number of zeros, (2.19) would imply therestie

loglé(s)l < I,
which contradicts (2.15). ]
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Lemma 2.18. There exists a constant Buch that

(s -1 - 1 1 1 1
4(5)-a*B“;(sm‘%)*;(?p*;)’ (220

wherep runs through the zeros &{s) counted according to their multiplicities.

Proof. By logarithmic diferentiation of (2.14), (2.6), and (2.19), we get

N r(s2) | 29
49 " s-1 sV syt ey

I'(s) 1 - 1 1
‘r(srg”*;(m‘a)
§(9) _ BENNE
§(S)_B+;( )

Combining these three formulas, we obtain (2.20) viith= log v/ + %y + B, wherey is Euler’s
constant andB is the constant appearing in (2.19). ]

Theorem 2.19.Suppose that s o +it, -1 < o < 2. Then

5(’ ((SS)) _ 3%11 . S%p + O(log(t] + 2)). (2.21)

[1mp—t|<1

Proof. We writer = |t| + 2. Under the hypotheses of the theorem, we have

§2%+Zlnﬂ2<<logr.
n<r

n>t

(o8]

n=1
Substituting this into (2.20), we obtain
Z'(9) -1 ( 1 1)

-~ 4 —— + =) + O(log7). 2.22
S s_1§s_pp (log) (2.22)
We now apply (2.22) t@ = 2 + it. Logarithmic diferentiation of the Euler product (2.2) yields

(2 +it) logp log p
{2+ \szﬂt ‘ 2T

1 1
s+2n 2n

S0 (2.22) withs = 2 + it gives

1 1
Re; (m + ;) < |ogT. (223)
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Writing a typical zero o&(s) in the formp = 8 + iy and noting that & 8 < 1, we now find

1 2-8 1 1 B
Re- + - . ReC=Foso
“2wit-p T @-APHA-F L+(-F  p PP

These inequalities and (2.23) give

1
; T < logr. (2.24)

To prove (2.21) we subtract from (2.22) the respective fdamhor s = 2 + it and obtain

(s) -1 1 B 1

a9 - s—l+zp: s, 24it=s + O(log 7). (2.25)
By (2.24),

1 1 ‘

- . < logr
||m;>1 S—p 2+it- ||m;>1( —)/)2 Z1+('[—)/)2

and

2 2+|t— <2 1 Zl (t—y)2 < logr.

[1m p—t|<1 [1mp—ti<1

Hence, (2.21) follows from (2.25). ]

We conclude this section by recording a direct consequehicequality (2.24).

Corollary 2.20. Suppose that B 2. The number of the zeros (fs) in the region
0<Re(® <1, T<|Im(s)|<T+1

is O(logT).

2.3 The zerofree region

Theorem 2.21 (de la Valée Poussin).There exists an absolute constantcO such that’(s) has

no zergo = B + iy with c
1

~log(yl +2)
Proof. Suppose thas = o + it with o~ > 1. Taking real parts in Corollary 1.20, we obtain

ol (70 < o
Re({(s)) = ;A(n)n cost logn).

Bz (2.26)
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Since for reab,

3+4cosd +cosd = 2(1+ cosd)? > 0, (2.27)
e have () (o +i) {0+ 2i)
(o (o +1 (o + 2I
o 4% Ger) (i an) 0 20

We now consider a particular zepo= By + iyo and write inequalities for the terms on the left
side of (2.28) whem = y,. Since/(s) has a pole of residue 1 at= 1, we have

fo) 1
() o-1 + O(2). (2.29)
In view of Exercise 10, we hayjgo| > ¢, > 0. Thus, we obtain from (2.21) that

Re( {(o +1iyo) ) < Rely;o'ﬂ @ -B)+ilo—r) = log(lyol +2)

<
~ (0 =po)

+ czlog(yol + 2), (2.30)

and similarly,
(o + 2i7’0))
-Re( Z——F"—= | <clo + 2). 2.31
(G722 < culogtol + 2 231)
Inserting (2.29)—(2.31) into (2.28), we deduce thatfarlose to 1,
4o —Bo) ™ = 3(c — 1) < cslog(lyol + 2).

Choosing
1

o=1+ ,
2¢s log(lyol + 2)

we obtain
1

<1- ,
Po= 17 Taclogliyel + 2)
which establishes (2.26) wheyy| > c,. We dispense with the last condition by noting that there
are onlyO(1) zeros withyo| < c; and that none of them can be too close to the pote-all. m

As we mentioned in the Introduction, there are more precsienates for the zerofree region
of Z(s) than that in Theorem 2.21. While their proofs are too tec&inio present here in full
detail, we will describe briefly the main idea. In the proofldgfeorem 2.21, we derived bounds
for ’(s)/¢(s) from Theorem 2.19, which in turn relied on estimates fqis)/T'(s). The more
sophisticated approach towards the zerofree region bati(g)s/(s) using estimates for the sum

> nt=Y "exp(itlogn).
n<N n<N

In fact, both Littlewood’s and the Vinogradov—Korobov impements on Theorem 1 (recall (0.8)
and (0.9)) stem from improved estimates for this exponkastien. Those interested in learning
more about those results should consult the specializedbgraphs on the theory of the zeta-
function, e.g., Ivi¢ [31], Karatsuba and Voronin [37], atchmarsh [50].
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2.4 Proof of the prime number theorem

Our proof of Theorem 2.1 combines Theorem 2.21 and the fatigwesult, known as thRiemann—
Mangoldt explicit formuldor y/(x). An alternative proof is sketched in Exercise 17.
Theorem 2.22.Suppose tha? < T < x and{x} = 1/2. Then
0 | 2
W) =x- 3 X—+o<x(°gx) ) (2.32)

T
[Impl<T

where the summation is over the nontrivial zerog(@j with | Imp| < T.

Proof. We apply Corollary 1.14 witH (s) = —¢’(5)/£(s) anda = 1 + (logX)~L. In view of Corol-
lary 1.20, this gives

1 a+iT 2(9)) X X A(n)
9= [ (-50) 52507 X wiogtem )

n=1

The error term is easily seen to be

xlogx 1 1 1 x(log x)?
D M T I

n<x/2 X/2<n<2X n>2x
Hence, -
1 [ 7’9 x® x(log x)?
= A - - . 2.
0= [, () 5o (M5 (233)
Observe that, by Corollary 2.20, we can always choose a numbéa certain size so that
IT—Iyl| > (logT)™ (2.34)

for all zerosp = B + iy of £(s). With such a value o we move the path of integration to the
contourC on Fig. 2.1. The contribution from the poles of the integrandg between the two
contours is )

X £(0)

e L)

so it remains to show that the integral alofigs negligible. To this end, we note that by Theo-
rem 2.19 and Corollary 2.20,

(s )
0 < (logT)
whenevers € C. Hence,
(9 x° (1 [¢ T x2dy
/c<_§(5))gds < (logT) (f _1/2X”du+/_T 1+1yl )

< XTH(logT)? + x ?(log T)® < xT*(log ).

Once (2.32) has been established Tosubject to (2.34), removing that constraint by means of
Corollary 2.20 is straightforward. ]
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T 4T

—%—iT;—a—iT

Figure 2.1:

Proof of Theorem 2.1Suppose that > 10 and set = ¢;(logT)™%, wherec; > 0 is the constant
from Theorem 2.21. By Corollary 2.20 and Theorem 2.21, the suer the zeros on the right of

(2.32) is
< xt9 Z 2 Z 1< x*(logT)%

r<2logT [Im p|<2"

Thus, the result follows from (2.32) on choosing

logT = (log x)*? + O(1).

Exercises

1. Prove identities (2.9).
2. Prove Stirling’s formula.

3. Suppose that Re(> 0 andN € N. Prove that

_ s, NU® sl
{9= n +1_s—s/N {uu=tdu.

n<N

4. Prove Corollary 2.15.

5. Prove that the convergence of the sefi€s|an|=? implies the uniform convergence on compact sets of the

product
I (1_ E) =
an
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10.

11.

12.

Suppose that(s) is an entire function of order 1 witfi(0) # 0 anday, ap, a3, ... are its zeros, labeled as in
Theorem 2.16. Prove that:

@ > lanl” <ae R+ 1for anye > 0;
lanl<R

(b) Z lan|” <4 R*1€ foranya < —1and 0< € < —a — 1.
lanl>R

Prove that(0) = —-1/2 and¢(-1) = -1/12.
Prove that the Laurent expansionefs)/Z(s) abouts = 1 is

r© _ -1
a9 ~s-17T

>

wherey is Euler’s constant{Ht: Use (2.16)|

. Prove that the value & in (2.19) isB =  log 4r — 3y — 1, wherey is Euler’s constant.

Prove that any zegof the functions(s) satisfies
[Imp| > V-B-1-1> 6.503695.. .,
whereB is the constant appearing in (2.19) (and in the last prohlem)

The purpose of this problem is to show that the value ottimstanB in Theorem 1.9 is

1 1
B=y- = +log(1-=1]]), s
7 zp: (p ? ( p)) “
wherey is Euler's constant. Note that combining this identity ahe tesult of Exercise 1.8, we find that the

constantC in Exercise 1.7 equaks™.

(a) LetS(x) denote the sum on the left side (1.5) and defi(® = Zp p~S. Prove that if Reg) > 1, then

f(s) =(s-1) /loo S(X)xSdx

(b) Suppose that > 1. Combining Theorem 1.9 and part (a), prove that
f(o) = -log(c —1)—y + B+ O(—(c — 1) log(c — 1)).

(c) Suppose that Re(> 1. Prove thaff(s) = logZ(s) + g(s), whereg(s) is holomorphic in the half-plane
Re(s) > 1/2.

(d) Derive ¢) from parts (b) and (c).

Suppose that > 10 andN(T) denotes the number of zerp®f £(s) with 0 < Imp < T. Prove that
T T
N(T) = > log (?e) + O(logT).

[HINT: Apply the argument principle t&(s) and the rectangle with verticed +iT, 2+ iT. Use the results in
§2.2 to estimate the contribution from the horizontal lingse the functional equation to replace the integral
over the line Red) = —1 by an integral over the line R§(= 2. Finally, use that on the line Rg(= 2,
’(9)/£(s) has a Dirichlet series representatﬂon.
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13.

14.

15.

16.

17.

Suppose thats, p2, p3, . .. are the zeros aof(s) in the upper half-plane, listed according to multipliegiand
arranged so thatQ y; <y, <y3 <---, wherey, = Imp,. Prove that

lim

N—oo

mlogn _
n

Prove Theorem 2.22 for an arbitrary 2. [Hivt: Use Lemma 2.18.

Defineyo(x) = 2{y(x*) + y(x)}. Prove that fox > 1,

lﬁo(X)=X—Z%—@—}Iog(l—x‘z).

Here)_ = Tlanoo > pl<T

Definey1(X) = >, (x—n)A(n). Prove that fox > 1,

b X1—2k

X2 o 20) f(-1)

(X)) = - - - X + - .

T2 Z plo+1) " "0) T {(-1) & 2K(2k-1)

The purpose of this exercise is to deduce the PNT diréroty (2.33) instead from the explicit formula (2.32).

Starting with (2.33) move the integration to a polygonaltoamC that is similar to the contour displayed on

Fig. 2.1 but has vertices at=iT andn+iT, wherep = 1- %cl(log T)~. Estimate the integral overto obtain
the PNT.
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Chapter 3

Prime numbers in arithmetic progressions

In this chapter we study Dirichlet characters dnflinctions and prove Theorem 2.

3.1 Characters

3.1.1 Characters of finite abelian groups

Let G be a finite abelian group of orden, written multiplicatively. A group homomorphism
x : G — C*is called acharacterof G, that is,

x(xy) = x(Xx(y)  forallxyeG.
In particular,y(e) = 1 and (by Lagrange’s theorem on finite group&)™ = x(X™) = x(e) = 1.

That is,y(X) is anmth root of unity.
The characters db form a groupG under pointwise multiplication:

rx2)(¥) = xa(¥x2(x)  forallxeG.
The identity element of is the trivial character
yo(X)=1  forallxeG,
and the inverse of is its complex-conjugate character

Theorem 3.1.G = G.

Proof. Suppose first thad is cyclic,G = (g). Writing a generic elementof G asx = ¢, we find
that every charactgr € G must be of the form

Xxa(X) = xa(@) = efay/m)  (aeZz),

that is,G is a cyclic group of ordem generated by;.
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Now, suppose thab is an arbitrary finite abelian group. By the structural tlesorfor finite
abelian groupsG can be written as the direct product of cyclic grou@sz C; x C X - -+ x Cx.
Given anx = X1 %z - - - X, X € Cj, we define a charactgre G by

XO) = xi(yxa(y2) - -xkv)  fory=yiy»-- -y €G, y; € Cj;

herey; is the character ilé,- corresponding t; under the above isomorphism. Since the map
X — y is an isomorphism of abelian groups, the result follows. ]

Corollary 3.2. Suppose that G is a finite abelian group and x is an element ahér ¢han the
identity. Then there is a charactgre G such thaj(x) # 1.

Proof. This is a consequence of the proof of the theorem. As in tlwadfpwe writeG as the direct
product of cyclic groupss = C; X Cy X - - - X Cy. Thenx = X1%; - - - X, Xj € Cj, and some; is not

the identity. Without loss of generality, we may assume #at e. Let g be the generator dZ;.

The charactey corresponding tge- - - eunder the isomorphism from the proof of the theorem has
the desired property. [ ]

Lemma 3.3. Let G be a finite abelian group and denote by e ggdhe identity element and the
trivial character of G. Then the following two orthogonaglielations hold:

> () = {lGl Tx=xo (3.1)

e otherwise

and
G| ifx=e¢
= 3.2
Z (6 = { otherwise (3-2)
)(EG
Proof. Suppose that # yo. Then for someg € G, y(X) # 1. We now observe that

X00) D> ()= x(xox) = > x(y) =D xW.

xeG xeG yexoG yeG

Sincey(X) # 1, the sum on the right must be equal to 0. This establish&s®ieny is nontrivial,
the alternative case is straightforward. A
Now suppose that # e. By Corollary 3.2, there is a charachgy € G such thajo(x) # 1. But

xo(®¥) Y x(¥) = Zm(x) =) w0 =) v,

XEG l,bEXoG l//EG

and sinceyo(X) # 1, the sum on the right must be equal to 0. Again, the remainasg is
straightforward. ]
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3.1.2 Dirichlet characters

Letq > 1 be aninteger. Theéf/gZ is a commutative ring. L&b, = (Z/qz)* denote the multiplica-
tive group ofZ/qz. (Recall that a residue class#gz is invertible if and only if it is relatively
prime to the modulug.) ThenG is an abelian group of ordeéxq), whereg(q) is Euler’s function.
Of course, a character &, is a homomorphisng : G; — C*. It will be convenient to extend the
domain of each character to all elements of the FigZ by setting

x(n)=0 if gcd(h,q) > 1.

This extended function will be called@irichlet character modulo gor simply aDirichlet char-
acter. We will often regard each Dirichlet character modglas ag-periodic functiony : Z — C.
Although Dirichlet characters are not group homomorphighey are still completely multiplica-
tive:

x(mn) = y(m)y(n) forallmne Z. (3.3)

We refer to the extension of the trivial group charagtgras theprincipal character modulo g
we will denote the principal character lyy. The orthogonality relations in Lemma 3.3 yield the
following orthogonality relations among Dirichlet chataics.

Lemma 3.4. Suppose that ¢ 1. If y is a Dirichlet character modulo q, then

q .

¢(q) if x = xo.
= 34
;X(n) {O otherwise (3.4)

Furthermore,
if n =1 (modq),

S k) = {‘g(q) : (modd) (3.5)

moda otherwise

where the sum on the right side is over all Dirichlet charast@odulo g.

Let y be a non-principal Dirichlet character modaldet g, be a proper divisor of,, and lety
be a non-principal character modulpsuch that

x(n) = x1(N)xo(n) forallne Z, (3.6)

wherey is the principal character modulp Then we say that; inducesy. If y is a non-
principal Dirichlet character modulg and there exists a characjeras in (3.6), thery is called
imprimitive otherwise,y is calledprimitive. Note that principal characters are neither primitive,
nor imprimitive. If y is an imprimitive Dirichlet character modulp we definé its conductor

to be the least modulug such that there exists a (necessarily primitive) charactenoduloq*
which induceg. If y is primitive, we define its conductor to be equal to the modqgland if y is
principal, we define the conductor to be equal to 1.

1This definition requires some justification; see Exercise 2.
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3.1.3 Gaussian sums

We now introduce th&aussian sumif y is a Dirichlet character modulpanda is an integer, we
define

w(v.a)= > x(me@nya), (3.7)

mmodq

where the summation is over any complete system of residoésilimg.

Lemma 3.5. Lety be a Dirichlet character modulo g and suppose that eithedt@, q) = 1 or y is
primitive. Then

(v, a) = x(@7(y, 1). (3.8)
Proof. First, suppose that(qg) = 1. Then
(v.a) = x(@) Y x(@ame@@m/a) = (@ > x(Men/a) = x(@(y. 1).

mmodq nmodq

Here, we used that ih runs through a complete system of residues modutben so doeam
Now, suppose that is primitive and &, q) = k > 1. We writea = ka;, q = kgy, and note that
there exists an integérsuch that

(b,q) =1, b=1(modqy), x(b) # 1.

Then
xO)1(,8) = Y x(bme@m/ay) = > x(bme(abnya) = (v, a).

mmodq mmodq

Sincey(b) # 1, it follows thatr(y, a) = 0, which establishes the second claim of the lemmam

Identity (3.8) is useful for transforming exponential suim® character sums andce versa
However, for such applications it is crucial to be sure thgt 1) is nonzero. The next lemma
determines exactly the characters for which this is the.case

Lemma 3.6. Lety be a Dirichlet character modulo g induced by a primitive cheter y* modulo
g‘. Then

o= () () ewn (3.9)
Moreover, ify is primitive, thenz(y, 1) = /.

