A general form of the divisors of these numbers will be noted of more
: 2kpn+1+1 . We find again 2kp+1 for Mersenne's numbers and
k2n+2+1 for Fermat's numbers.
For n=1 and p=m not necessarily prime we find also (bm+/-1)bm+1
(see New forms of primes), but the form
of the divisors is more complex generally.
The table below summarizes the organization and the specificities of these numbers :
Divisors | Generalized Mersenne (rep. base-1) |
Mersenne |
Generalized Mersenne (repunits) |
||||||||||
n=0 | 2kp+1 |
...... |
b=-6 |
b=-5 |
b=-4 |
b=-3 |
b=-2 |
b=2 |
b=3 |
b=4 |
b=5 |
b=6 |
...... |
...... |
(6p+1)/7 |
(5p+1)/6 |
(4p+1)/5 |
(3p+1)/4 |
(2p+1)/3 |
2p-1 |
(3p-1)/2 |
(4p-1)/3 |
(5p-1)/4 |
(6p-1)/5 |
...... | ||
Generalized Fermat |
Fermat |
Fermat |
Generalized Fermat |
||||||||||
p=2 | k2n+2+1 |
...... |
b=-6 |
b=-5 |
b=-4 |
b=-3 |
b=-2 |
b=2 |
b=3 |
b=4 |
b=5 |
b=6 |
...... |
...... |
62^n+1 |
=0 mod 2 |
42^n+1 |
=0 mod 2 |
22^n+1 |
22^n+1 |
=0 mod 2 |
42^n+1 |
=0 mod 2 |
62^n+1 |
...... | ||
Generalized Mersenne-Fermat |
Generalized Mersenne-Fermat |
||||||||||||
p=3 | 2k3n+1+1 |
...... | b=-6 |
b=-5 |
b=-4 |
b=-3 |
b=-2 |
b=2 |
b=3 |
b=4 |
b=5 |
b=6 |
...... |
...... | (63^n-1)63^n+1 | =0 mod 3 |
(43^n-1)43^n+1 | (33^n-1)33^n+1 | =0 mod 3 |
(23^n+1)23^n+1 | (33^n+1)33^n+1 | =0 mod 3 |
(53^n+1)53^n+1 | (63^n+1)63^n+1 | ...... | ||
p |
2kpn+1+1 |
...... |
|
|
|
|
|
|
|
|
|
|
......
|
...... |
|
|
|
|
|
|
|
|
|
|
......
|
Mersenne field |
primes or prps for p |
p < |
....... |
... |
... |
(104^p-1)/103
|
97,263,5437 |
5438
|
....... |
... |
... |
(99^p-1)/98
|
3,5,37,47,383,5563 |
5564
|
....... |
... |
... |
(95^p-1)/94
|
7,523,9283,10487,11483 |
11484
|
....... |
... |
... |
(90^p-1)/89
|
3,19,97,5209 |
5210
|
(89^p-1)/88
|
3,7,43,47,71,109,571,11071 |
11972
|
....... |
... |
... |
(82^p-1)/81 |
2,23,31,41,7607 |
7608 |
....... |
... |
... |
(70^p-1)/69
|
2,29,59,541,761,1013,11621 |
11622
|
(69^p-1)/68
|
3,61,2371,3557,8293 |
8294
|
....... |
... |
... |
(67^p-1)/66
|
19,367,1487,3347,4451,10391 |
10392
|
....... |
... |
... |
(62^p-1)/61
|
3,5,17,47,163,173,757,4567,9221,10889 |
10890
|
....... |
... |
... |
(59^p-1)/58 |
3,13,479,12251 |
12252
|
....... |
... |
... |
(50^p-1)/49 |
3,5,127,139,347,661,2203,6521 |
20000
|
(49^p-1)/48 |
|
- |
(48^p-1)/47 |
19,269,349,383,1303,15031 |
20000 |
(47^p-1)/46 |
127,18013 |
20000 |
(46^p-1)/45 |
2,7,19,67,211,433,2437,2719,19531 |
20000 |
(45^p-1)/44 |
19,53,167,3319,11257 |
