[go: up one dir, main page]

Fibonacci Primitive Part

The Prime Pages keeps a list of the 5000 largest known primes, plus a few each of certain selected archivable forms and classes. These forms are defined in this collection's home page.

This page is about one of those forms.

(up) Definitions and Notes

[Description to be added. Do you want to write it and supply the necessary references?]

(up) Record Primes of this Type

rankprime digitswhowhencomment
1primU(183537) 25571 E1 Oct 2024 Fibonacci primitive part, ECPP
2primU(118319) 24553 E1 Oct 2024 Fibonacci primitive part, ECPP
3primU(115373) 23875 E1 Oct 2024 Fibonacci primitive part, ECPP
4primU(135421) 23725 E1 Oct 2024 Fibonacci primitive part, ECPP
5primU(164185) 23524 E1 Oct 2024 Fibonacci primitive part, ECPP
6primU(166737) 23231 E1 Oct 2024 Fibonacci primitive part, ECPP
7primU(102689) 20715 E1 Sep 2024 Fibonacci primitive part, ECPP
8primU(105821) 20598 E1 Sep 2022 Fibonacci primitive part, ECPP
9primU(172179) 20540 E1 Sep 2022 Fibonacci primitive part, ECPP
10primU(137439) 19148 E1 Jun 2022 Fibonacci primitive part, ECPP
11primU(107779) 18980 E1 May 2022 Fibonacci primitive part, ECPP
12primU(131481) 15695 c77 Mar 2019 Fibonacci primitive part, ECPP
13primU(77387) 15319 c77 Mar 2019 Fibonacci primitive part, ECPP
14primU(67703) 13954 c77 Jul 2018 Fibonacci primitive part, ECPP
15primU(94551) 13174 c77 Apr 2018 Fibonacci primitive part, ECPP
16primU(62771) 12791 c77 Apr 2018 Fibonacci primitive part, ECPP
17primU(73025) 11587 c77 Apr 2015 Fibonacci primitive part, ECPP
18primU(67781) 11587 c77 Apr 2015 Fibonacci primitive part, ECPP
19primU(67825) 11336 x23 Feb 2007 Fibonacci primitive part
20primU(61733) 11058 c77 Mar 2015 Fibonacci primitive part, ECPP

(up) References

BHV2002
Bilu, Yu., Hanrot, G. and Voutier, P. M., "Existence of primitive divisors of Lucas and Lehmer numbers," J. Reine Angew. Math., 539 (2001) 75--122.  With an appendix by M. Mignotte.  MR1863855 (Annotation available)
Carmichael1913
R. D. Carmichael, "On the numerical factors of the arithmetic forms αn ± βn," Ann. Math., 15 (1913) 30--70.
Jarden1958
Jarden, Dov, "Supplementary remarks to the paper: Linear forms of primitive prime divisors of Fibonacci numbers," Riveon Lematematika, 12 (1958) 31--32.  MR 0101206
Voutier1995
Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences," Math. Comp., 64:210 (1995) 869--888.  MR1284673 (Annotation available)
Voutier1996
Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences. II," J. Th\'eor. Nombres Bordeaux, 8:2 (1996) 251--274.  MR1438469
Voutier1998
Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences. III," Math. Proc. Cambridge Philos. Soc., 123:3 (1998) 407--419.  MR1607969 [From the review: "The main result of this paper is that for any integer n>30 030, the nth element of any Lucas or Lehmer sequence has a primitive divisor."]
Printed from the PrimePages <t5k.org> © Reginald McLean.