Proof. Assume first that is primitive. Summing (3.8) over all modulog, we get

0 D D @P= ) (v, a)P

amodq amodq

> > x(meanyg) > x(n)e(-an/q)

amodgmmodq nmodq

S xmim) Y eam-n)/a). (3.10)

mmodgnmodq amodq
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The innermost sum on the right side of (3.10yjier 0 according aa = b (modq) or not. Hence,

T D D @FP=q D (mP.

amodqg mmodq

This proves the second claim of the lemma.
We now turn to (3.9). Using Lemma 1.2, we can write the priatgharactef, modulog as

xo(n) = > u(d).
di(n,q)
Thus,
. 1)= > x'(Myo(me(m/a) = > x"(me(m/a) > u(d)

mmodq mmodq di(mg)

=> u(d) Y x"(nde(nd/q)

diq n modg/d

= p(dy'(d) DY x"(me(nd/a).

diq nmodg/d

Note that the terms withd(g*) > 1 do not contribute to the last sum. Thus, we may restrict the
summation oved to the divisors ofy, = q/q*:

(. 1) = @)@ > x'(nend/a).
digo nmodqg/d

We now write the summation variabfemodulog/d asqg‘v + u, whereu runs over a complete
system of residues modudp andv runs over a complete system of residues moduttg* = do/d.
We get

. 1) =) p@n@) Yo Y x(@v+ue(v+u)d/o)

digo umodg* v modgp/d

= u@y (@) D x(We(ud/q) > e(vd/q).

digo umodg* vmodgp/d

Since the innermost sum vanishes wiggfd > 1, the result follows. ]

3.1.4 The Blya—Vinogradov theorem

Suppose that is a non-principal character modujo From the orthogonality relation (3.4),

> xn)

M<n<M+N

< ¢(a)/2

for all M,N > 1. In this section, we will improve on this trivial bound. Tinext result was
obtained independently in 1918 by Polya [45] and |. M. Viraatpv [56] and is known as the
Polya—Vinogradov inequality
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Theorem 3.7. Suppose that IMN are positive integers angdis a non-principal character modulo

g. Then
> xn)

M<n<M+N

< +/3qlogaq. (3.11)

Proof. First, suppose thatis primitive. Then, by (3.8),

) > xm= > D x(mehmyg)= > x(m) > emna).

M<n<M+N M<n<M+N mmodq mmodq M<n<M+N

Hence, we deduce from Lemma 3.6 that

g-1
> x| <aY| Y emna)
M<n<M+N m=1 ' M<nsM+N

On noting that the modulus of the inner sumisa(rmN/q)/ sin(rm/q)|, we get the inequality

g-1
> x| <g"?) " cscemya).
M<n<M+N m=1

We now use apply the inequality csaff < (2x)~* for 0 < x < 1/2. Whenq = 2k, we obtain

k-1

= - 2m+1

1
> cscem/g) gy m +lquIog(2m_l>+1
m=1 m=1 m=1

=qlog(g-1)+1<qlogq;

and whemg = 2k + 1,

g-1 k k
2m+1
_1 —
> cscem/g) <> mt<q) log (72m— 1) qlogg.
m=1 m=1 m=1

This establishes (3.11) for primitive characters.
On the other hand, jf is induced by a primitive charactgt modulor, r < g, we have

o= D XM pud =D pdpd D x(m).

M<n<M+N M<n<M+N d|(g,n) diq M/d<m<(M+N)/d

Sincey* is primitive, the sum ovemis bounded above b//?logr. Hence,

> x)

M<n<M+N

<r2logr ) " |y*(d)l < d(a/r)r*?logr,

dig

where the last step uses that the terms wathr) > 1 do not contribute to the sum ovdr The
desired result now follows from the elementary bowaiie) < v3n. ]
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3.2 Dirichlet L-functions

If v is a Dirichlet character modulg we define thdirichlet L-function L(s, y) by
Lsx) =) x(n°  (Re@ > 1) (3.12)
n=1

Sincely(n)| < 1, this series converges absolutely and uniformly on thepamtnsubsets of the half-
plane Re¢) > 1. Furthermore, whejy is a non-principal character, the series in (3.12) conwerge
uniformly (but not absolutely) on the compact subsets o5Re(0:

(o)

L= | stectde s09= 3 x. (3.13)

n<x

Thus,L(s, y) is holomorphic in the half-plane Rg(> 1, and for non-principa} even in Reg) > 0.
By Lemma 1.16, everi.-function has an Euler product:

Lsy) =[[@-x@pP®)"  (Re@®> 1) (3.14)
p

In particular, (3.14) implies thdi(s, y) # 0 when Re§) > 1.

Next, we want to obtain an analytic continuationlds, y) to a meromorphic function o@.
We observe that it gtices to consider the case wheis primitive. Indeed, ify is an imprimitive
character modulqg induced by a primitive charactgt moduloq*, then (3.14) yields

Lisx) =[] @-xp®) =[] @-x@p) " = L) [[@-x'(Ppp™).
p ptq plg

Therefore, the analytic continuation bfs, y) is a straightforward consequence from the analytic
continuation ofL(s, y*) and the holomorphy of the finite product on the right. Simylaif yo is
the principal character modutp we have

Lsxo) =<9 [[(1-p7),
piq
SOL(s, xo) is holomorphic inC — {1} and has a simple pole at= 1 with residue

Res(L(sxo);1) = [[ (1-p™) = @-
pla

We now turn toward primitive characters.
Lemma 3.8. Suppose that is a primitive Dirichlet character modulo g, @ {0, 1}, and define

0u(x) = 3 () exp( — wxtP/q).

N=—co

Then for all x> 0,
(¢, 10X x) = (1)%(9X)Y202(%; X). (3.15)
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Proof. Suppose that = 0. Becausg is primitive, we can use Lemma 3.5 to obtain

o 00 = 3 7o) exp( - n1P /)

n=—oo

= > x(K) Y exp(-n?/qx)e(kn/q).
k modq n=—co
Introducing the theta-serieXz «) defined in (2.3), we can write this identity as
(6 10 x) = Y d(K) exp(ak®x/a)# (@) —ikx).
kmodq
We now appeal to Lemma 2.2 and get

(v, Da(x 1 x) = (@972 > x(Kd(ax k/a)

k modq

= @972 Y x> exp( - ax(ng+K)*/q)
k modq n=—co

=@ ) x> exp(—axn?/q) = (4%"260.(% X)-
k modq m=k (modq)

The proof fora = 1 is similar, except that instead of Lemma 2.2 it uses thetigen

(o)

> (n+a)e™™ = —ix¥2 Y " nexp(-m?x ! + 2rian) ,

N=—oc0 N=—0c0
which follows from (2.4) via term-by-term fferentiation with respect te. [

Theorem 3.9. Suppose that is a primitive Dirichlet character modulo q and choose=&0, 1}

so thaty(—1) = (-=1)2. Then the Dirichlet L-function (s, y) can be extended to an entire function
satisfying the functional equation

<9>(S+a)/21" <¥> L(s.x) = ;231/12) <q>(1_5+a)/21_ <1 - §+ a) Ll-sD) 3.16)

s s

Proof. As in the proof of Theorem 2.10, we start with a change of \desin the integral repre-
sentation for the gamma-function:

(sta)/2 0
S+a R z _ st+a)/2-1
r (—2 ) m (q) /0 P exp( — axnt/q) X dx
Multiplying this identity by @/7)?/2y(m)ms and then summing oven, we get
q\ (/2 _ /s+a R ” _ (s+a)/2-1
(5) r <T) L(s x) = m:E 1X(m)/0 nf exp( — axnf/q) X dx

1

-2 / 020 X2 dx (3.17)
0
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sincen?y(m) is an even function. By a change of variables and an appéartona 3.8,

1 )
| aatenxe @z tax= [ atorea

0 1
_ AT e gy (3.18)
T(X? 1) 1
Combining (3.17) and (3.18), we find that the left side of §3.dquals
1 / ) Oa(X, ) X321 gdx 4 .aq_l/z ) Oa(X, )X 212 gy (3.19)
2 1 ’ ZT(X, 1) 1 ’

Sinced,(X, y) decays exponentially fax — oo, this expression represents an entire function and
thus provides an analytic continuation lofs, y) to C. Furthermore, the substitutii— 1 - s
transforms (3.19) into

iaql/z o0

% /1 ) Oa(X, y)X 22 gy 4 51 ) Oa(X, )X gx (3.20)
Noting that wherny is primitive
(r, D, 1) = x(-1)a = (-1)q, (3.21)
we see that (3.20) is equal to
Tlg);l/lz) {% /1 ) Oa(X, )X 21 dx + ;8:21) 100 Oa(X, y)x S-A/2-1/2 dx}.
This establishes the functional equation (3.16). ]

3.3 The zeros olL(s, x)

Again, we want to use the logarithmic derivatilzgs, y)/L(s, x), so we need first to study the
zeros and the poles of the Dirichletffunctions. As we already mentioned in the previous segtion
L(s, x) is entire, unlesg is principal, in which casé(s, y) has a single singularity—a simple pole
ats = 1. We already know (from (3.14)) thai(s, y) is non-zero in the half-plane Rg(> 1.
Furthermore, using the functional equation (3.16), we ¢enmwgthat the only zeros df(s, y) in the
half-plane Re$) < 0 are simple zeros at the even or odd integers, dependingaigh ofy(-1).
Also, if y is a non-principal character wif(—1) = 1, we see thas = 0 must be a zero. To study
the zeros oL (s, y) in the strip 0< Re(s) < 1, we introduce the entire function

és0= (D (323 Ls

which will play the same role the functiaf{s) defined by (2.13) played in the study of the zeros
of the zeta-function.
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Theorem 3.10.If y is a Dirichlet character modulo g, then(1, y) # O.

Proof. For principal characters the result is trivial (théunction has a pole a = 1), so we may
assume that is non-principal. The case whgnis complex is easy. Suppose thdt, y) = 0 for
a complex charactgr. Theny is another character modudpwith

L(Ly)=L(Lx)=0
Therefore, the product

f9= ][ sy

x modg
represents an entire function, which vanishes-atl. On the other hand, when> 1, we have

> loglie) = Y ZZX('O) >y L ¢(OI)

x modq xmodg p m=1 p m=1
p™=1 (modq)
Hence,f(o) > 1 for o > 1, which is inconsistent witli(1) = 0. Thus, our assumption must be
false.
To prove the lemma for a non-principal real character, wesichar the function

_ L(s, x)L(s xo)
0= osr

wherey is the principal character modulp If L(1,y) = O, this function is holomorphic in
the half-plane Reg) > 1/2 and vanishes & = 1/2 (since the denominator has a pole and the
numerator is entire). On the other hand, whendre(1, (3.14) yields

ps+ 1 —~
f(s) = || <p5—1) = E apn>.
x(p)=1 n=1

Note that the ca@icientsa, are nonnegative. We now look at the Taylor expansiorf(@) in
|s— 2| < 3/2. We have

(9= @ (s_op

m=0
where from the Dirichlet series representation,

fM(2) = (-1)" ZOO: an(logn)™? = (-1)"om,  say

Thus,

o) bm .
f(9 =)+ 2; @-9m
m=
with non-negative cdécientsb,,. Lettings — 1/2, we find that all the cd&cients on the right
are zero (sincd (1/2) = 0), and in particular, that(2) = 0. This, however, contradicts the Euler
product representation dfs). ]
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We now commence our investigation of the zeros® y). The following two results are
analogues of Lemma 2.11 and Theorem 2.17.

Lemma 3.11. Suppose that is a primitive character modulo q. There is an absolute canst
¢, > Osuch that
£(s, y)| < € geuisllog(@lsh) (3.22)

Proof. Because(s, y) satisfies the functional equation

s x) =wléd-sy), W)l =1,

it suffices to prove (3.22) when R&(> 1/2. For suchs, the desired bound follows from the
definition of£(s, y), Stirling’s formula, and the estimate

IL(s x)l < dlsl.
]

Theorem 3.12. Suppose that is a primitive character modulo gq. Then the functig(s, y) has
infinitely many zeros in the strip< Re(s) < 1 and can be written as

é(sx) =] (1 - E) elr.

5 P

Here A= A(y) and B= B(y) are constants depending only on the charagtemd the product is
over the zeros (s, y) listed according to their multiplicities.

Corollary 3.13. Suppose that is a primitive character modulo q and a {0, 1} is such that
x(=1) = (-1)2. Then

() 1T (s+ a)/2) 11
o = B0~ 51000m - S g 2 (?p ' 5) - 63

Here B)) is the constant appearing in Theorem 3.12.
Proof. This follows from Theorem 3.12 by logarithmicftérentiation. ]

Corollary 3.14. The constant &) satisfies
1
ReB(y) = —Re) = (3.24)
5 P

Proof. We first observe that, by the functional equatiorf( v), if p is a zero of(s, x), then so
is 1—- p, while p and 1- p are zeros o£(s, y). From Theorem 3.12,

£(sx) _
&(s.x) Blx) + Z(S p p) (8.25)
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and from the functional equation,

£sx) _ £(1-s)
&(s x) El-syx)

Substitutings = 0, we get

EO0) _ #0D o (11
0= o T e T W sz(l—fﬁ)' 320

Note that sinc& (s y) = (S x), (3.25) impliesB(y) = B(y). Thus, by (3.25) and our starting
remark,

2ReB(X):B(X)+B()?):—Z(%+;17) :—2ReZ;1).

Theorem 3.15.Suppose that is a primitive character modulo g and=so +it, -1/2 < o < 2.

L'(sy) -1 1
X) _ - 3.27
ol “ Ep_qSl + O(logq(it| + 2)), (3.27)

where ae {0, 1} is such thaf(-1) = (-1)%

Proof. We writet = (|t|+2). The starting pointis (3.23). The term involving the gaaafunction
can be estimated as

1
m. + O(IOgT)
Thus, (3.23) may be rewritten as
L’(s, x) 1 ( 1 1)
=B()- —+ —— +— | +O(log7). 3.28
(o =0 a2 (o, 1) +Oloan (3.28)

We view this approximate equation as an analogue of (2.22\amt to deduce from it an analogue
of (2.21). We lets = 2 + it and take real parts. Then the left side of (3.28) is boundedstg
(3.24), we obtain

1
R —— < logr.
ezp: srit=p <l0uT

Sincep =B +1iy,0< B <1, we have

N S 2-8 1
2+it=p " @-PP+ -7 T+

whence 1
; m < IOgT. (329)
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Subtracting from (3.28) the corresponding equation with2 + it, we deduce that

U - +Z< L L )+O(Iogr).

L(sy) s+a s—p 2+it-p
Whenly —t| > 1,
1 1 - 1
Ss—p 2+it-p (t—vy)%

Hence, in view of (3.29),

L’(s, x) -1 ( 1 1 )
= + - . + O(log).
L(sy) s+a |y-zt|;1 S—p 2+it—p (log)

Using (3.29) once more, we see that the terms (2— p)~! are also superfluous, and so (3.27)
follows from the last equation. ]

From (3.29), we obtain the following result.
Corollary 3.16. Suppose that B 2. The number of zeros of 4 y) in the region
O0<Res<1, T<|Img<T+1

is O(logqT).
Theorem 3.17.Suppose that is a primitive character modulo g. There exists an absolotestant
C, > Osuch that at most one zepo= B + iy of the function s, y) does not satisfy

C2
<l-— .
Pl iogq+2)

If such a zero does exist, the charactemust be real and the zero itself must be simple and real.
Proof. As in the proof of Theorem 2.21, we deduce from (2.27) that
’ ’ H ’ H 2
_3L (o x0) 4ReL (o +.|t,)() B ReL (c+ 2.It,)( ) > 0.
L(o, xo) L(o +it, x) L(o + 2it, x?)

Here,o > 1 andyy is the principal character modubp Letp = By + iyo be a particular zero
of L(s, x) and writer = q(lyol + 2). We now estimate the left side of (3.30) whiea y,. From
Theorem 3.15,

(3.30)

L'(c + iyo. x) 1
-Re——————=—= < —Re — +0O(lo <
L(o + iv0,x) 2 ot+iyo—p (log7) o

+ O(logT). (3.31)
[Im p—yol<l —Bo
To estimate the term involving?, we observe that if? is induced by a charactgr modulogs,

then

L'(sx?)  L'(sxi)

Lsd)  L(sx) < Z A(mmM™ < Z logp (p™” +p ™ +--+) < logq. (3.32)

(ma)>1 pla
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Moreover, a similar relation holds fdr'(s, xo)/L(S, xo) andZ’(s)/Z(s). In particular, combining
that relation with (2.29), we obtain

L' (0, x0) 1
- Lo x0) < p—] + O(logQ). (3.33)

Wheny? is non-principal, (3.27) and (3.32) give

L' (o + 2iyo, x?)
L(o + 2iyo, x?)

< logr. (3.34)

Combining (3.30), (3.31), (3.33), and (3.34), we deduce tha
40 - Bo) P <3(c-1)*+czlogr. (3.35)

On choosingr = 1 + (2c3log1)™, this establishes the theorem in the case of complex clesisact
We now turn to real characteys(so thaty? = yo). In this case, we replace (3.34) by

L’ (o + 2iyo, x0) o -
- . | , .
Lo+ Ziyorxo) ~ (@—1p+4y2 T o097 (3.36)

the extra term accounting for the polesat 1. Accordingly, (3.35) becomes

4 < 3 N o-1
oc-Bo” oc-1 (0-1P2+4y3

+ c4logT.

Thus, if [yl > 6(log7)~2, the desired conclusion follows on choosing
o=1+cs(logr)™?, 0 < ¢s < min ((4cs) ™, 4c46%).