20000 |
(44^p-1)/43 |
5,31,167 |
20000 |
(43^p-1)/42 |
5,13,6277 |
20000 |
(42^p-1)/41 |
2,1319 |
20000 |
(41^p-1)/40 |
3,83,269,409,1759,11731 |
20000 |
(40^p-1)/39 |
2,5,7,19,23,29,541,751,1277 |
20000 |
(39^p-1)/38 |
349,631,4493,16633 |
20000 |
(38^p-1)/37 |
3,7,401,449 |
20000 |
(37^p-1)/36 |
13,71,181,251,463,521,7321 |
20000 |
(36^p-1)/35 |
2 |
- |
(35^p-1)/34 |
313,1297 |
20000 |
(34^p-1)/33 |
13,1493,5851,6379 |
20000 |
(33^p-1)/32 |
3,197,3581,6871 |
20000 |
(32^p-1)/31 |
|
20000 |
(31^p-1)/30 |
7,17,31,5581,9973 |
20000 |
(30^p-1)/29 |
2,5,11,163,569,1789,8447 |
20000 |
(29^p-1)/28 |
5,151,3719 |
20000 |
(28^p-1)/27 |
2,5,17,457,1423 |
20000 |
(27^p-1)/26 |
3 |
- |
(26^p-1)/25 |
7,43,347,12421,12473,26717 |
30000 |
(25^p-1)/24 |
|
- |
(24^p-1)/23 |
3,5,19,53,71,653,661,10343 |
30000 |
(23^p-1)/22 |
5,3181 |
30000 |
(22^p-1)/21 |
2,5,79,101,359,857,4463,9029,27823 |
30000 |
(21^p-1)/20 |
3,11,17,43,271 |
30000 |
(20^p-1)/19 |
3,11,17,1487 |
30000 |
(19p-1)/18 |
19,31,47,59,61,107,337,1061,9511,22051 |
30000 |
(18p-1)/17 |
2,25667,28807 |
30000 |
(17p-1)/16 |
3,5,7,11,47,71,419,4799 |
30000 |
(16p-1)/15 |
2 |
- |
(15p-1)/14 |
3,43,73,487,2579,8741 |
30000 |
(14p-1)/13 |
3,7,19,31,41,2687,19697,..,59693,67421 |
30000 |
(13p-1)/12
|
5,7,137,283,883,991,1021,1193,3671,18743,31751 |
31752 |
(12p-1)/11 |
2,3,5,19,97,109,317,353,701,9739,14951,37573,46889 |
46890 |
(11p-1)/10 |
17,19,73,139,907,1907,2029,4801,5153,10867,20161 |
41000 |
(10p-1)/9 |
2,19,23,317,1031,49081,86453,109297,270343 |
300000 |
(9p-1)/8 |
- |
|
(8p-1)/7
|
3 |
-
|
(7p-1)/6
|
5,13,131,149,1699,14221,35201,126037 |
126038
|
(6p-1)/5
|
2,3,7,29,71,127,271,509,1049,6389,6883,10613,19889,...,79987 |
50000
|
(5p-1)/4
|
3,7,11,13,47,127,149,181,619,929,3407,10949,13241,13873,16519 |
60000
|
(4p-1)/3 |
2 |
- |
(3p-1)/2 |
3,7,13,71,103,541,1091,1367,1627,4177,9011,9551,36913,43063,49681, 57917 |
90000 |
2p-1 |
2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253, |
18816700 |
(2p+1)/3 |
3,5,7,11,13,17,19,23,31,43,61,79,101,127,167,191,199,313,347,701,1709, 2617,3539,5807,10501,10691,11279,12391,14479,42737,83339,95369, 117239,127031,138937,141079,267017,269987,374321,..,986191 |
720000 |
(3p+1)/4 |
3,5,7,13,23,43,281,359,487,577,1579,1663,1741,3191,9209,11257,12743, 13093,17027,26633,...,104243,...,134227 |
85000 |
(4p+1)/5
|
3 |
-
|
(5p+1)/6 |
5,67,101,103,229,347,4013,23297,30133 |
65000 |
(6p+1)/7
|
3,11,31,43,47,59,107,811,2819,4817,9601,33581,38447,41341 |