Finally, suppose thayo| < 6(logq)~t. Foro > 1, Theorem 3.15 yields

L'(ox) -1
- L) < Z ; + Cslogq. (3.37)

Impl<l =

(Note that for a real charactgt p andp are both zeros df(s, x), so the sum on the right is real.)
On the other hand,

L'(0x) _ < - - o _ (o)
oy - %;A(n))((n)n > — %;A(n)n =) (3.38)
Combining (2.29), (3.37), and (3.38), we obtain
1 1
|Ir§|§10-_p s(r_l+c7logq. (3.39)
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We now assume, as we may, thiak (10c;)™! and seto = 1 + 26(logq)™. If p = Bo + iy
is a complex zero or a double real zero, we estimate the ladt af (3.39) from below by the
contribution fromo andp or by the doubled contribution from We get

2(o - o) -1

Also, by our choices,

o - Lo S o — Lo . 0.8
(0 =Boy+75 ~ (00— Po)?+3%(logq)2 ~ o~ fo’
Combining this inequality with (3.40), we obtain
1.6(c —Bo) "t <0.667logq = Bo < 1-0.58(logqg)™t.
Finally, if By is a real zero anf, is another real zero, we replace (3.40) by
(0 —Bo) ™t + (0 —B1) ™ <0.66 ' logq,

whence
min(Bo, 1) < 1 - 6(logqg)~*.

3.4 The exceptional zero

The possible real zero appearing in Theorem 3.17 is knowm ag@ptional zerpa Siegel zerp
or aSiegel-Landau zerd he purpose of this section is to show that such zeros caiertob close
to 1. First, we prove that if twa-functions both have exceptional zeros, one of them must hav
modulus that is much larger than the modulus of the other.

Theorem 3.18 (Landau). Let y; and y, be distinct primitive real characters modulq gnd ¢,
respectively. Suppose thatandg, are real numbers such that

L(B1, x1) = L(B2, x2) = 0.

There exists an absolute constaptc0 such that

min(81,82) < 1 - cg(logondy) ™.

Proof. Using the inequality
(L +xa(M))(2 + x2(m) > 0,

we find that
@) Ll Ulox) L)
{(0) Llowx1) Llowxa)  Lloxwe)
Sincey; andy, are distinct, 1y is hon-principal and we can deduce the theorem from (3.41) by
referring to (2.29), (3.31), and an obvious analogue of4B.3 ]

(3.41)
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Corollary 3.19. Let Q > 1. There is an absolute constant & 0 such that no L-function(s, y)
modulo g, o< Q, has a zerg = 8 + iy with

B < 1-co(logQ(lyl +2)) ", (3.42)

except possibly at a poigt on the real axis, where(ls, y) may have a simple zero. Furthermore,
any charactery modulo g, g< Q, for which this zero does occur is real and induced by theesam
primitive real character.

So far, we know from Theorem 3.10 that the exceptional zdrib €xists) is less than 1, but
we have no quantitative form of this result. By a classicalleof Dirichlet—the analytic class
number formula (see Davenport [18, (15)]), for a primitive quadratic charactemoduloq, we
have

L(Lx) = Clh(@)a ™2,

whereC(y) > 1 andh(q) is a positive integer (the number of “classes” of binarydpa#ic forms
of discriminantq). Using the trivial observation théi(q) > 1, we conclude that, in fact, we may

strenghten Theorem 3.10 to

L(1,x) > q ¥/,

which in turn leads to the following bound for the exceptilreroS:
Bo < 1-cioq *(logq) 2. (3.43)
The following remarkable result of Siegel’s provides a mattbnger bound of,.

Theorem 3.20 (Siegel)Let e > 0 be fixed. There is a constang(e) > O such that ify is a
primitive real character modulo q, then$§ x) # 0 in the region

[Im(s)| < 1, Re(s) > 1 - cy(e)g . (3.44)

Proof. We consider primitive real characteys andy, with moduli g; andqy, respectively, and
introduce the function

F(s) = £(9)L(s x1)L(S x2)L(S x1x2). (3.45)

Sinceyyy2 is a non-principal (though not necessarily primitive) awer modulog, gy, F(S) is
holomorphic everywhere exceptsat 1, where it has a simple pole with residue

A= L1, x1)L(L, x2)L(L, x1x2).
We now proceed to show that
F(o) > 1/2 - cpid(a)® (1 -0)t  for 7/8< o < 1. (3.46)

When Re§) > 1, we can write=(s) as a Dirichlet series
F(9 =) an™
n=1

54



It follows from the Euler product representations of thedag in (3.45) thak; = 1 and that, > 0
foralln=1,2,.... When|s—- 2| < 1, F(s) has also a Taylor expansion

F(9) = fj bn(2— 9",
n=0

where -
by = (-1)"F™2)/nt = " an(logm)"m2 > 0.
m=1
Hence, .
G(9) = F(9) - A(s—1)" =D (b-)(2-9)". (3.47)
n=0

and this representation is, in fact, valid in the larger dssk 2| < 3/2, becaus&(s) is an entire
function. We now estimate the déieients of the series in (3.47). On the circle |[s— 2| = 3/2,
we have

1Z(9) < 1, Is—17t < 1, and |L(sx) <q

for any non-principal charactgrmoduloq. Thus,
G(s) < (0n0R) (s€Q).

We now use Cauchy’s formula for the Taylor éd&ents. Integrating along, we find that

1 G(s) 2\"
b — 4| = ‘ﬁfcmds < (§> (G

WhenN > 1 and 78 < o < 1, this gives

D by - AR - 0)" < (%)’ (34 < (qua)’e ™.

n=N
Hence,
N-1
F(o) - A = 1)1 2 ) (b — D)2 - 0)" - Cra(Gup)’e™*

n=0

N-1
>1-1) (2-0)" - craua)’e ™,

n=0

upon noting thaby = F(2) > 1. Thus, choosing)l so that

Cro(thz) e ™ < 1/2 < cyp(tuap)’e M,

we obtain
F(o)>1/2-212- )1 -0)71,
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and (3.46) follows from the inequality
(2- o) < exp(N(1 - 7)) < Cra(tu)* .

We may assume thai(s, y) has a real zerg, > 1 - (logg)~ and that there is some primitive
charactely, such thal (s, x,) has a real zer@, with

1-¢€/10< B < 1.

We then consideF(s) with y; = y andy being this special character. SinE€s3,) = 0, (3.46)
yields
APA) > 1 (3.48)

here the constant depends on the choicgpind hence, oa. By the bounds in Exercise 12,
A< L(L, x)logq. (3.49)
Furthermore, Lagrange’s mean-value theorem and anotpeaifo Exercise 12 give
L(L,x) = L(1,x) — L(Bo.x) = (1~ Bo)L' (o, x) < (1~ Bo)(log ),
for someo € (Bo, 1). Combining this estimate, (3.48) and (3.49), we obtain
1 <. (1-Bo)a***(logq)® <. (1-Bo)d,
and (3.44) follows. ]

Remark. Theorem 3.20 ineffective That is, givere > 0, the proof does not allow us to calculate
the constanty(e). Indeed, in the above proof, we essentially used a possihleterexample to a
strong conjecture(i.e.,3,) to show that any possible counterexample to a weaker comgedoes
not fail that conjecture too miserably. In particular, irder to compute,(e), we must exhibit a
particular charactey, as in the proof of Siegel's theorem. Of course, if GRH is tres—s the
popular belief—neithesy nor 3, exist and we will never find an actual charactgrthat we can
use to calculatey(e).

3.5 The prime number theorem for arithmetic progressions

For a Dirichlet charactey, define

w(xx) = > An)(n). (3.50)

n<x

The next theorem is an analogue of Theorem 2.22.

2Namely, that all real zergg of L-functions with real characters satigfy< 1 — €/10.
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Theorem 3.21. Suppose that is a non-principal character modulo g a2l < T < X, where
{x} =1/2. Then

pxx)=- Y ¥ 0 ((XT™ +g¥?)(logg®?) , (3.51)

[Imp|<T

where the summation is over the nontrivial zepasf L(s, ) with|[Imp| < T.

Proof. First, suppose thatis primitive. As in the proof of Theorem 2.22, we set 1+ (logqx)~*
and apply Corollary 1.14 witti(s) = —L’(s, x)/L(s, x). Then an argument similar to that leading

to (2.33) yields
LT V(s ) ¢ x(log gX)?

Because of Corollary 3.16, we may assume fhat chosen so that

lImp| - T| > (logqT)™  whenevel (p, x) = 0. (3.53)
It then follows from Theorem 3.15 and Corollary 3.16 thatithequality

L'(s.x)
L(s x)
holds on the contou® shown on Fig. 2.1. Thus,
L’(s,x)) X x(log gx%?
- —ds< ————, 3.54
[(ten)s T (359

the details being similar to those in the proof of the respedtound in the proof of Theorem 2.22.
Combining (3.52) and (3.54), we find that

< (logqT)?

x(log qx)z)

l//(X,)():Z+O< T

whereX is the sum of the residues of the function

<_ L’(S,X)) X8
L(sx)/ s
at its poles lying betwee@ and the vertical line Raj = «. This function has simple poles at the

zeros ofL(s, y) in the critical strip and a simple or double polesat 0 (according a&.(0, y) # O
or L(0, y) = 0). Hence,

pxx) =- Y Xy Cly)+0O (M) : (3.55)

[Impl<T

whereC(y) is the residue at 0. It remains to estim@yg).
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Let b(y) be the constant term in the Laurent expansiob’¢d, y)/L(s, y) nears. Then

) = b(x) if L(O,x) # 0,
~ ] b(y) +logx if L(O, x) = O.

From (3.27), L
b(y) = Y — +O(logq).

ll<1
By Theorem 3.17, the last sum contafd@og q) terms and each of them, except for possibly one,
is O(logq). The exceptional term occurs only whens a real character such thiags, y) has an
exceptional zero; furthermore, by (3.43), the exceptiteah is< g*2(logg)?. Altogether, we
have
C(y) < q*?*(loggx)>.

The desired result follows from this estimate and (3.55).
Finally, we remove the restriction to primitive charactessippose that is a character modulo
g induced by a primitive charactgt modulor, 1 <r < g. Then

Y x) —wxx) < > AM <> (logp) > 1< (loggx?. (3.56)
N<X plg k:
(ng>1 pr<x
Hence, .
pxx)=—- Y = +O0((xT+r"?)(loggx?).
[Imp|<T

where the summation is over the nontrivial zerod ¢, v*). Thus, (3.51) follows on noting that
L(s, x) andL(s, x*) have the same nontrivial zeros. ]

Theorem 3.22.Suppose that ¥ 2, g > 1, and(a,q) = 1. There is an absolute constanic- 0

such that (8) X
X a) XAt
5@ o i+ OUP(~ 1 T00%)) (857

whered, = 1if there is a real characteg; modulo g such that(s, y1) has an exceptional zef®
anddq = 0 otherwise.

w(x d,a) =

Proof. We assume, as we may, titaj < 1/2. It sufices to consider the case
1< q<exp(+vlogx),

for otherwise (3.57) is trivial. By (3.5),

1 _
w668 = o5 > x@u(x.x). (3.58)

x modq
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Suppose that is a nonprincipal character modujicand set
T = exp(vogX), 8(T) = co(2logT) L.
By Corollary 3.19,
Rep < 1-co(logqT) ™t < 1-6(T)
for all zeros ofL(s, ), except possibly for the exceptional zggp Thus, (3.51) yields

_ s 1-5(T) E) 1 2
WX x) = (sg\()ﬁ1 +O<x > " +O(xT *(log x)?),

[Im p|<T

whered(y) is 1 or 0 according ag = y; or not. Using Corollary 3.16 to bound the last sum, we
deduce that

5 @(x.0) = e’y + O(p(@xexp( ~ s VIOT)). (3.59)

x modqg

where the summation on the right side is restricted to theprorcipal characters modulp Fur-
thermore, by a variant of (3.56) and Theorem 2.1,

¥ (X x0) = ¥(X) + O((logX)?) = x+ (xexp( — ci5VIog X)) (3.60)
Clearly, the desired result follows from (3.58)—(3.60). [

Note that the constaii, is efective, but Theorem 3.22 itself is not, since in general waato
know whether the exceptional zero exists.

Proof of Theorem 2We now deduce Theorem 2 from Theorem 3.22. We use Siegelbsdime
with e = (2A)71. It gives

Br<1-co(A)g Y < 1-cy(A)(logx) 2, (3.61)

whence
X [B1 < xexp( — ci(A) VIogX).

Therefore, even if there is an exceptional zero, the coordipg term on the right side of (3.57)
is superfluous and

X
w(x; g, a) = ) + O(xexp( - c2(A) VIogX)). (3.62)
Theorem 2 now follows by partial summation. ]

Remark. Observe that the constarggA), c1(A), ... above depend on the constagle) in Theo-
rem 3.20 and are therefore ffiective.

59



Exercises

1. Suppose tha > 1 is an integer and : Z — C is a nontrivial,g-periodic, completely multiplicative function
such thatf (n) = 0 whenever gcdf, g) > 1. Prove thaf is a Dirichlet character modulp

2. Suppose that the charactemoduloq is induced by the characteggs modulog; andy, moduloq,. Write
gs = gcd(@1, g2)- Prove thay is induced also by a charachey modulogs.

3. Suppose that gedd, g2) = 1, y1 is a character modulq, andyz is a character modulg,. Prove that the
characteg1y2 moduloq;q; is primitive if and only if bothy; andy, are primitive.

4. (a) Suppose thatis an odd prime. Prove that there is no primitive real charactodulop®, « > 2, and
that the only primitive real character modyas the Legendre symbol

<E) _J+1 ifn=0o(modp),

p/) |-1 ifnzo(modp).

(b) Prove that there is no primitive real character moddla2> 4.

(c) Prove that the only primitive real character modulo s ¢haractey, given by

(n) = +1 ifn=1(mod 4)
YW= 21 ifn=3(mod4)

(d) Prove that the only primitive real characters moduloe@randysys, whereys is given by

(n) = +1 ifn=+1(mod 8)
V=121 ifn=+3 (mod 8)

5. Suppose thahis a positive integer and define the exponential sum

m

G(m) = > _e(n?/m).

n=1

(a) Define the functiorf : R — C by

f(x) =

fo(x — 0) + fo(x + 0) e(x*/m) if0o<x<m
, fo(x) = )
2 0 otherwise

We can apply td the Poisson summation formula (see Zygmund [59, eq. (W)]8.
Yt => fn)., f@o= / f(X)e(—xt) dx
nezZ nez R

Use this to prove that
-n/2+1

G(m) = mz e( - mrf/4) / e(my?) dy.

nez -n/2

(b) Using the result of (a), show that

G(m) =C(1+i™)vm  whereC = /m e(t?) dt.
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6.

©

10

11.

12

(c) Deduce that
1+i™m

1+i-1

G(m) = Vm.

(d) Deduce the formula for the Fresnel integrals:

/cos(xz)dx=/ sin(x@) dx= /=
0 0 2

The purpose of this problem is to establish the law of qatéireciprocity:
P q)\ _ (p-1)(@-1)/4
r 2 = (-1)\P-H %
(@) ()= 0

(a) LetG(m) be the exponential sum defined in the last problem. Prove tha

s - (£) () es.

for all pairs of distinct odd primep, g.

(b) Deduce £) from part (a) and the explicit formula f@(m).

Suppose that is a character modulg induced by a primitive charactgf modulog®. Suppose also thatis
an integer and write; = g/(a, g), a1 = a/(a, q). Prove that:

(@) Ifg* 1 s, thent(y,a) = 0.
(b) If g" | au, then

(), () @
T(X’a)_”(q*))( (q) oy " -

Suppose that gedf, 02) = 1, 1 is a character modulgy, andy is a character modulg,. Prove that

7(y1x2, 1) = x1(d2)x2(q1) 701, 1)r(x2, 1).

(a) Suppose thatis an odd prime ang is the primitive real character modufo(i.e., y is the Legendre
symbol ¢/ p)). Prove that(y, 1) = G(p), whereG(m) is the exponential sum defined in Problem 5.

(b) Suppose thayis an odd squarefree integer gpds the primitive real character modudp Prove that

1 ifg=1(mod4)

1)=&V, &= {i if q= 3 (mod 4)

Verify (3.21).

If y1 andy, are two characters modudp the Jacobi sumis defined by

Irx2) = Y xa(ya(l—n).

nmodq

(a) Prove that whegyy2 is primitive, 7(y1, 1)v(x2, 1) = I(v1, x2)7(x1x2, 1)-
(b) Prove that whey is primitive, J(y, x) = x(-1)u(q).

Suppose thatis a non-principal character modudpk > 0, ando- > 1 - (logg)~*. Prove that:
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q
(@ > x(m(ogn)*n™ < (loga)***.

n=1

(0) > x(M(logn)n < (log ).

n=qg+1
() LYo, x) < (logg) ™.

13. The purpose of this exercise is to establgtichlet's theorem on primes in arithmetic progressiorifsa and
g are integers with gcd(qg) = 1, then the arithmetic progressianmod g contains infinitely many prime
numbers.

(a) Suppose that gca(q) = 1 and Re$) > 1. Observe that
_ 1 — _
> pe= o) > x@> x(pp.
p=a (modaq) ¢ q x modq p

(b) Suppose that Re> 1 andy is a Dirichlet character. Show that

> x(P)p° =loglL(s.x) + f(sx),
p

wheref(s, y) is holomorphicin Reg) > 1/2.

(c) Suppose that is non-principal. Thef.(s, y) is holomorphic in Reg) > 0. Together with Theorem 3.10,
this establishes that Idds, y) is holomorphic neas = 1. Combine this observation with the results of
(a) and (b) to conclude that when Re¢ 1,

1
> pt=—=log(s) +9(s).
p=a (modq) ¢(Q)

whereg(s) is holomorphic neas = 1.

(d) Prove that Z p~! diverges. This establishes Dirichlet’s theorem.
p=a(modaq)
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Chapter 4

The large sieve

In modern analytic number theory we use the term “large Sigvelescribe any among several
analytic lemmas, none of which is really a “sieve” (in the alssense attached to that word in
number theory). Suppose that we have a sequéhee(a,) of some arithmetic interest and that
we want to study its distribution in a certain sense. A typ&gample is the case wheré is an
integer sequence and we want to understand its distributiarithmetic progressions or in short
intervals. Often such problems can be reduced to the estimatt generating functions

> X(a). (4.1)

acA

where the functiotX belongs to a suitably chosen claésf “harmonics”; nontrivial bounds for the
sums (4.1) then lead to information about the distributibthe sequenceA. For example, in the
proof of Theorem 2 we used this approach to establish thgpringes are uniformly distributed
among the reduced residue classes moduldn that case, the “harmonics” were the Dirichlet
characters modulgand the generating functions (4.1) were the syxsy), with y non-principal.

In a large-sieve inequality, we seek estimates for meaarsecqaverages oveéf of general linear
forms in the “harmonicsX € X. That is, we want to bound

1D anX(n)

XeX ' n<N

2
’

for any choice of the cd&cientsa,. In this chapter, we prove several estimates of the form

1D anX(n)

XeX ' n<N

2
< C(X,N) Y ladl,

n<N

where the harmonics are additive characegssn), Dirichlet characterg(m), or powersm™. In
the next chapter, we will see several applications of thesalts to the distribution of primes in
progressions and in intervals.
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4.1 Two results from analysis
We say that an entire functiof(2) is of exponential type, if
1f(2)| <. €494 for all fixed e > 0.

The entire functions of exponential typewhose restrictions to the real line are liA(R) are
characterized by the Paley—Wiener theorem (see Boa$6[8] or Zygmund [598XVI.7]): an
entire functionf () has these two properties if and only if its Fourier transfan the real line,

f(t) = / ) f (X)e(=xt) dx,

is supported in the interv#tl < 7/(2nr).
Consider the entire function

B(2) =

sifnz( — sgnf) _
ﬂzﬂ {_Z (Z_n)2+22+221},

where for a real numbeg,

+1 if x>0,
sgn) = 0 ifx=0,
-1 ifx<O.

This function, discovered by Beurling in 1930 and then reok®red by Selberg in 1974, has the
following three important properties:

(B1) sgn) < B(x) for all x € R;

(B,) the Fourier transform of the functidB(x) — sgn) is a continuous function, supported in
[_1? 1]1

(Bs) /7, (B(X) —sgn()) dx = 1.

Furthermore, the functioB(2) is the unique entire function that satisfiesYBnd (B) and min-
imizes the integral appearing in {B The proofs of these facts can be found in Graham and
Kolesnik [17, Appendix] or in Vaaler [51] (see also Exercisafter the chapter). We can use the
function B(2) to establish the following result.

Lemma 4.1. Suppose that, 3,6 are real numbers such that < g andé > 0. There exists an
entire function K2) = F(z a, 8, 6) such that:

() F(X) = 1(x; a,B), wherel(x; a, 8) is the characteristic function of the intervit, §];
(i) its Fourier transformF(t) is supported iff—6, 6];
(i) FO)=B-a+6"
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Proof. The function
F(2) = 3(B(6(B - 2) + B(6(z— a)))

has all the desired properties. ]

Lemma 4.2. Suppose that ) is an entire function of exponential type Suppose furhter that
F € L?(R) and K(x) > Ofor all real x. Then there exists an entire functiog)fof exponential type
7/2 such that Kx) = |f(X)|? when x is real.

Proof. This follows from the main result in Boas [§7.5]. Hypothesis (7.5.2) in [4] follows from
our hypothesis thdf € L?(R) and the discussion in [48.1]. n

Corollary 4.3. Suppose that, 3, 6 are real numbers such that < g andé > 0. There exists an
entire function {2) = f(z «, B, 6) such that:

(i) [f(¥)I? = F(X) for all x € R, where K2) = F(z a, 8, 6) is the function from Lemma 4.1;
(i) the Fourier transformf(t) = = f(X)e(—xt) dx is supported ifi-6/2, 5/2].

Proof. The functionF(2) is of exponential typé. Since by constructiof € LP(R) for all p > 1,
we can apply Lemma 4.2 #6(z). The resulting functiorf (2) has property (i), and therefore, is of
exponential typ&/2 and square integrable. Hence, an appeal to the Paley—Wewegem proves
that f is supported inf6/2, 5/2]. n

4.2 Large-sieve inequalities

Suppose that; < & < - -+ < &g are real numbers such that

To+30<&<To+T-136 (4.2)
and
& =&l >0>0 whenever # s. (4.3)
Further, suppose that < v, < - -- < v are real numbers such that
M<w<M+N
and
k—wvl>A>0 whenevek # |. (4.4)

Lemma 4.4. Suppose thady, &, ..., &g andvy, vy, . .., vk are as above and define

K
S(@) = aelav).
k=1

where a, &, ..., ax are complex numbers. Then

R K
DISEN < (N+67H) (T+A™M)D lad (4.5)
r=1 k=1
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Proof. Assuming the notation of Lemma 4.1 and Corollary 4.3, weoishtice the functions
G@=FzMM+N,8), 9@=9zMM+N,6), H@=F(ZToyTo+T,A).
and define the sum

K
S*(e) = > ad(n) "elan).
1

By Fourier inversion,
S(a) = / g(u)S*(u + o) du.
Recalling thag(u) is supported in+5/2, 6/2], we obtain

) 6/2
SE) < ( / |@(u)|2du) ( / N IS*(U+§r)|2dU>-

Since, by Plancherel’s theorem,

/_ T lo)Pdu= / )P du= / " G(u)du = G(0).

it follows that
&+6/2

ISP < G(0) S* (I dx
£-0/2
Hence, by (4.2) and (4.3),

To+T

R
> ISE)P < G(0) IS0 (4.6)
r=1

0

Next, we bound the integral on the right side of (4.6). het ag(v)t. We have

To+T 00 K K _
/ smwmxg[ HMIS" ()P dx =Y~ " bdHm — ).

To k=1 I=1

By (4.4),H(» — ») vanishes unless=|. Thus,

To+T ~ K R K R K
[ s 0raxs RO Y b = FO Y P00 < O Y
0 k=1 k=1

k=1
Combining this inequality and (4.6), we get

R

K
D ISE)P < GO)H©0) > _ lawl?,
k=1

r=1

so the desired conclusion follows from the identities

G(0)=N+671, HO)=T +A™
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Corollary 4.5. Assume the notation of Lemma 4.4. Suppose thatIland all v’s are integers.

Then
R

D IsE)P < (N+6 Z|ak|2

r=1

Proof. Under the present hypotheses, we can estimate the righdfs{des) as

To+T 1 K K
/ IS" ()2 dx < / IS )P dx =) b <Y la,
0 k=1 k=1

To

where we have used Parseval’s identity. ]
Corollary 4.6. Suppose that NQ are positive integers andya. .., ay.n are complex numbers.
Then
M+N M+N
> > <(N+ Q@) Y ladl. (4.7)
0<Q 1<b<q ' n=M n=M
(b,o)=1

Proof. WhenQ = 1, (4.7) follows from Cauchy’s inequality, so we may assuh&® > 2. Then,
we can view the double sum ovgandb as a sum over all reduced fractidng, g < Q, such that

(b/o) € [Q, 1] c [2Q°%1].

If b’/q andb”/q” are two such fractions, we have

g B E 3 |bl 4 b/lq |
q/ q/r q q/r QZ’
unless’ = b” andq’ = q”. Thus, (4.7) follows from Corollary 4.5 with = Q2. ]

We now turn to averages of character sums.

Lemma 4.7. Suppose that,dM, N are positive integers andas, . . ., au,n are complex numbers.

Then
>

x modq

M+N

> )|

n=M+1

M+N

(N+0@) D la (4.8)

n=M+1

Proof. The sum on the left of (4.8) equals
Z a2y > x(Mi(n) = Z ann > x(mn),
x modq y modq

where) | denotes a summation restricted to integers relatively @tiog and m'is the multi-
plicative inverse ommodulog: mm = 1 (modq). By (3.5), the latter sum is

<p@ > lamal<e@ > (e + @) <@ (Ng'+1) D lan?,

m=n (mod q) m=n (mod q)

and (4.8) follows. ]

67



If we want to sum oveq as well, we need to restrict our attention to primitive cleéees or to
impose some restrictions on the @dgentsa,. The next lemma provides such a result.

Lemma 4.8. Suppose that (M, N are positive integers andas, . . ., au,n are complex numbers.

Then q . M+N 2 M+N
2 g 2 | 2 e < (N+Q) > lanl.
0<Q ¢(q))( modq ' n=M+1 n=M+1

Proof. Wheny is primitive, Lemmas 3.5 and 3.6 yield

M+N 2 M+N 2 2
a Y awm)| =| Y arlen)| =| Y x(b)S(b/g)| .
n=M+1 n=M+1 1<b<qg
(b.g)=1
where N
S(@) =) aeen),  [&l=lad.
n=1
Hence,
q . M+N 2 1 2
(—Z > aw)| <—= > [ > x(0)S(b/q)
¢q))(modq n=M+1 ¢(q))(modq 1<b<q
(b.g)=1
1 _
= 5@ Y S(oy/q)S2/q) Y x(beby) = Y IS(b/g);
¢ 4 1<by,by<q x modqg 1<b<q
(b1bs.0)=1 (b,g)=1

hereb; denotes the multiplicative inverse lof moduloqg. Thus, the lemma follows from (4.7).m

Next, we consider averages of Dirichlet polynomials of tterf

N
D() = > an™. (4.9)
n=1

Lemma 4.9. Suppose that > 0andt < t, < --- < tgr are real numbers such that
To+20<t <To+T-36
and
t, —t,|>6>0 whenever 1 # r».
Further, suppose thatja. . ., ay are complex numbers and(§) is defined by4.9). Then

R N
> ID(it)P < (671 + £ logN) (T +27N) D Jaq. (4.10)

r=1 n=1
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Proof. We apply Lemma 4.4 witlf, = t. andv, = —z—fr logn. Then
—5logN < v, <0,
andforl<m<n<N,

log2 ifn>2m,
[Vm — vnl g(n/m) {N—l if n<2m.

We note that the estimate in the case: n < 2muses the inequalities

n n-m n-m 1 1 1
o (1) = 0 (-G ) 2w 2) 2
Thus, in the application of Lemma 4.K, = % logN andA = (27N)~! and (4.10) is an immediate
consequence of (4.5). ]

Lemma 4.10. Suppose thatza. . ., ay are complex numbers and(§) is defined by4.9). Then

To+T N
/ ID(it)>dt < (T + 27N) Z ENE
.

0 n=1

Proof. We argue similarly to the second part of the proof of Lemma 4.dt A = (27N)~! and
G(2) = F(z To, T, A), whereF(2) is the function from Lemma 4.1. Then

N

To+T ) N ~
/ ID(it)[2dt < / GO )P dt=> ") " anaG(£ log(n/m)).

To m=1 n=1

Recalling from the proof of the previous lemma t@gﬂog(n/m)l > A unlessn = n, we get

To+T ~ N N
/T ID(it)|* dt < G(O)Z lan* = (T + 2zN) Z ENE
n=1

0 n=1

4.3 Dirichlet polynomials with characters: a hybrid sieve

So far we have obtained large-sieve results in the form afuaéties with two terms on the right
side, one of which corresponds to the maximum size of the samdshand the other to the mean
square of the function times the number of terms. In apptioatto the distribution of primes, we
sometimes consider Dirichlet polynomials of the form

N
D(sx) = ) _ a(mn™>. (4.11)

n=1

We can sieveD(s, y) over y or overs, we can also sieve over bothand s and obtain a hybrid
result. Oftentimes, such hybrid results are superior teeeibf the estimates resulting from sieving
over one ofy or sand then summing (or integrating) over the other.
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Lemma 4.11. Suppose that,§, N are positive integers,gland T are real, and [, ) is defined
by (4.11) Then

To+T N
2. /T DGt )P dt < (N +¢(@)T) D _lanl? (4.12)
x modq n=1
and
To+T
> mz / Dt YIFdt < (N+Q°T) Z|an| (4.13)

g<Q x modq

Proof. Let G(2) = F(z To, T,T™Y) andg(2) = f(z To, T, T1), whereF and f are the functions
from Lemma 4.1 and Corollary 4.3, respectively. Then

To+T 0 o0
/ ID(it, )P dt < / GOID(t, )P dt = / gOD(t, ) dt. (4.14)
To — -

Note that "
g(-H)D(-it.x) = S,(1),  S(¥) =Y aw(na(x+ 5 logn).

Applying Plancherel’'s theorem to the right side of (4.14¢,fimd that
To+T 00
[ aords [ismrox
To —00

Hence,

To+T
/ |D(|t)()|2dt</ > IS,(91Pdx (4.15)
To

x modq " xy modq

Sinced(x) is supported in the intervax| < (2T)™!, the summation ir§,(x) is supported in an
interval of length
<eZ(@/m-e™T) < T e = H(X), say.

Thus, an appeal to Lemma 4.7 gives

N
ST IS < (HX) +6(@) Y |and(x+ £ logn)|”.
n=1

x modqg

Inserting this bound into the right side of (4.15), we obtain

To+T N
Z / ID(it,X)Izdt<</ (H(X) + ¢(9)) Z x+—|ogn)\ dx
To - n=1

x modqg

<<Z|an|/ (H(X) + ¢(a)) [a(x + £ logn) |* dx
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We now observe that the last integral is supported in theﬂat¢x+ % log n\ < (2T)™L. For such
values ofx, we haveH(x) < nT~%, whence

To+T N 00 5
> /T ID(it )P dt < ) (nT™ + ¢(q)) lanl? / 10(x+ L logn)|“dx (4.16)
0 n=1 -

x modqg
Finally, we observe that the integral on the right side o164 equals

/_ : B()I1” dx = / : () dt = /_wG(t)dtzzT,

(o8]

and so (4.12) follows from (4.16). The proof of (4.13) is dani using Lemma 4.8 instead of
Lemma4.7. [

An important alternative form of the hybrid large sieve is thllowing. Consider a collection
of Dirichlet characters, such as the collection of all chges modulag or the collection of all
primitive characters to modudj < Q. Suppose that for each charactean that collection we have
selected real numbetgy) < t2(x) < - -+ < tr(x), R = R(y), such that

To+6/2§tr()()STo+T—6/2

and
It-(x) —ts(x)| =6 >0 whenever # s.

We will refer to such a collectio® of pairs {, t;(y)) of characters and real numbers asspaced
set of points When the given collection of characters is that of all chemas modulay or of all
primitive characters to moduj < Q, we further define

Sl=¢@T or [S=Q°T,
respectively.

Lemma 4.12. Suppose that 3, y) is defined by4.11)and S is ad-spaced set of pointy, t;(x))
of one of the two special kinds described above. Then

N
> DGt (). )P < (67 +1ogN) (N +18]) > faql®

(ot (x)eS n=1

Proof. Fix a charactey and consider the respective numbig(g), . . ., tr(y). Following the proof
of Lemma 4.4 (withy, = logn, M = 0, N = logN, andA = N71) up to (4.6), we get

R(x) To+T
Z ID(it: (x), x)I” < (67" +logN) / ID*(it, x)I? dt, (4.17)
r=1

To

where

N
D*(sx) = > byx(nn,
n=1

71



with codficients satisfying

N N
> o <) lan (4.18)
n=1 n=1
Summing (4.17) over all characters appearingijrwe obtain
To+T
> DGt (). Y < (671 +logN) Z/ ID*(it, y)2 dt. (4.19)
(ot ()eS x “To
The desired result follows from (4.18), (4.19), and Lemnidl4. ]

Exercises

1. Forze C, define

HE) = sirjznz{ _f: sgn) N 221}’ K@) = (sinnz)Z.

(z—n)?2 nz

The Beurling—Selberg functioB(2) from §4.1 is thenB(2) = H(2) + K(2).

(@) Lety(X) = {x} —1/2 andy;(X) = fox y(u) du. Show that whenx > 0,

i 1 _1_2/‘” {uydu _}_i+6/°°\|11(u)du
i (x+n)? ~ x o U+x3 x 2% o (U+x4
(b) Prove thatH(x)| < 1 for all x € R.

(c) Prove thatH(x) — sgn)| < K(x) for all x € R.
(d) Prove thaB(x) satisfies property (B in §4.1.

(e) Prove thaB(2) has exponential typen2
(f) By part (c),B(x) — sgn) is integrable, and so
o N
/m (B(x) - sgnf)) dx = ’\Illinoo [N (B(x) - sgn()) dx

Use this to show that

/ (B(x) - sgn)) dx = / K(x) dx
(g) Show that
1
K(2) = / (1-thetzdt and  K(t) = max(1- |t|, 0).
-1
Combine the latter identity and the result of part (f) to prdvatB(x) satisfies property (8 in §4.1.

Remark. Note that we stopped just short of establishing property {® §4.1: if B(x) belonged to_?(R),
we would be able to deduce {Bfrom (e) above and the Paley—Wiener theorem, but of colBg,does not
belong toLP(R) for anyp < 0. On the other hand, the functiéi(z) constructed in Lemma 4.1 does belong to
L2(R), so the above properties Bfz) suffice to prove that that function has all the desired properties
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2. Suppose thak > 0 andvy, vy, ..., vk are real numbers, and define

K
SM =D ae(nd),
k=1

whereay, a, . . ., ax are complex numbers. Prove that

[: IS()2dt < (T)? [:

[Hint: Lets = (2T)™%. Start by arguing similarly to the proof of (4.15), but cheagt) = (sinnot)/(wot)
andG(t) = g(t)>. ThenG(t) > 4r2 for all t € [-T, T] andd(x) is the characteristic function of-p/2,5/2],
normalized inL*(R). ]

2
dx

> a

e=X=(2T)~*

3. Consider th&amanujan sum

Co(M) = Y e(br/a).
1<b<q
(ba)=1
(a) Prove thaty(n) is multiplicative as a function af, that is,cq,q,(n) = Cg,(N)Cy,(N) Wheneverg, gz) = 1.

(b) Prove that

g g\
n) = .
e =0 (15 )¢ (')
4. (a) LetNydenote the set of integers not divisible by prinpes x. Prove that

Z:y(n)qu(n)’l = Z n!>logx

n<x neNx

(b) Suppose thatis a positive integer. Prove that

S oty > 2 S o
(nr:l(?)il n<x

5. Suppose thaV is a set of positive integers contained M.,[M + N]. For eachg < Q, define
Rqg={heZ : 1<h<q (n-hq)=1forallne N}, w(q) = IRyl-

The purpose of this exercise is to prove that

INI < (N + QZ){ >ou@?]] (p ‘_"(jzp)) }1. ()

a=Q pla

(&) Prove thatu(q) is multiplicative.
(b) Define
S(a) =) _ e(an).

neN
Use the result of Exercise 3 to show that

>3 s(b/a)e(-bh/g) = p(@w(@INI.
" e
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(c) Suppose thatis squarefree. Prove that

2
3 =@ YD ) TT (p- wlm).