55000
|
(7p+1)/8
|
3,17,23,29,47,61,1619,18251 |
55000
|
(8p+1)/9 |
- |
|
(9p+1)/10 |
3,59,223,547,773,1009,1823,3803,49223 |
49224 |
(10p+1)/11 |
5,7,19,31,53,67,293,641,2137,3011 |
43000 |
(11p+1)/12
|
5,7,179,229,439,557,6113 |
40000
|
(12p+1)/13
|
5,11,109,193,1483,11353,21419,21911,24071 |
40000
|
(13p+1)/14
|
3,11,17,19,919,1151,2791,9323 |
40000
|
(14p+1)/15
|
7,53,503,1229,22637 |
30000
|
(15p+1)/16
|
3,7,29,1091,2423 |
30000
|
(16p+1)/17
|
3,5,7,23,37,89,149,173,251,307,317,30197 |
40000 |
(17p+1)/18
|
7,17,23,47,967,6653,8297 |
30000
|
(18p+1)/19
|
3,7,23,73,733,941,1097,1933,4651 |
30000
|
(19p+1)/20
|
17,37,157,163,631,7351,26183 |
30000
|
(20^p+1)/21 |
2,5,79,89,709,797,1163,6971 |
30000
|
(21^p+1)/22 |
3,5,7,13,37,347,17597 |
30000
|
(22^p+1)/23 |
3,5,13,43,79,101,107,227,353,7393 |
30000
|
(23^p+1)/24 |
11,13,67,109,331,587 |
20000
|
(24^p+1)/25 |
2,7,11,19,2207,2477,4951 |
20000
|
(25^p+1)/26 |
3,7,23,29,59,1249,1709,1823,1931,3433,8863 |
20000
|
(26^p+1)/27 |
11,109,227,277,347,857,2297,9043 |
20000
|
(27^p+1)/28 |
|
- |
(28^p+1)/29 |
3,19,373,419,491,1031 |
20000
|
(29^p+1)/30 |
7 |
20000
|
(30^p+1)/31 |
2,139,173,547,829,2087,2719,3109,10159 |
20000
|
(31^p+1)/32 |
109,461,1061 |
20000 |
(32^p+1)/33 |
2 |
20000 |
(33^p+1)/34 |
5,67,157,12211 |
20000 |
(34^p+1)/35 |
3 |
20000 |
(35^p+1)/36 |
11,13,79,127,503,617,709,857,1499,3823 |
20000 |
(36^p+1)/37 |
31,191,257,367,3061 |
20000 |
(37^p+1)/38 |
5,7,2707 |
20000 |
(38^p+1)/39 |
2,5,167,1063,1597,2749,3373,13691 |
20000 |
(39^p+1)/40 |
3,13,149,15377 |
20000 |
(40^p+1)/41 |
53,67,1217,5867,6143,11681 |
20000 |
(41^p+1)/42 |
17,691 |
20000 |
(42^p+1)/43 |
2,3,709,1637,17911 |
20000 |
(43^p+1)/44 |
5,7,19,251,277,383,503,3019,4517,9967 |
20000 |
(44^p+1)/45 |
2,7 |
20000 |
(45^p+1)/46 |
103,157 |
20000 |
(46^p+1)/47 |
7,23,59,71,107,223,331,2207,6841 |
20000 |
(47^p+1)/48 |
5,19,23,79,1783,7681 |
20000 |
(48^p+1)/49 |
2,5,17,131 |
20000 |
(49^p+1)/50 |
7,19,37,83,1481,12527 |
20000 |
(50^p+1)/51 |
1153 |
20000 |
...... |
... |
... |
(58^p+1)/59 |
3,17,1447,11003 |
11004 |
...... |
... |
... |
(94^p+1)/95
|
71,307,613,1787,3793,10391
|
10392 |
...... |
... |
... |
(100^p+1)/101
|
3,293,461,11867
|
11868 |
...... |
... |
... |
(256p+1)/257
|
5,13
|
7000
|
......
|
... |
...
|
(1296^p+1)/1297
|
3,2153,3517
|
3518
|
......
|
... |
...
|
(65536p+1)/65537
|
239
|
7000
|
......
|
... |
...
|
You can also consult the next links :