1<b<q diq w(d) pla
(b.g)=1

heRqy

(d) Show that

INE S u@? ] (%) <33 Is(b/a)?

a<Q plg a<Q 1<b<q
(b,g)=1

Use this inequality and Corollary 4.6 to establish (

6. Suppose tha¥l, N, Q are positive integers witlp < M and letN be the set of primes i + 1, M + N]. Apply
the result of the previous exercise to show that

-1
7(M + N) - x(M) < (N + Q) { S 2ol } .
9<Q

Deduce that
(M +N) —z(M) < (N + Q?)(logQ)~™.

Upon choosing) = NY2(log N)~/2, this provides a Chebyshev-type upper bound for primesont shiervals:

(M + N) - n(M)_lgl {2 o('of(’)g)g'\')},

whenevelN > 2 andM > N%2,

7. Suppose thaM, N, q are positive integers analis an integer with&,g) = 1. Generalize the result of the
previous exercise to prove that

7T(M+N,q’a) (M-q’a)g¢(q)|og(N/q){2+o< |Og(N/q) )},

wheneveN > 3gandM > (N/g)Y/2. This result is one of the many versions of Brein—Titchmarsh inequality
The sharpest result in this direction was obtained by Mamigry and Vaughan [42]:

2N

r(M +N;g.8) = 7(M; ¢.9) < S o,

whenevelN > q.
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Chapter 5

Applications of the large sieve

5.1 Sums over primes and double sums

Suppose that the functioih: N — C is such that, wher is large, the sums
> f(n)
n<x

exhibit certain cancellation, and that we want to show thatsame is true for the sums

> fo). (5.1)

p<x

The first general method for obtaining such results was deeel by I. M. Vinogradov in the late
1930s. His starting point is the sieve of Eratosthenes.RA(®tdenote the product of all primes
p < zand writeP, = P(x"/2). Then

Yot =f@Q)+ > f(p), (5.2)
(nFo-1 xHe<pex

since the only numberns < x that are not divisible by any prime x%? are 1 and the primes in
(x2, X]. Using the properties of the Mobius function, we can wtlite sum on the left side of (5.2)

as
S =310 Y )= 3 u Y f(mo
(n,?’Sx;(:l n=x di(n.Py) d|Px m<x/d

The crux of Vinogradov’s method is a clever (and complicatmmmbinatorial argument that de-
composes the latter sum into several subsums of two majestyp

e type | sumsdouble sums of the form

> ) anf(mn), (5.3)

m<M n<x/m

whereM is not too large and the ciecientsa,, are small on average, but otherwise arbitrary;
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e type Il sumsdouble sums of the form
D) aghbf(mn), (5.4)
m<M n<N

whereM andN are neither too small nor too large and thefogentsa,, b, are small on
average, but otherwise arbitrary.

This reduces the estimation of (5.1) to the estimation oétiyand type Il double sums.

In 1977 Vaughan [53] found an alternative way for decompgsums over primes into double
sums that is much more straightforward than Vinogradovis.reisult is as follows.

Lemma 5.1 (Vaughan).Suppose tha < U,V < X. Then

> AMF() =3 - 5, - I, (5.5)
U<n<X
where
2= Z Z u(m)(logk) f (mK), 3, = Z Z amf (MK,
m<V U<mk<X m<UV U<mk<X

and

Sa= ) > A(Mbef(mK),

m>U k>V
mk<X

with cogficients|a,| < logm and|by| < d(k).

Proof. Our main tool is the identity
RAC) (9
() ()
in which we choosé&.(s) andM(s) to be the Dirichlet polynomials

L9 =D AMmn= and  M(s)=> u(mn>

n<uU nsv

:L(s)—M(s)g'(s)—L(s)M(s)g(sH(— —L(s)) (1-M(©SK9).  (56)

Suppose that > U. Comparing the cd&cients ofn~= in the Dirichlet series representations of the
left and right sides of (5.6) we obtain the following identior A(n):

AW = - S umClogh— 3 AW+ Y A(m)(—Zu(u)).

mk=n uvk=n mk=n uv=k
m<U u<U,v<Vv m>U,k>V usv

Multiplying both sides of byf (n) and summing oveld < n < X, we obtain (5.5) with
an= Y AWuv)., b= > ).

usul\J/,:vrgv usu\\;:<it1v
Clearly,lam| < > m A(U) = logmand|by| < d(k). |
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Heath-Brown [22] proposed afierent decomposition for von Mangoldt’s function, which
provides more flexibility than Lemma 5.1 and sometimes I¢adsiperior results. Like Vaughan'’s,
Heath-Brown'’s identity arises from an identity f01(s)/£(9). In this case, the underlying identity
is

{(s) Z( )’1<-){(S)j‘1§’(S)M(S)j+§(S)‘1(1—{(S)M(S))k{’(s), (5.7)

herek > 1 is an mteger and/i(s) is the Dirichlet polynomial

M(s) = > p(mn.

n<X

Suppose that is an integer wittn < XX and consider the célicients ofn™ on both sides of (5.7).
The codficient ofn~s on the left side of (5.7) isA(n) and the last term on the right side of (5.7)
does not contribute to the ceient ofn=>. We thus find that

k

A= () 3 dogmutmi-+-um, (5.8
":1 M <X

wheneven < XK. We will come back to Heath-Brown’s identity when we disctiss distribution
of primes in short intervals later in this chapter.

5.2 The Bombieri—Vinogradov theorem

In this section we will use Vaughan'’s identity, the largevsiéor character sums in the form of
Lemma 4.8, and the Poélya—Vinogradov theorem to establishfdllowing result equivalent to
Theorem 3.

Theorem 5.2. Suppose tha < Q < x. Then, for any fixed A 0,

w(y; g, a) — ﬂ < x(log X)™ + Qx?(log x)°. (5.9)

max max
(a»Q) 1 y<x

5.2.1 Preparations

Define
5. = 1 if y is principal
¥ 10 otherwise
By (3.58),
,a) — —— , o
Y(y; q.a) ¢(q) ¢(q)4v§jqx()w(y)() ).
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whence

> uyx) -6yl

modq

max ‘t//(y; d.a) - | < 1
(ag)=1 #(@ !~ ¢(q) P

Writing Z(x, Q) for the left side of (5.9), we find that

1
Q<D —= > max|y(y.x) -6,y =Zo+X;, say (5.10)
o $A) 1od, v
whereX, denotes the contribution from the principal characters &ndenotes the contribution
from all the other characters. By (3.60) (that inequalitydsdor allg < x) and the elementary
bound (see Exercise 1)

> g(mn)™ < ¢(m)tlogz. (5.11)
we have _ L
o < xexp( - c;VIogx) Y —— < x(logx) . (5.12)
oAl

As usual, for a non-principal characteroduloq, we denote by * the primitive character
inducingy. By (3.56),

1
B g 2 M)+ Qllogx)”

a<Q xmodq ~

Rearranging the sum over the characters as to combine tirdbeions of all characters to moduli
g = rq; < Qinduced by the same primitive charactemodulor, we deduce that

I maxiy(y, )l D qul) + Q(logx)?

r<Qy modr o <Q/r
1 *
< (logx) ) o0 > maxiy(y. )l + QUlogx)?, (5.13)
r<Q ¢ 'y modr y=

where we have used (5.11) again. We can estimate the caidridfbom the “small” modulir
using the Siegel-Walfisz theorem. Indeed, by (3.60) and J3vée have

maxiy(y, x)| < xexp( — c(A) Viogx)

for all primitive characters to moduli< (log X)**> = Q,, say. Thus,

> er) Z r?gxlw(y,)()l < xQuexp( - c(A) Viogx) < x(logx) .
r<Qo -

'x modr
Combining this inequality and (5.13), we obtain
¥, < (logx)=, + x(log X)™ + Q(log x)?, (5.14)

where

To= Yy, %Z* maxjy (y. x)!

Qo<r<Q -

'x modr
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5.2.2 Application of Vaughan’s identity
By (5.5) with f(n) = x(n), X =y, andU = V < x%2 (we will specify our choice obJ later),

W(y’)() = Sl(y’)() - SZ(y’X) - 83(y’)() + 'ﬁ(U,X),
whereS;(y, x) denotes the surd; on the right side of (5.5). Hence,
Yo K23+ 2s+ 25+ QU, (515)

where
1

Y= Y syl maxSiatil (1=3.45)

Qo<r<Q ¢(r 'x modr
We can estimat&; right away. By partial summation,

Siyx) < Y

m<U

> (logkx(k)

U<mkgy

< (logy) Z

m<U

> X(k)'

U<mk<z

for somezwith U < z <y. Thus, by the Polya—Vinogradov inequality,

max|S1(y, x)| < r’?U(log x)2.
y<x
We conclude that
5 < Q%2U(log X)2. (5.16)

Next we estimat&s using the large sieve. We then sglif into two subsums: one similar to
Y3 and one similar t&s.

5.2.3 Estimation ofZg

Suppose thad,,...,ay andby,..., bk are complex numbers. Then, by Cauchy’s inequality and
Lemma 4.8,

M K
> 5 | 2D anb(mk

r<kR x modr ' m=1 k=1
r . M 25N 1/2 r . K 2N 1/2
< {Zmz > ame(m) } {Zmz > bk }
r<rR x modr ' m=1 r<rR xy modr ' k=1

1/2

M 1/2 K
< (M+R)(K + R2)1/2<Z |am|2> (Z |bk|2) . (5.17)
m=1 k=1

We would like to apply this bound s, but before we can do that we must deal with the summation
conditionmk < y appearing in the definition @s(y, ).
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We start by splitting the intervdl < m < xU~! into O(log X) subintervalsM < m < M; such
thatM; < 2M. Then, for some choice d¥l, M, we have

> Y A(m)bk)((mk)‘. (5.18)

M<m<M; U<k<y/m

Ss(Y, x) < (logx)

Next, we use Perron’s formula (Lemma 1.13) witk: (logx)~%, T = x2, andu = y/(mK. We get

A(m)b _ 1 TS tyq+it dt+ O(A 5.19
X3 am almi = o [ Sy dto) 519)
where
_ Y A(m)d(k)
S(y.t) = M§M1U<§M-1A(m)b“(mk)(mk) L A=zT ; k; gkl

If we assume, as we may, thigl] = % we have|log(y/mK)| > y!. Hence, by the PNT and
Theorem 1.22,

A<xt > )" AM(K) < logx.

M<m<M; k<yM-1
Note also that

T
/ la + it dt < logx.
-T
Substituting these bounds into (5.19), we find that, for stighe T,
> ) Ambg(mK) < (IS(x. to)l + 1) logx

M<m<M; U<k<y/m

SinceS(y, to) is independent of, combining this inequality and (5.18), we get
max|Ss(y, )| < (log X)2(IS(x, to)l + 1).

Thus,

s < (logx)? ) s > IS to)l + Qlog x)2. (5.20)
Qo<r=<Q ¢(r)

'x modr

We now observe that

> AMPM* <« Mlogx and ) d(kk* < xM(logx)*;

M<m<M; U<k<xM-1

the former bound follows from the PNT and the latter from Tiemo 1.23. Hence, (5.17) yields
Z % Z* |S(X, tO)l < (|Og X)2 (X+ XRU—l/Z + X1/2R2).

r<R 'x modr

From this inequality and (5.20), we derive

¥s < (logx)* (xQ" + xU™2(log x) + x'/*Q). (5.21)
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5.2.4 Completion of the proof
Suppose thdt) = V < x/3. Then we can writS,(y, y) as

Sa(¥, x) = S5, x) + S5 (Y %),

whereS), is the portion ofS, wherem < U andS} is the portion wher&) < m< UV < xU™%. We

have
> x®

U<mksy

so the contribution o6, to X, can be bounded similarly tB;. Moreover, we can estimate the
contribution ofS} to X, similarly to X5, and the resulting bound is slightly sharper, because # thi
case we apply (5.17) with c@ientsa,,, andby subject toa,| < logmand|b,| < 1. Altogether,
we conclude that

b

1S5y )| < (logx) >

m<uU

24 < (log¥)*(Q¥?U + xQp* + xU™2 + x1/2Q). (5.22)
Combining (5.10), (5.12), (5.14)—(5.16), (5.21), and 2,2ve get

(%, Q) < (I0gx)°(Q¥2U + xQp* + xU™Y?(logX) + X*2Q),
whereU < x!3 is a parameter at our disposal. Any choiceJo$ubject to
(logx)?*12 < U < (x/Q)Y2

then yields (5.9). This proves the theorem wi@@g x(log X)~*A-2% in the alternative case, (5.9) is
worse than the trivial bound f&(x, Q). ]

5.3 The Barban-Davenport—Halberstam theorem

Using the large sieve and reductions such as those leadi(f10), we can also establish the
following result.

Theorem 5.3. Suppose tha? < Q < x. Then, for any fixed A 0,

>3 ‘w(x; q.a) - i‘z < ¥(logX) ™ + Qxlog x. (5.23)
0<Q 1l<a<q ¢(CI)
(ag=1

The first results of this form were obtained by Barban [3] amd@&hport and Halberstam [15];
hence, the name of the theorem. Note that by (5.23), the tmorin the prime number theorem
for arithmetic progressions '@((x/q)l/2+f), at least on average over all progressions to moduli
g < Q. Except when the modulugis very small, so strong a bound for an individual prograssio
does not follow even from GRH! Furthermore, (5.23) appearbd (essentially) the best result
within the reach of present methods. Indeed, a substant@avement of the first term on the
right side of (5.23) would yield a subsequent improvementbaorem 2 (see Exercise 3). While
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such an improvement would represent a significant achienmemehe field, it seems more likely
that it would occur independent of the above problem thancamaequence to it. As to the second
term in the bound (5.23), Montgomery [41, Ch. 17] has shovahwhenQ > x(log X)~4,

X |2
>N ‘w(x; q,a) — sl " Qxlogx  asx — co.

Thus, the second term on the right side of (5.23) is needed @his large.

5.4 The three primes theorem

Our goal in this section is to establish the following re$tdtn additive prime number theory.
Theorem 5 (I. M. Vinogradov). For a positive integer n, define
R = > (logpy)(log pz)(log ps).
P1+P2+Ps=n

where the summation is over all representations of n as the giuthree primes. Then, for any
given A> 0,

R(n) = In*S(n) + O(n*(logn)™), (5.24)
where
sm=]]@--1?)J[@+(p-17). (5.25)
pin pmn

In particular, every sficiently large odd integer is the sum of three primes.

This theorem was first proved in 1923 by Hardy and Littlewo2#l] [under the assumption
of GRH. In 1937 Vinogradov [57] applied his method for estiimg sums over primes to the
exponential sunf (@) below to give an unconditional proof of the three primestieen.

5.4.1 The Hardy-Littlewood circle method

Using the orthogonality relation

L 1 ifm=0
do = ’ 5.26
/oe(am) @ {o if m#0, (5.26)

we can expresB(n) as a Fourier integral. Indeed, by (5.26),

1
RM= Y (logpyiog p)(iog ps) /0 e(a(ps + 2 + ps - ) da

P1,P2,p3=Nn

= /01 (Z(Iog p)e(ap)) 3e(—cyn) da. (5.27)

p<n
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This identity is the starting point of the application of ttiecle method: we will use it to derive
the asymptotic formula fdR(n) from estimates for the exponential sum

f(2) =) (log p)e(ap). (5.28)

p<n
Our analysis is motivated by two observations:

e whena is near a rational numbex/q with a small denominatorf («) should be large and
should have certain asymptotic behavior, suggested byahauor off (a/q);

e otherwise, the numbergap), p < n, should be approximately uniformly distributed on the
unit circle, and hencef,(a) should be “small”.

Let B = B(A) be a positive number to be chosen later and set
P = (logn)®. (5.29)
If aandq are integers, we define timeajor arct
M(q.a) = [a/q - P/(qn), a/q+ P/(qn)]. (5.30)

The integration in (5.27) can be taken over any interval af lemgth, and in particular, over
[Pn, 1+ Pnt]. We partition this interval into two subsets:

M=) () Maa and m=[Pnt1+Pn?\Mm, (5.31)

g<P 1<a<q
(ag=1

called respectively theet of major arcsand theset of minor arcsThen, from (5.27) and (5.31),
R(n) = ( /)I t + / ) f(@)*e(—an) da. (5.32)
In §5.4.2, we use the Siegel-Walfisz theorem to prove that
/m t f(@)*e(—an) de = 1n°S(n) + O(N°PY) (5.33)
for any choice ofP. Then, in§5.4.3, we show that
/ f(@)*e(—an) da < n*(logn)™ (5.34)

for B > 3A + 18. Clearly, the asymptotic formula (5.24) follows from38)—(5.34).

1This term may seem a little peculiar, considering thigt), a) is in fact an interval. The explanation is that, in the
original version of the circle method, Hardy and Littlewaased power series and Cauchy'’s integral formula instead
of exponential sums and (5.26) (see Vaughan 842]). In that setting, the role di(q, a) is played by a small
circular arc near the root of unig{a/q); hence, the terminology.
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5.4.2 The major arcs
It is easy to see that the major arcs are comprised of mutdejgint intervalsii(g, a). Thus,
/ f(e)’e(-an)da =) )" / f(a/q+p)%e( - (a/q+p)n) ds. (5.35)
n g<P 1<a<q Y M(@0)
(ag)=1

We now proceed to approximatéa/q + B). We will prove the following result.

Lemma 5.4. Suppose that B 0,1 < a < q< (logn), (a,g) = 1, |8 < n"}(logn)B. Suppose also
that f(@) is defined by5.28)and define

v(,fg’):/0 g(Bx) dx

Then
f(a/q+B) = u(@e(@)*v(B) + O(n(logn)®).

Proof. We split the summation ifi(e) according to the residue @fmoduloqg. We get

fafa+p) =Y _ > (logpe((a/q+p)p)
1<h<q pzhr()ﬁ;d Q)
= > eahq > (logpeBp)
1<h<q pzh?ﬁ;dq)
= Y e@h/a) > (logp)eBp) + O(0). (5.36)
(ﬁ?}iﬁ p=h ?ﬂ)d q)

When f,q) = 1, we have
> (ogpep) = Y A(me@m)+O(yn)

p<n m<n
p=h (mod q) m=h (modq)

n
- [ et dutxany + (). (5.37)
By the Siegel-Walfisz theorem in the form of (3.62),

)—SB,

A(x a,h) = ¢(x g, @) - x/¢(q) < n(logn

for all x < n. Hence,
n n
/ &(8X) dA(K; G, h) << AT G, )| + 1+ 18 / AG g, h)] dx
0 2

n
< n(logn)—® + |3 / n(logn)~38 dx <« n(logn)~2&.
0
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Combining this estimate and (5.37), we get

> (logp)eBp) = /O e(Bx) dx+ O(n(logn)~2).

1
2 o)

p=h (modq)

Since (see Exercise 4.3)

(@ = Y eah/q) = u().
o

the desired conclusion follows from (5.36) and (5.38).

By Lemma 5.4 with B in place ofB,

f(a/q+ B)® = u(@¢(q)>v(B)® + O(n°P~3).

(5.38)

Since the measure &k is O(Pzn‘l), inserting this approximation into the right side of (5.3b®

obtain

[ tere-amda= > # DD [ ygiet g0 (rep).

¢(0)® 2M(q,0)

At this point, we extend the integration oygto the whole real line. Since

v(B) < n(1L+njg)~2,

the error we incur from doing this is

q<P

(9]

< Zqﬁ(q)‘z/ n°ds i i < P
o pian (1+NnB)° 5 9@

The last step uses the result of Exercise 5, which at the samerhplies that

> u@e(-nNg@) > < > o) < L.

<P <P

Hence, we deduce from (5.39) that

/ f(@)’e(—an) da = S(n, P)J(n) + O(n2P~Y),

where

S(nX) = 3 uAc-Me@=> I = / v(B) e(~An) dB.

g<X

By Fourier’s inversion formula)(n) = %nz, and by Exercise 5,

S(n.P)- E(n,o) < Y _¢(0) 2 <P

og>P
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It follows that
m

Finally, we remark that(n, «) equals the producg(n) defined in (5.25). Indeed, this follows
from Lemma 1.16, on noting that the functig(g) = u(g)cq(-n)¢(q)2 is multiplicative and

(p-1)2% ifu=1andpfn,
g(p’) = {-(p-1)? ifu=2landp|n,
0 ifu>2

Thus, (5.33) is established.

5.4.3 The minor arcs
We now turn to (5.34). The modulus of the left side does nokesc

/ |f(a)|3da< suplf(a)l |f(a)|2da. (5.42)

By Parseval’s identity and the PNT,
/ |f(@)Pda = (logp)® < nlogn.
p<n

Thus, (5.34) will follow from (5.42), if we show that

sup| f(@)| < n(logn)™1. (5.43)

m

We note that the trivial estimate fd(a) is

f(e) <) (logp) <n,

p<n

SO our goal is to save a power of lngver the trivial estimate fof (o). We can do this using the
following lemma, which provides such a saving under the mggion thate can be approximated
by a reduced fraction whose denominajas “neither too small, nor too large.”

Lemma 5.5. Suppose that, 6 are real and aq are integers satisfying
1<g<n, (@q=1 |e-a/q<é.

Then

f(2) < (logn)>(1 + on) (ng ™2 + n°® + n*3g*3).
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This estimate foff (@) is not quite the best known, but it has the advantage thahibe deduced
quickly from the work in§5.2. The sharpest known bound i) is

f(@) < (logn)*(ng /% + n*® + n¥2g"?); (5.44)

this holds under the standard assumption flata/q| < 2. For the proof of (5.44) see Vaughan
[54, Theorem 3.1] or Exercise 7 after the chapter. It is alsesble to apply more carefully the
ideas used in the proof of Lemma 5.5 to prove, again whena/q| < g2, that

3/4~1/8 1/241/2

f(a) < (logn)*(ng /% + n”8q 8 + n¥*q"® + n'/2q"/).

For the proof of this result, see Vaughan [52]; that papelsis @here identity (5.6) first appeared
and contains a proof of the (so far) strongest version of thal@eri—Vinogradov theorem.

Proof. We will derive the lemma from the inequality

Z (% )| < (Iog gx)° (xq 2 + 56 + x*3qH3). (5.45)

x modq

o(a)

First, we note that the contribution from the principal d@wer modulay is

< xq”?¢(0) ™ < xq*?logloga,

by Exercise 5(a). We estimate the average over the nonipaincharacters similarly to the sum
¥, in the proof of Theorem 5.2. In place of (5.15), we have

Z (%) < g 3(logqx) (5 + = + X5 + qU),
xn;odq
XFX0

¢(a)

whereZ’ is similar toZj and 1< U < x'/? is a parameter at our disposal. We can estimate Each
analogously to the respecti¥g, the only diference being that instead of (5.17), we appeal to the
inequality

2

x modq

1/2

Z Z ambiy (MK)

m=1 k=1

<« (M+q) "2 (K +q 1”(Darm ) /2@1 |bk|2)

Altogether, we obtain

Z (% x)| < (loggx)°® (xq ™2 + xU™2 + x2qY2 + qU).

x modq

()

We now choose
U = min (X3, (x/q)*?),
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so that
xU™? « x°/6 4 x2/3q1/3 and gU < x 2/3q1/3

Sincex!2qY? < x?*q'3, (5.45) follows.
We now turn to the estimation df(@). We have

f(2) =) A(me(@m) + O(n*?).
m<n
By partial summation,

> Amefem) < (

for somex < n. Similarly to (3.56) and (3.58), we obtain

> Ameanmyq) = > e(@h/a)y(x; g, h) + O((log 4x)?)
m<x 1<h<q
(h, q) 1

m S Y e@ya)idhu(x x) + O((logax?)

x modq 1<h<q
(hg=1

¢(q) > (v aw(x x) + O((logax?).

x modq

Since @, g) = 1, it follows from Lemmas 3.5 and 3.6 thiafy, a)| < /0. Hence,

S A(me(amya) < ¥ 1

m<X

) Z (% x)| + (log %),

x modq

¢(q

and the desired conclusion follows from (5.45)—(5.48).

(5.46)

(5.47)

(5.48)

Before we can derive (5.43) from Lemma 5.5, we need to staieples lemma known as

Dirichlet’s theorem on Diophantine approximation

Lemma 5.6 (Dirichlet). Leta and Q be real and @ 1. There exist integers a and g such that

1<q<Q (ag=1 |ge-a<Q™

Proof. See Vaughan [54, Lemma 2.1] or Exercises 8 and 9.

Proof of (5.43) Suppose that € m. By Lemma 5.6 withQ = nP%, there are integera andq

such that
1<q<nPl, (aq) =1, lgo —a < Pnt.
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Sincea ¢ M, it is not possible to havg < P, and so,
P<q<nPl, (aq) =1, lo —a/q < L.
We now apply Lemma 5.5 (with = n~!) and obtain
f(2) < (logn)®(ng ™% + n°°® + n*3¢*3)
< (logn)® (NP2 + n°’® + nPY/3) < n(logn)>®/3,

Thus, (5.43) follows on choosing > 3A + 18. [ ]

5.5 Primes in short intervals

In this section we discuss the following result mentionethIntroduction.
Theorem 6 (Huxley). Lete > 0 be fixed. Then for ¥ Xy(¢) and X/1%€ <y < X,
Y(x) —(x—-y) =y+O(ylogx)™). (5.49)
We deduce Huxley’s theorem from the following two results.
Theorem 5.7 (Korobov; I. M. Vinogradov). There is an absolute constante 0 such that
B = 1-cailog(lyl + 3))*3(log log(y] + 3)) 2.

Theorem 5.8 (Huxley).Given0O <o <land T > 2, define

N T)={p=B+iy 1 {lp)=0,0<B<L I <T}.
There is an absolute constantx 0 such that

N(o, T) < T**@7)(log T)%.

Theorem 5.7 is the Vinogradov—Korobov zerofree region dgiey the modern error term
(0.9) in the PNT. The reader will find its proof in Ivi¢ [31],dfatsuba and Voronin [37], or Titch-
marsh [50]. Theorem 5.8, whose proof forms the bulk of thitiea, is an example of aero-
density theoremBY virtue of Corollary 2.20, we have the trivial bound

N(o, T) < N(O, T) < T(logT). (5.50)
A zero-density theorem is an inequality of the form
N(o, T) < TAO@-2)(jog )4, (5.51)

whereA(o) andc(o) are such that (5.51) represents an improvement over ($05@) in some
subinterval of 12 < o < 1 (wheno < 1/2, (5.50) is best possible). Results in whigfr) is a
constant are of particular interest for applications. Theo5.8 above was established by Hux-
ley [27] and is the sharpest known result of this type. It $tdne compared with the conjectural
bound

N(o, T) < T?E(logT)®  (1/2<0 <1), (5.52)

which is known as the Density Hypothesis and in many sitnatican be used as a substitute
for RH.
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5.5.1 Proof of Theorem 6
By Theorem 2.22 witlT = x%/1%-¢/2,

) —v(x-y)=y- > _ oy, O(x"*2*/2(log x)?). (5.53)

[Im p|<T P

On writingp = B + iy, we have

— (X — V)V X
‘m _ / wldu <yt
Y x-y
whence . ,
$ XKW et (5.54)
[Imp|<T P I<T
Clearly, (5.49) follows from (5.53), (5.54), and the inelijlya
> ¥ < (logx) ™, (5.55)
<T

which we now proceed to prove.
Let
8(T) = c1(log T)*"(loglogT)~*7,

wherec; is the constant from Theorem 5.7. By Theorem 5.7 and partiegration,

1-6(T)
> K= / X" dN(c, T)
0

[Impl<T
1-5(T)

= xIN(0, T) + (log X) / N(o, T)x* 1 do-.

0

We use (5.50) to bound(0, T) and Theorem 5.8 to bourd(o, T) under the sign of the integral.
We find that

1-5(T)
> ¥ < x'TlogT + (logx)=* / (T2 dor
[Impl<T 0
< X2 4 (logx)=*1x M « (logx)?,

on noting that
x (N < exp( - ecs(logX)*) < (logx)~>~2.

This establishes (5.55) and completes the proof of the ¢émeor ]
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5.5.2 Huxley’s density theorem: zero detection

Without loss of generality we may assume thatZ < o < 1 andT > T,. We start from the
integral transform

1 2+ico0
- % 2—ico
which follows from (2.10) by Mellin inversion. We introdugarameter andY, which we will
specify later. We define

— X

r(g)x*ds (x> 0), (5.56)

Mx(9) = D u(mm’
m<X

and observe that, by Lemma 1.2,

Fx(9) = {(IMx(9) = Y _an =1+ ) an™, a, = (k) < d(n).
n=1 n>X kin
k<X

Applying (5.56) withx = n/Y and summing the resulting identities ovemwe get

2+ic0
e+ Y anve™ = [ Fwe9reYds  Rew)>0).  (557)
2

n>X —leo

Suppose that = g+ iy is a zero ofZ(s) counted byN(o, T). We move the integral in (5.57) to
the line Res = 1 — 8. The only singularities of the integrand in the stfip- 8 < Res < 2 are the
pole of{(s+ w) ats = 1 — w and the pole of (s) ats = 0. Furthermore, whew = p, /(o + S) has
a zero afs = 0 that cancels the pole of the gamma-function. Hence,

1/2-+ico

A Z ane™Y = My(L)I(L - p) Y+ + % / Fx(o + 9I(s)Y°ds (5.58)

n>X 1/2—B—ico

In order to simplify this identity, we now suppose that
TO<X<T® and T%<cy<T™ (5.59)

The terms withn > Y(log T)? contributeo(1) to the left side of (5.59). Also, by Corollary 2.8,
the first term on the right of (5.59) (1) unlessy| < (logT)?. Therefore, apart from the zeros
counted byN (o, (logT)?), all zeros counted bi(c, T) fall in one of the following classes:

e Class I:zerosp with

> 1/3; (5.60)

Z a,nre Y

X<n<Y(logT)?

e Class Il: zerosp with

1/2-B+ico
/ Fx(s+p)'(s)Y°ds| > 1/3. (5.61)
1

/2—B—ioco
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We subdivide the intervaX < n < Y(log T)? into O(log T) subintervaldN < n < Ny, N; < 2N, and
note that the number of zeros of class | does not exBe@dg T), whereR, is the number of zeros

o With
5 amen

N<n<N;

Furthermore, by Corollary 2.20,

> (logT)™. (5.62)

R; < [Ril(logT),
whereR; is a set of zeros af(s) that satisfy (5.62) and

lImp; —Impy>1  whenevep; # p2, pi € Ri. (5.63)

Similarly, the number of class Il zeros is bounded®(log T), whereR; is a set of zeros af(s)
that satisfy (5.61) and (5.63). We conclude that

N(o, T) < N(o, (IogT)?) + [Ral(log T)* + [Rol(log T)
< (Ry] + [Ro] + log T)(log T)?. (5.64)

5.5.3 Huxley’s density theorem:1/2 < o < 3/4

We first bound®R,|. We writeb, = a,e™ " (logn) and denote bys; the set of imaginary partg of
zerosp € Ry. Then

Rl < (logT)* )

pERL

< (logT)y*) { /;

yeS1

< (logT)’N™ ) / N

yeS1 V7

< (logT)’°N™ / N

YeS1

> by / ™ du
B

2
N<n<N;
2
Z b,n~Y" du}
N<n<N;

Z b,n4 Y

N<n<N;

Z bnn—u—iy

N<n<N;

2
du

2
du.

An appeal to Lemma 4.12 with= 1 now gives

IR1| < N™7(N + T)(log T)? / N Z b, N2 du

T N<n<2N

<NZ(N+T)(logT) > d(n)(logn)® < (N** +TN"*)(logT)",

N<n<2N

by Theorem 1.23 witlk = 2. Recalling thaX < N < Y(log T)?, we deduce that
(R < (Y727 + TX"?7)(log T)%. (5.65)
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We now turn to class Il zeros. By (5.61),

0 4/3
Rl < Y2(1-28>/3{ / |Fx(1/2+i(t + y))[(1/2 - B + it)| dt} :

(o8]

PR
Since 712< B <1, Lemmas 2.4 and 2.5 and Corollary 2.8 yield
r(1/2-p+it) < e
Thus, by (5.66) and Holder’s inequality,
00 4/3
[Ra| < Y2203y { / IFx(1/2+i(t+y))|e™ dt}

—00

v€S2

< yar2Eye / [Fx(1/2 +i(t + )| e dt

yeS2 YT
< Y2(l—20')/32}/32§/3,

whereS, denotes the set of imaginary parts of the zeroRin

Y= Z /m |2(1/2 +i(t + y))\“e—'t' dt,

veS2 Y T

Y, = Z / ) IMx(1/2 +i(t + y))\ze—"' dt.

veS2 Y T

We have

m+1/2 . 2 "
=) > / IMx(L/2 +i(t + )| e dt

® m+1/2

IMx(1/2 +i(t + y))|* dt
2

m-1/

m+T+1 2
<y e / |Mx(1/2 +iu)|“du,
m-T-1
the last inequality being a consequence of (5.63). Sincenh@rh 10 yields
m+T+1
/ [Mx(1/2+iu)[*du< (X+T) > nt < (X + T)(log T),
m-T-1 n<X

we conclude that

Y, < (X+T)(logT) i eM <« (X+T)(logT).

M=—o00

For the estimation of;, we use the following result.
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Theorem 5.9. Suppose that B 2. Then

T
/ (3 +it)[*dt < T(log T)*. (5.71)
0
Proof. See Ivi¢ [31, Ch. 5], Montgomery [41, Ch. 10], or Titchmafsh, §7.5 and$7.6]. [
By a variant of (5.69),

© U(m)
Y, < Z e"m'/ \{(1/2+iu)\4du,

m=—co U(m)

whereU(m) = |m + T + 1. Hence, we derive from (5.71) that

< f: e ™(T + [m)(log(T + IM))* < T(log T)*. (5.72)

M=—o00

Combining (5.68), (5.70), and (5.72), we obtain
[Ry| < Y2723 (X23T13 1 T) (log T)>. (5.73)
We now choos&X = T, which is consistent with (5.59). Then, by (5.64), (5.65) €5.73),
N(o, T) < (Y2 + T2 4+ Y2253T 4+ 1)(log T)™.
Finally, we putY = T¥®#2) (note thaty > T) and obtain
N(o, T) <« T30 (1og T)1O,
In particular, we have

N(o. T) < T#*7(logT)!  whenever 12 < o < 3/4. (574)

5.5.4 The Hahsz—Montgomery method
We consider the Dirichlet polynomial
D(9= > an
N<n<2N

wherea, are complex numbers. Suppose that . ., sz, & = o + it;, are complex numbers such
that
Tosti<th< - <trsTp+T, thi—t>1, a<or <1, (575)

and
ID(s)l =V forallr=1,...,R (5.76)
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We choose complex numbdrs . . ., br such thatb,| = 1 and|D(s/)| = b,D(s). Then

D D)= b > an®= ) a) bn®

1<r<R 1<r<R N<n<2N N<n<2N 1<r<R

BNy

N<n<2N ' 1<r<R N<n<2N
_ N 12 1/2
:{ D3 brbqn—a—sf:} { > |an|2}

N<n<2N 1<r,g<R N<n<2N
S e

_ 1/2 1/2
5{ 3" Ibiby } { > |an|2}
N<n<2N

1<r,g<R N<n<2N
1/2 1/2
:{ Z Z n—o'r—o'q+i(tq—tr)} { Z |an|2} ) (577)
1<r,g<R ' N<n<2N N<n<2N

By partial summation, for somid < M < 2N,

2 n—o‘,—a'q+i(tq—tr) <« N7 q < N—2[Z

N<n<2N

. (5.78)

Z pilta=t)

N<n<M

Z nilta—t)

N<n<M

We deal with the sum overby means of the following exponential sum estimate.

Lemma 5.10. Suppose that N> 2, X > 0, and f: [N,2N] — R has two continuous derivatives
that satisfy the conditions

X< |/ <X and XN < [f”(x)] < XN

for all x € [N, 2N]. Then, for any interval £ [N, 2N],

D e(f(n) < (XN)Y2+ X%

nel
Whenr # g, we apply the lemma witti(x) = 5-(tq — t,) log x. We haveX = |t; — t,|N™%, so
Dol = 3 e(f(n) < Itg — t7? + Nitg -t ™
N<n<M N<n<M

Because of (5.75), we can put this inequality in the form

D>l <ty =t M2+ N(ltg -t + 1), (5.79)
N<n<M
in which it is valid even whem = g. Inserting (5.79) into the right side of (5.78), we find that

ST reaitet) o NTRTY2 4 NB2 (it — t] + 1)
N<n<2N
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Thus,

LY meroeilat)) « NF2gg 4 NRTHZ, (5.80)
1<r,g<R | N<n<2N
where
Ta= > (-t +1)7"< YD (m+1)" < R(logT). (5.81)
1<r,g<R 1<r<Rm<T

Combining (5.75)—(5.77), (5.80), and (5.81), we deduce tha

RV? < (RN(logT) + RTY)N>G,  G= > fa/l” (5.82)

N<n<2N
Let T; = csN*V4G~2 for some s#iciently small constant, > 0. WhenT < Ty, (5.82) yields
R <« GNY"2*V=2(logT).

WhenT > T3, we first partition the intervall]p, To + T] into O(T/T; + 1) subintervals of length at
mostT; and then bound the numbertpk in each subinterval using (5.82). We find that

R< (T/T1+1)GN"*V2(logT) < (GN**V~? + G*TN"*V°)(logT). (5.83)

5.5.5 Huxley’s density theorem:3/4 <o <1

In §5.5.3, we estimatefR,| and|R,| using the large sieve and Theorem 5.9. In this section we
derive alternative bounds f¢R,| and|R,| using the Halasz—Montgomery large value method. To
bound|R,| we apply the Halasz—Montgomery method to the Dirichleypomial on the right side

of (5.62). By (5.83) withv = (log T)"! anda = o,

[Ril < (GN" + G*TN"*)(logT)%,

where
G< Y laf < ) d(n) < N(logN)>®.
N<n<N; n<2N
Hence,when B3 <o <1,
[Ril < (Y27 + TX¥%) (log T)%. (5.84)

We now proceed with the estimation |#,]. By (5.61) and (5.67), a class Il zepo= 8 + iy
satisfies the inequality

10logT
/ |Fx(1/2+i(t+7))| dt> Y7~V
-10logT
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Let U be a parameter to be chosen later. We partifgninto two subsets: the s&,; of zeros
p € R, such that
IMx(L/2+i(t+7y))| < UTHYT 12

for all t with || < 10logT; and the seR,, of the remaining zeros. For zerps R, 1, we have

10logT
U< / 2(1/2+i(t+))| dt,

10logT

whence

10logT

10logT 4
U* < { / C@/2+i(t+7)| dt} < (logT)? / (L2 + it + y)*dt

10logT 10logT

Thus,

10logT

Rosl < U(1og TP 3 [ jatasz+ite+ et

peR22 10logT

< U™*(logT)? / y |§(1/2+iu)|4{ > 1} du
2T

B pER21
ly-u|<10logT

2T

< U™(log T)5/ 12(1/2 +iu)[*du.
2T

Using Theorem 5.9, we obtain
IR21] < TU*(logT)°. (5.85)

If p is a zero iNR,,, there exists a real numbgs |t, — y| < 10logT, such that
IMx(1/2+it,)| > UTHY7 12,
We patrtition the interval [1X] into O(log X) subintervalsIN, N;], N; < 2N, some of which must
satisfy
Z lu(n)n—l/Z—ity

N<n<N;

Let S(N) denote the subset &, ; containing those zergsfor which (5.86) holds. Then

> Uty 2(log X)L (5.86)

[Rz2l < IS(N)I(log T) (5.87)
for someN, 1 < N < X. By (5.83) witha = 1/2 andV = U~tY"Y2(log T)?,
IS(N)] < (NV2+NTV®) logT. (5.88)
From (5.85), (5.87), and (5.88),
[Rol < (TU™ + XY"27U? + TXY*U®) (log T)~. (5.89)
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Upon choosing
U= (X—lY—3(l—20'))1/10
(5.89) becomes
(Rl < (T X2/SYOU-20)/5 1. x4/5y2(1-20)/5) (jog T)®7,

Combining this inequality with (5.64) and (5.84), we findttha

N(o, T) < (Y2727 + TX"07 4 TXPYOU20/5 4. x#/5y2(-20)/5) (Jog T)*.

Under the assumption that
X2Y4(20'—1) < T5,

the third term on the right side of (5.90) dominates the fowshd so
N(o, T) < (Y% + TX*® 4+ TXPYe(297%) (1og T)®.

Setting
X = Y(20'—1)/(50’—3)’
we derive
N(o, T) < (Y*% + T YW 8@r-0/7=9)) (Iog T)*%,
provided that

Y < T%(5a—3)/(2a—1)2_

Finally, we take
Y = T%(SO'—S)/((J'2+0'—1)

which satisfies (5.92) for/3 < o < 1 and turns the bound (5.91) into
N(O', T) < T(50'—3)(1—U)/(02+(r—1)(log T)Cs,

In particular,
N(o, T) < T?**)(logT)®  whenever 4 <o < 1.

Together with (5.74), this completes the proof of Huxleywedrem.

5.6 Primesin almost all short intervals

(5.90)

(5.91)

(5.92)

In this section, we use Huxley’s density theorem (Theore8h to. prove the following result.

Theorem 7. Let&(X, §) denote the set of real numbers XX, 2X] such that
W (X) — y(x — 6X) — 6X| > ox(logX) ™.
Suppose that > 0 and A> 0 are fixed, X> Xo(e, A), and X>/%*¢ < § < 1. Then
(X, )l <a X(log X) ™A,

the left side representing the Lebesgue measusXfo).
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Proof. We have
2X 2
80%.0) < (6X) X0 X)? [ |u(09 - w(x - 5% - ox("dx
X
so it sufices to show that
2X 2
/ W (X) — w(x = 6X) — 6|~ dx < 6*X3(log X) 2. (5.94)
X
By Theorem 2.22 witT = X>6-¢/2,

09— px- —ox= 3 KO o(xueerzogxy)

[Impl<T p
1
= > Xowlp) +O(XYE*B) wp)= [ wldu
[Im pl<T 1-6
Hence,
2X 2 2X 2
/ W (X) — w(x - 6x) — X" dx <</ dx+ §2X3¢/2, (5.95)

X X

[Impl<T

Upon noting thatw(p)| < ¢, we obtain

I

2X
Cdx- >y w(pa)olps) | X172 dx

[Imp|<T 1M pa|<T |1m po|<T
<& > > xpl+52 dx|. (5.96)
[ImMp1|<T | Impo|<T X
We now appeal to the inequality
2X _ XBr+ha+1
/ Xﬁ1+ﬂ2+l(71—)’2) dx <« —
X lya =72l +1
which follows by partial integration. Using this to bounctthght side of (5.96), we get
XPBitB2+1
/ Caxar Yy O .
|Impl<T =T T 72 72' *
<&y Z 1< §(logT) ) - X+, (5.97)
| ly1— 7’2|
Y1I<T |y2l<T [yI<T
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We now writed(T) = (logT)"¥%. By Theorems 5.7 and 5.8 and (5.50),

1-6(T)
Z X2:8+1 — _ / X20'+1 dN(O’, T)
0

<T
1-6(T)
< XN(O, T) + (log X) / XZ*IN(o, T) do
° 1-6(T)
< XT(logT) + (log X)=** / X224 dor
0
< XM (log X)%=*! <« X3(log X)™A2. (5.98)
The desired bound (5.94) follows from (5.95), (5.97), an@85. [

5.7 The linear sieve

This section is a (very) brief introduction to sieve methagighout proofs and in the special case
of a “linear sieve”.

5.7.1 The fundamental problem of sieve theory

Let A be a finite integer sequence. We will be concerned with thetexce of elements ofi that
are primes or, more generalgimost primes P that is, integers having at masprime divisors,
counted according to multiplicity. We consider a set of @inumbersp and a real parameter
z > 2 and define thsifting function

S(A.B.9=#acA : @P@) =1}, P@=]]p (5.99)
pes
In applications, the sep is usually taken to be the set of possible prime divisors efdlements
of A, so the sifting function (5.99) counts the elementsfiree of prime divisorp < z
For our first attempt at boundir( A, B, 2), we recall Lemma 1.2. It yields

S(AB =) D ud)= ) ud)Ad, (5.100)

acA d|(a.P(2) dP(2)

where
\Agl = #{ae A : a=0 (modd)}.

To this end, we suppose that there exist a (large) quaKtijmd a multiplicative functionu(d)
such thafAy4| can be approximated byw(d)/d, and we writer (A, d) for the remainder in this

approximation:
Ayl = x@ +r(A,d). (5.101)
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We expectr (A, d) to be ‘small’, at least in some average sense oveBubstituting (5.101) into
the right side of (5.100), we find that

S(A, B, 2) = XV(2) + R(A, 2), (5.102)
where d
V@ =Y (d)“’( ) RAZ- 3 (@ (A, d). (5.103)
diP(2) diP(2)

We would like to believe that, under ‘ideal circumstancgs:103) is an asymptotic formula for
the sifting functionS(A, ¥, 2), XV(2) being the main term anB(A, 2) the error term. However,
such expectations turn out to be unrealistic (see Exer€¥e Therefore, we need to adjust our
strategy.

Let D > 0 be a parameter to be chosen later in termX.o8uppose thaa*(d) andA~(d) are
real-valued functions supported on the squarefree insebguch that

A*d) <1 and A*(d)=0 ford>D. (5.104)

Furthermore, suppose that

A <) ud)<) A*d)  forallne A (5.105)

din dn dn

Using (5.100), (5.101), and the left inequality in (5.108& obtain

SAPDzY Y A=) A @A

acA di(a,P(2) dP(2
N ( x2D , a d)) > XM~ - R,
dP(2
where (d)
==Y A (d)“’ R=YIr(Ad). (5.106)
diP(2) diP(2)

d<D

In a similar fashion, we can use the right inequality in (B)Jl{® estimate the sifting function from
above. That is, we have
XM =R <S(A,B,2) < XM +R. (5.107)

We are now in a position to overcome théidulty caused by the “error term” in (5.100). The
sumR is similar to the error terniR(A, z) defined in (5.101), but unlik&(A, z) we can use the
parameteD to control the number of terms iR. Thus, our general strategy will be to construct
functionsA*(d) which satisfy (5.104) and (5.105) and for which the sums are of the same
order as the suv(2) defined in (5.102). There are various constructions of $ucttionsA*(d).
We will simply state one of the modern sieves in a form suédbt application ir§5.8.
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5.7.2 The Rosser—lwaniec sieve

The basic form of this sieve method appeared for the first timan unpublished manuscript by
Rosser, and the full-fledged version was developed indepelydby Iwaniec [32, 33]. Suppose
that the multiplicative functiom(d) in (5.101) satisfies the condition

-1 P
1T (2~ AP () (14 S (2<w <wy), (5.108)
W1 <P<Wp P logw; logw,

wherekx > 0 is an absolute constant known as #iieve dimensioandK > 0 is independent of
w; andw,. This inequality is usually interpreted as an average bdonthe values taken by (p)
when p is prime, since it is consistent with the inequalityp) < «. In the applications we are
interested in, (5.108) holds with= 1, so we will state the Rosser—Iwaniec sieve in this special
case: this is the so-called theear sieve

Suppose thab(p) satisfies (5.108) witk = 1 and that

O<w(p)<p whenpep and w(p)=0 whenp ¢ . (5.109)

We putA*(1) = 1 andA*(d) = O if d is not squarefree. Ifl > 1 is squarefree and has prime
decompositiod = py--- pr, PL> P2 > -+ > Pr, We define

A(d) = (=1 if pr---pap3,; < Dwhenever x| < (r —1)/2, (5.110)
0 otherwise '

A(d) = (=1) if pr---pa_1p3 < D whenever < | <r/2, (5.111)
0 otherwise '

It can be shown (see Greaves’ book [18] or Iwaniec’s origpagder [33]) that these two functions
satisfy conditions (5.104) and (5.105). Furthermore, & tjuantitiesM* are defined by (5.106)
with A*(d) given by (5.110) and (5.111), we have
V(2 < M* <V(2) (F(s) + O(e°(log D) ?)) for s> 1, (5.112)
V(2 > M™ > V(2) (f(s) + O(e(log D) ?)) for s> 2, (5.113)
wheres = logD/ log zand the functiong (s) andF(s) are the continuous solutions of the following
system of diferential delay equations:
f(s)=0 if0<s<?2,
F(s) = 2e's™ if0<s<3,
(sf(9) = F(s-1) if s> 2,
(sF(s))’ = f(s—-1) if s> 3.

Herevy is Euler's constant. The analysis of this system revealstti@functionF(s) is strictly
decreasing fos > 0, that the functiorf (s) is strictly increasing fos > 2, and that

0< f(s) <1< F(9 fors> 2. (5.114)

102



Furthermore, both functions are very close to 1 for lasgeney satisfy
F(s), f(s) =1+ 0(s?) ass — oo. (5.115)
Substituting (5.112) and (5.113) into (5.107), we obtain

S(A,B,2) < XV(2) (F(s) + O((logD)™™3)) + R~ fors>1, (5.116)
S(A,B,2) > XV(2) (f(s) + O((logD)™3)) - R fors>2. (5.117)

5.7.3 Two applications

Example 5.7.1.Suppose that 2 y < x, wherex is a (large) real number. We choagkto be the
sequence of integerse (x -y, X] and*}} to be the set of all primes. Then

n- 3 - B-FR -5 05

S0 (5.101) holds with

X=y, wd=1 and r(ﬂ,d):—{g}+{%’},

and in (5.117), one has
XV@=y[](1-p?) >ylogy™ and R<D.
p<z

Hence, combining (5.114) and (5.117), we obtain
S(A, B,2) > y(logx) ™, (5.118)

provided that
D<y*™ and z<DY**

for some fixede > O.

Choosingy = ¥/, D = y*¢, andz = DV?¢, we find that there are> y(logx)~! integers
n € (x — ¥, X] that have no prime divisor smaller thaf{?-?¢. Since the numbers in question do
not exceed, each of the elements o counted on the left side of (5.118) has at mg&t grime
divisors. In particular, we are able to conclude that:

For syficiently large x, the intervalx — x'/2, X] contains a R-number.

Note that in this case we just miss to show the existende;afumbers in X — x2, x]. If we
increase the length of the intervals just slightly, we afatai

For 6 > 0 and x> xo(9), the interval(x — x*/2*9, x] contains a B-number.
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Example 5.7.2.Suppose that is a (large) even integer and set
A={n-p:2<p<n} and P={p: ptn}.
Then (5.101) is expected to hold with

d/¢(d) if(d,n)=1,

X=Lin and w(d) = ,
0 otherwise

The main termin (5.117) is

XV(2) = (Li n) H (1-(p-1)") > (Lin)(log2) ™, (5.119)
p<z

ptn
and the error termR is bounded by

n(n;d,a) — Lin

¢(d)

D+ max
Z (ad)=1
d<D

In particular, wherD < n'/?-¢, the Bombieri-Vinogradov theorem yields
R < n(logn)~3. (5.120)

We now choos® = n®4? andz = n??, so that we have

I
oo ogD
logz

Combining (5.114), (5.117), (5.119), and (5.120), we firat th

> 2.2

S(A, B, 2) > n(logn)2. (5.121)

That is, there are> n(logn)~2 elements ofA that have no prime divisors smaller tha#®. Since
the numbers A do not exceed, the elements aiA counted on the left side of (5.121) have at
most four prime divisors each, that is, the left side of (3)1&unts solutions af — p = P4. We
conclude that:

Every syiciently large even integer n can be represented as the sunpofree and a
P4-number.

The results of both examples can be strengthened significaiben [9, 10] has proved the
following two theorems.

Theorem 8 (Chen). For syficiently large X, the intervalx— x*/2, x] always contains a 2number.
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Theorem 9 (Chen). Every syficiently large even integer n can be represented as the sum of a
prime and a B-number.

Obviously, Theorem 9 is the best possible result of its kstihrt of a proof of the binary
Goldbach conjecture. Its proof is too involved to includéhase lectures, but those interested can
find all the details in Halberstam and Richert [19, Ch. 11]. piiesent the proof of Theorem 8 in
§5.8. However, unlike Theorem 9, Theorem 8 can and has beeweg on (several times). The
best result to date is due to Liu [39] and states that all watsrof the form & — x>4%6,x], X > Xo,
contain aP,-number.

5.7.4 The bilinear form of the error term in the linear sieve

Assume thatA is an integer sequence such that (5.101) holds with a fumatisubject to (5.108)
with « = 1 and - ]
w
Yoy ——*«< (2 < w1 < wy),
Wi<p<wy v>2 p |Og 3Wl

whereL > 0 isindependent ofi, w,. Inspired by Chen’s original proof of Theorem 8, Iwaniec][32
obtained the following more flexible form of the linear Rassg@aniec sieve.

Theorem 5.11 (Iwaniec).Suppose thadl < € < 1/3, M,N > 2, D = MN. Then
S(A, B, 2 < XV(2 (F(s) + E(e, D, K, L)) + R"(M,N), (5.122)
S(A,B,2) > XV(2) (f(s) - E(, D, K, L)) = R*(M,N), (5.123)
where s=logD/logz, E, D, K, L) < € + e %+ (logD)"Y3, and

REMN) =D ) ) anbir(Amn),  J=exp(8e?).

j<J m<M n<N
mP(2) nP(2)

The cogficients &, ;, by; depend at most oa M, N (but not onA) and satisfylay, ;| < 1, |by;| < 1.

The importance of this result is that it allows us to repldwedrror ternR defined by (5.106)
with a bounded number of sums of the form

Z Z ambnr (A, mn),

m<M n<N

wherela,| < 1, |by < 1. In many applications, one can exploit the arithmetic praps of
the sequenceA to estimate such double sums mofeeetively. To illustrate this, we return to
Example 5.7.1. Suppose that x’, 2/5 < § < 3/5. We will show (see Lemma 5.13 below) that
in this situation one can obtain a satisfactory bounddaiM, N) under the hypotheses

M < X(‘)—GE’ MNZ < X(59—l)/2—10€.

Therefore, upon choosing9 € < €(5), M = x¥*-%, andN = x®-1/4-2¢ in Theorem 5.11, we can
replace the paramet& = x’~¢ in Example 5.7.1 byp = MN = x("-1/4-8 o obtain:

For 6 > 0 and x> Xo(6), the interval(x — x¥/7*9, x] contains a B-number.
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5.8 Almost primes in short intervals

In this section we establish Theorem 8. That result and iisesguent improvements rest on two
new ideas: more sophisticated sieve machinery and thedfaualysis of the remainder§A, d).

5.8.1 The remainders (A, d)

In Example 5.7.1 we estimated the error term in (5.117)aliyi In this section, we use Fourier
analytic techniques to exploit the oscillation of the remalrsr (A, mn) in (5.122) and (5.123).

Lemma 5.12. Suppose that > 0, ¥** <y < Xx,2 <M < M; <2M,2 < N < N; < 2N,
y < MN < x, and &,, b, are complex numbers with,| < 1, |by| < 1. We define

wora-[3- 15

There exist a real number X [x/2,2x] and (complex) cggcients &, by, with |a;| < 1, |b}| < 1,
such that

> ) anbar(xy;mn) < y(MN)™

M<m<M; N<n<Nz

S Y a2 o

M<m<M; N<n<N; 1<h<H

with H = MNy x¥,
Proof. Let f be aC™-function, supported in{—y — yx2¢, x + yx %] and such that
fw=1 (x-y<u<x) and fOU) < (yx2) (j=0). (5.124)

(See Exercise 12 for one possible construction of such dgibmg Then, by Lemma 1.21,

ST Y A= Y. Y D adbefkmn

M<m<Mj1 N<n<Np x—y<kmrgx M<m<M; N<n<N; Kk
< ) dP+ D duP < yxe
X—Yy—YyX 2 <USX-Y X<USX+YX 26
that is,
X X=VY71\ _ e
S abs ([ﬁ] - [WD = 3 3 Y abf(kmn+Owxe).  (5.125)
M<m<M; N<n<Nz M<m<M; N<n<N; k

Let g (u) = f(ur). Applying the Poisson summation formula (see Zygmund €8P, (11.13.4)]) to
the sum ovek, we obtain

ST HKMY = 3 Goel) = 3 Golh) = ()3 F (%]) ,
k k h h
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wheref is the Fourier transform of. Hence, we can rewrite (5.125) as

> > (][] X Y X

M<m<M1 N<n<Ng M<m<M1 N<n<Ng

( )+O(yx ). (5.126)

The contribution to the right side from the terms witk: O is

ar“;?]” =y > > ar“;?]” +O(yx),

M<m<Mj; N<n<N; M<m<M; N<n<Nz

so it follows from (5.126) that

Z Zambr(xy,mn)_ Z ZZ

M<m<M; N<n<Np M<m<M; N<n<N; h#0

( ) + O(yx©). (5.127)

We now proceed to estimate the tails of the series bv&hoose an integer> 3 + ¢ 1. By
(5.124) and -fold partial integration,

f(t) = (—2nit)™" / ) fOW)e(-ut) du < y(yx®|t)™"  (r > 0).

Thus, the contribution to the right side of (5.127) from temwith |h| > H is

2¢ 2e -
<yy_ ( 2d |h|) < yH <y)|\(/INH> < MNXE e « 1.

[hi>H

Therefore, (5.127) yields

> ) anbar(xy;mn) <</

M<m<M; N<n<Nz

(_—Uh) '|f(u)| du+ yxe.
M<m<M; N<n<Nj O<|hj<H mn

Recalling thatf is supported on a subset of/R, 2x] of measured(y), we conclude that

Y anbrxyimn) <y(MN)TH YT > Y arbre ( ) +yXe,
M<m<M; N<n<Np M<m<M; N<n<N; 1<h<H
wherela;| < 1,|bj| < 1, andx/2 < X < 2x. ]

Lemma 5.13. Suppose that > 0, ¥** <y < Xx,2 <M < M; <2M,2 < N < N; < 2N,
y < MN < x, and &, b, are complex numbers with,| < 1, |b,| < 1. Also, suppose that

M < yx®, MN < yt/2xt/2-3¢ MN? < y*/2x /2710 (5.128)

Then
> ) ambar(xy;mn) < yxe,

M<m<M; N<n<Nz

where I(x, y; mn) is the function defined in Lemma 5.12.
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Proof. LetH = MNy1x*. By Lemma 5.12, it sfices to show that

SHMN)= > Y > a;‘nb;‘,e(z—D < MNX*. (5.129)

M<m<M; N<n<N; 1<h<H

Herea}, by, andX are as in Lemma 5.12. By Cauchy’s inequality,
Xh
E E bre <%)
N<n<N; 1<h<H
X (hy h
> e(— <—1——2)) ' (5.130)
m\n n

M<m<2M

2
ISHM.NP<M )

M<m<2M

<M Z Z

N<ng,n2<2N 1<h;,h<H

We now group the quadruplel;(h,, ny, ny) according to the value of the determinant hyn, —
h,n;. WhenA = 0, we bound the sum ovemin (5.130) trivially by M. WhenA # 0, we appeal to
Lemma 5.10 withf (m) = AX(n;n,m)~1. We get

Z o AX ) _ (1AIX 1/2+M2N2
mmnn, MN2 IAIX

M<m<2M

Writing §(K) for the number of quadruples with = k, we conclude that

KX \ 7% M2N2
IS(H, M,N)? < 6@)M? + ) 6(k)<< ) + . (5.131)
O<|kI<2HN M N2 |k|X

For |kl < 2HN, we have

s < Y D d(hn+ k) < (HN)™2,

N<n<2N 1<h<H

so (5.131) yields

(HN)“IS(H, M, N)* < M?NH + X"2MY2N¥2H%2 4 X"*M*N°H
< MZNZ(My—1X35 + MNZy—5/2X1/2+7.55 + M2N2y_1x_1+35). (5132)

Since HN)© < x¢/2, (5.129) follows from (5.132) and the hypotheses (5.128). n

5.8.2 Proof of Theorem 8

Lety = x'/2, z= x°, D be the set of all primesA the sequence of integense (x -y, X]. We write
S(A, w) for S(A, B, w),

Pw=]]p. VvwW=]]@-p?.

p<w p<w
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Our starting point is the sum

Y(@.B,8) = ) (1_2(0‘_ %))’

X=y<n<x pin
(n,P(2)=1

whereq, 8, § are positive absolute constants to be chosen later. On thhand, we have

S(@.8.0)< Y (,8+1—a21).

X—y<n<x pin
(n.P@)=1

Hence, if we assume that
Ba>pB+1, (5.133)

only P,-numbershwill contribute positive terms t&(«, 8, §). In particular, the theorem will follow
if we show that
X(a,B,6) >0

for somea, B, 6 satisfying (5.133). On the other hand,

|
2(e.8.6) = S(A.2) = Y (a - %) S(Ap. 2)
p>z
>S(A)- Y (a - %) S(Ap, 2). (5.134)

z<p<xe/B

First, we proceed to obtain a lower bound 8(A, 2). Pute; = 10°. By Lemma 5.13 with
M < x1/2-60 gndN < x/8-2© we have

Z Z ambnr (A, mn) < yx® (5.135)

M<m<M; N<n<N;

for any choice ofM; < 2M, N; < 2N, |ay| < 1, |by| < 1. We now appeal to Theorem 5.11 with
M = xt/280 N = x1/820 X =y z=X. Ityields

S(A,2) 2 YV(D) (f (67(5/8 - 8e)) — Coe — O ((log W) ) ) .

Note that we have used (5.135) to estimate the remaiRd@vl, N) in (5.123). Choosing =
(2000c9) 71, we deduce that, fox — oo,

S(A,2) > YV(2) (f(67'(5/8 - 8ey)) — 0.001) . (5.136)
Next, we turn to the sum on the right side of (5.134). To thid @e require that

a/f <1/2-Te. (5.137)
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Using a dyadic argument, we split the interval{*’?] into O(log x) subintervals ¥, Cx], C < 2.
For p € [x,Cx'], we apply Theorem 5.11 witM = M, = x/27480 N = x1/8-20 X = X, = yp?,
z=x

5/8—U—8€0

5 ) + Coe + Oc((log )™ 3)) +Rp(M,N),  (5.138)

S(Ap, 2) < X,V(2) (F (

where

Ro(Mu N) =D~ ™~ ™ ajbn jr (Ap, mn).

j<J m<M, n<N
miP(2) nIP(2)

Here, the cofficientsan, j, b, ; independent op and satisfylay, ;| < 1, |byj| < 1. Whenmandn are
divisors ofP(z) andp > z, we haver (A,, mn) = r(A, mnp. Hence, on writink = pm we get

S (a - ﬁ%) Ro(Mus N) < | S5 cebur (44, k)

XU<p<Cx k<K n<N

2

whereK = 2x1/?-%¢ |¢| < 1, |b,| < 1. Thus, by (5.135),

> <a 'Oﬂ) Rp(My, N) <, yx /2, (5.139)

xU<psCx4 Iog X

Furthermore, wher" < p < 2x“, we have

= <M) _F (5/8 8o _ log p) < (logx)™. (5.140)
5 ) logz

Combining (5.138)—(5.140), we find that

Z (a/ - %) S(Ap, 2) < YV(2) (01 + 02Cee + Oc(02(log x) %) ),
z<p<xelp

where

B 1 logp 5/8-8¢ logp
7= Z B(a 'Blogx)F( s logz )’

3 1 logp
= 2 (o).

X <p<x/B

By Theorem 1.9¢, < 1, so choosing suficiently small, we conclude that when— o,

3 (a - B%) S(Ap, 2) < YV(Z)(o1 + 0.001) (5.141)
z<p<xe/B
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Finally, we evaluater;. Letg(u) = x (@ — BU)F (67%(5/8 — 8¢ — U)) and note that
g(u) < x and  g'(u) < xY(logx).

Using Stieltjes integration by parts and the PNT, we obtain
a/p
7i= [ oW d(xx) - 26¢))
0
a/p
—= [ () - 76))g (@) du
0

af X gt
__ /5 L fogt 99 + O((og )

] % g(u)x“(log ) du+ O((logx)™)

5 log(x")
a/p
= / u (@ - BU)F (674(5/8 — 8e — U)) du+ O((logx)™).
0
From the last calculation, (5.134), (5.136), and (5.148 deduce that
X(a,B,6) = yV(2)(o3 — 0.003),

where wlp
o3 =f(67(5/8-8e)) - / u(a - BU)F (67*(5/8 - 8 — U)) du.
0

Hence, it remains to choosep, § satisfying (5.133) and (5.137) and such that> 0.003. In
order to simplify the calculations, we choose

6 =5/32- 2¢, a=4/3, B=3,
although a slightly better choice would have been
6 =5/32- 2¢, a=(B+1)/3 B=21 (5.142)

Then (5.133) and (5.137) hold and

1 4/9
o3 = f(4)- 3 / u™(4-9u)F (4-¢6"'u) du
0

In3 1 [¥° 4-9u
=2 —=_Z T
ey( 4 3/5 u(4 — 6-1u) du)

In3 1 3 6.75
_ 2@(7 -3 <957—1) +35In (967_1) ) >0.11¢ > 0.11

This completes the proof of Chen’s theorem. ]
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Remark. Itis not difficult to obtainsomemprovement on Theorem 8. Indeed, after changing the
choice ofytoy = x?, we alter our choices so that

6= (70-1)/16- 2¢, a/B < 60— Te. (5.143)

Choosing firstr = (8 + 1)/3 and therB so that the second inequality in (5.143) is nearly exact (cf.
(5.142)), we derive a lower bound

Y(a,8,6) > X’V(2)(c4(6) — 0.003),

whereo4(0) is a function o similar too;z above. Finally, we try to choogeso thato4(#) > 0.003.
Following this strategy, one easily finds that one can repthe interval X — x*/2, X] in Theorem 8

by (x — x%48, x]. As we mentioned at the end §6.7.3, further improvements arise from the use of
sharper exponential sum estimates/anchore sophisticated versions of the skitw, 8, §) above.
Such matters, however, go beyond the scope of these lectures ]

Exercises

1. Prove (5.11).
2. Prove Theorem 5.3.

3. (a) Suppose thdt(x)(logx)~* — o and

X
;0,8 — —— f(x)L.
Max ¥(X q,a) @ < xf(x)
a=Q
Show that the asymptotic formula
X
X;g,a) = ——(1+0(1 asx — oo *
¥(x;q,a) ¢(q)( (1)) (=)

holds for all arithmetic progressiomsmod g, with 1 < g < min (Q, f(x)(log x)‘l) and @,q) = 1. In
particular, a version of the Bombieri—Vinogradov theoreitihw exp(— 2(log x)‘i) ,0 > 0, in place of the
termx(log x)~ on the right side of (5.9) would establisk) for all arithmetic progressions with moduli
g< exp((log x)"‘), thus yielding an improvement on the Siegel-Walfisz theorem

(b) Obtain a variant of the result of part (a) relating to treliBan—Davenport—Halberstam theorem.
4. Prove (5.40).
5. Prove that:

(@) ¢(n) > n(loglogn)~* for all n > 10;

n2
() > o <"

n<x

© > ¢m?<xt

n>x

6. LetJ(n) be defined by (5.41). Prove than) = %nz.
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7. The point of this exercise is to establish (5.44).

(8) Use Lemma 5.1 withd = V to decomposd () into type | sums of the form (5.3) witli(n) = e(an)
andM < U? and type Il sums of the form (5.4) with the sarf@) andU < M, N < xU™2,

(b) LetX; be any of the type | sums arising from the decomposition it (@gr Prove that

¥, < (logn) Z min (n/m, [leml| ™).

ms<U2

(c) LetX; be any of the type Il sums arising from the decomposition it (2. Prove that

221 < M(logn)” >~ Y~ min (M, fle(u-V)II™),

usnM-1v<nM-1

for someM with U < M < xUL.

(d) Suppose that, N, « are real numbers witM, N > 1, and thate — a/q| < g2 with (a,q) = 1. Then

> min (MNm™, flem|™) < (MNg™ + M + g) (log 2MN).

m<M

[Hivt: See Vaughan [54, Lemma 2.P].
(e) Suppose that — a/q) < q~2. Using the results of parts (b)—(d), show that

21 < (logn)?(ng™* + U? +q)

and
%, < (logn)*(ng /2 + nU~Y2 + nt/2y Y2 4 nt2g/2).

Noting thatU = n?® is the choice that optimizes these bounds, deduce (5.44).
8. The purpose of this exercise is to establish Lemma 5.6NL-ef{ Q] and consider the numbers
0, {e}.{22},...,{Na}, 1. ()

Show that some interva(k— 1)(N + 1), k(N + 1)™], 1 < k < N + 1, contains at least two of the numbet} (
From this, deduce Dirichlet's theorem.

9. The purpose of this exercise is to give an alternativefayzbbemma 5.6.
(a) Show that Dirichlet’s theorem is equivalent to the inagy
Se=min{lnall : 1<n<N} <(N+1)™" (%)
(b) Supposethat@ ¢ < % and define the 1-periodic function
fs(X) = max@ — Il 0).

Prove that theith Fourier coéficient of f; is given by

f\(n) _ 52 |f m= 0,
7 (sinrom)2/(zm)?  if m# 0.
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(c) Suppose that, > 0 and seb = 6,. Observe that

5=y (1 - N'le) fs(n).

Inl<N
Deduce that

o= f’(;(m)KN(m)’

m=—oc0
whereKn(X) is the Fejér kernel

i 2
=3 (1l oo ()

sinzx
Ini<N

(d) Use the result of part (c) to prove)(

10. LetA be the set of integers < X, B the set of all primesz = X2, Observe that with these choices, (5.102)
takes the form

S(A,P,2) = XH (1-p™t) +RA,2).
p<z
Hence, under the hypothesis
R(A,2) = o(X(logX)™!)  asX — o, (%)
one obtains

_ erX 267X
aX)~ XJ] (1-p?) ~ l0gz = TogX "

p<z
which contradicts the PNT. Therefore) fnust be false.

11. Fill the details of Example 5.7.2.

12. The purpose of this exercise is to construg@ afunction f with the properties required in the proof of
Lemma5.12.

(a) Define the function

exp((x=1y1-x1) fo<x<l1,
g = | TP =17 =) |

0 otherwise
Show thatg € C*(R).

(b) LetG(x) = f_xw g(t) dt, whereg is the function from part (a). Show that the functiofx) = G(x)/G(1)
is a non-decreasin@>-function such thal(x) = 0 whenx < 0 andh(x) = 1 whenx > 1.

(c) Suppose that < g andé > 0. Leth(x) be the function from part (b) and define
f(¥) = h((x - @)/6 + 1) - h((x - B) /).
Thenf is aC*-function, supported ind — 6, 8 + 6] and such that
f(x)=1 (@<x<B) and fOX)<s! (j=0)
13. Prove (5.140).

14. Inthe remark at the end §5.8, we sketched the proof of the following result:

For suficiently largex, the interval k — x>46, x] always contains &,-number.

Fill the details of the proof.
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